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Abstract

In this paper, some inequalities involving the integral Taylor's remainder are
obtained by using various well-known methods.
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In [4] — [5], H. Gauchman has derived some new types of inequalities involving
Taylor’'s remainder.

In[1], L. Bougoffa continued to create several integral inequalities involving
Taylor’s remainder.

The purpose of this paper is to give some supplements and improvements for
the results obtained in] - [3].

In [1], two notationsR,, ((c, z) andr, ¢(a, b) have been adopted to denote Note On Inequalities Imvolving
thenth Taylor’s remainder of functiorf with centerc and the integral Taylor’s Integral Taylor's Remainder
remainder respectively, i.e., Zheng Liu

f™(e)
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Contents
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However, it is evident that Go Back
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and Page 3 of 14
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So, we would like only to keep the notatid), (-, -) in what follows.

We start by changing the order of integration to give a simple different proof

of Lemma 1.1 and Lemma 1.2 in][and [1]. i.e.,

/ab R, s(a,z)dr = /ab (/ %ﬂ"“)(wdt) dx
_ /ab (/f%fmm(t)dx) dt

b p\n+l
_ / —<Izn+t)1)+! £ () dt,

and
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We prove the following theorem by using the Leibniz formula.

Theorem 2.1.Let f be afunction defined dn, b]. Assume that € C"([a, b]).
Then

p i p—1 i i (b . a)n—k
@1 D (DFCERys(a,0)| < S CEL R )] RO
k=0 k=0 '
Note On Inequalities Involving
p p—1 (b o a)"fk Integral Taylor'’s Remainder
n—k+1 vk k n—k
(2.2) ()" O Ry p(b,a)| < Cp [ f7P ()] (n— k) Zheng Liu
k=0 k=0
P i b Title Page
(2.3) ko( )" C, /a Ry ps(a, z)dx Contents
p—1 n—
g o ‘f(n_k)< )‘ (b—a) k+1 44 44
- p-1 (n—k+1) < >
k=0
Go Back
p b
2.4 ek | R b, x)d Close
(2.4) (=1 » kg (b, 2)dx
k=0 @ Quit
p—1 n—k+1
k n—k (b—a) Page 5 of 14
<> O R [CETTE J
k=0
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Proof. We apply the following Leibniz formula
(FG)P) = FP G 4+ C’;F(p_l)G(l) 4t CII;—lF(l)G(p—l) + FGP),

provided the function#’, G € C?([a, ])
Let F(z) = f0" 7+ (z), G(z) =

— )" (») p —r n—k
(o @) :D—l)kcﬁﬂ”—“”(m)—(b r

n! — (n—k)!

Integrating both sides of the preceding equation with respeetftom a to b
gives us

[(f(”‘l’-i-l) () (b ;!m)n) (p—l)]

_ Z kc«k/ f(n k+1

The integral on the right |$Rn_k7f(a, x), and to evaluate the term on the left
hand side, we must again apply the Leibniz formula, obtaining

_ ;(_1)’€C§1f(”k)(a)% — Z<_1)kC5Rnfk,f(a, b).

k=0
Consequently,

r=b

b—x)” k

n—k) dr.

p —1 (b _ a)n—k

SR € 3L [ @ =

k=0 k=0
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which proves2.1).
For the proof of £.2), we take

Fla) = 07, Gy =
For the proof of 2.3), we take
bh— n+1
Flo) = 0700, 6(0) = (00
For the proof of £.4), we take
nep (l‘ _ a)n+1
Fla) = £ (@), Glo) ==,

]

Remark 1. It should be noticed that?(3) and 2.4) have been mentioned and
proved in [] with some misprints in the conclusion.
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The following is a variant of the Griuss inequality which has been proved almost
at the same time by X.L. Cheng and J. Sunihds well as M. Matt in [6]
respectively.

Leth, g : [a,b] — R be two integrable functions such thak g(x) < T for
some constantg, I" for all z € [a, b]. Then
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b 1 b b
(3.1) / h(z)g(x) dx — - a/ h(z) da:/ g(x)dx Zheng Liu
’ L/ o P
= 2 (/a hz) - b—a/, My)dy d$> (=) Title Page
Theorem 3.1.Let f(z) be a function defined da, b] such thatf € C"*!([a, ]) CaliEis
andm < f+Y(z) < M for eachz € [a,b], wherem and M are constants. pp >
Then
4 >
Sb) = f™(a) n(b—a)"'(M —m)
3.2) [R, (a,b) — b—a)"| < , Go Back
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’ ™ (p) — f™ (g
(3.4) /a Rnyf(a,m) dx — f ((l;)b n ~2f)' ( )(b o a)n—i—l
< (n+1)(b—a)""*(M —m)
(n+2)!(n+2)"Vn+2
and
b () (p) — £ (q
(3.5) '(—1)n+1/a R, (b, ) dx — / ((2 n Qf)! ( )(b —a)"™!
< (n+1)(b—a)""2(M —m)
= nr2lnr) Var2

Proof. To prove @.2), settingg(x) = f"V(z) andh(z) = (b_j)n
obtain

in (3.1, we

M0 - ),
‘anf(a, b) 1) (b—a)"
M m/ b—x B b—a)” e
(n+1)!
B TL( _ n+1 M m)
 (n+1)! (n+ DYn+1
The proofs of 8.3), (3.4) and @.5) are similar and so are omitted. O

Remark 2. It should be noticed that Theore®nl improves Theorem 3.1 in]
and Theorem 2.1 ind].
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In [2] we can find a general version of the well-known Steffensen inequality
as follows: Leth : [a,b] — R be a nonincreasing mapping ¢nb] andg :
[a, b] — R be an integrable mapping o, b] with

¢ < g(z) <, forall z € [a,b],

then

4.1) ¢/aH h(m)dz+<1>/bb

—A

b
h(x)dxg/ h(z)g(z)dx

a+A b
< CID/ ! h(z)dz + ¢/ Ah(x)dx,
a a+

where

)\:/ Gla) dz, G(x):gg)%(j,

Theorem 4.1.Let f : [a,b] — R be a mapping such that(x) € C""!([a, b])
andm < f+Y(z) < M for eachz € [a,b], wherem and M are constants.
Then

(4.2) d £ ¢.

m(b— a)"™ + (M — m)A\"*!
(4.3) (n+1)!
< Rn,f(a7 b)
< M(b—a)"™t — (M —m)(b—a— X"

- (n+1)! ’
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(4.4)

(4.5)

and

(4.6)

m(b—a)" ™ + (M — m)\"+

(n+1)!
< (=) R p(b, a)

M(b—a)"™ — (M —m)(b—a— X"

= (1 1)

m(b— a)" " + (M — m)\"*2
(n+2)!

Y
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Proof. Observe thafb‘n—”f)n is a decreasing function afon [a, b], then by @.1)
and ¢@.2) we have

b—A b— n b b— n
m/ ( 'I) de + M ﬂdw

n! b n!

< [T I)nf“‘“)( )da

a+)\
<M/ d +m/
oond

@ —m ) = @) —mib—a
A= M—m dr = M —m ’

with

a

and @.3) follows.
Since(”ﬁ_‘,‘)" is a increasing function of on [a, b], then

a+)\ n _
M/ ~—dr + m/ Mdm
Y !

</ uf(nﬂ( Ydx

b— >\ n b _A\n
< m/  — dx+ M udx,
b—x T

and @.4) follows.
The proofs of 4.5) and @.6) are similar and so are omitted. O
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Remark 3. It should be mentioned tha# ) and @.6) have also been proved
in[4]
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