A RELATION TO HILBERT'S INTEGRAL INEQUALITY AND SOME BASE HILBERT-TYPE INEQUALITIES

BICHENG YANG

Department of Mathematics Guangdong Education Institute

Guangzhou, Guangdong 510303, P.R. China

EMail: bcyang@pub.guangzhou.gd.cn

Received: 17 April, 2008

Accepted: 18 May, 2008

Communicated by: J. Pečarić

2000 AMS Sub. Class.: 26D15.

Key words: Base Hilbert-type integral inequality; Parameter; Weight function.

Abstract: In this paper, by using the way of weight function and real analysis techniques, a

new integral inequality with some parameters and a best constant factor is given, which is a relation to Hilbert's integral inequality and some base Hilbert-type integral inequalities. The equivalent form and the reverse forms are considered.

Hilbert's Integral Inequality
Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

Page 1 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

1	Introduction	3

- 2 Some Lemmas 6
- 3 Main Results 10

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

1. Introduction

If $f,g \ge 0$, $0 < \int_0^\infty f^2(x) dx < \infty$ and $0 < \int_0^\infty g^2(x) dx < \infty$ then we have the following Hilbert's integral inequality [1]:

(1.1)
$$\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y} dx dy < \pi \left\{ \int_0^\infty f^2(x) dx \int_0^\infty g^2(x) dx \right\}^{\frac{1}{2}},$$

where the constant factor π is the best possible. Under the same condition of (1.1), we also have the following basic Hilbert-type integral inequalities [1, 2, 3]:

(1.2)
$$\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{\max\{x,y\}} dx dy < 4 \left\{ \int_0^\infty f^2(x) dx \int_0^\infty g^2(x) dx \right\}^{\frac{1}{2}};$$

(1.3)
$$\int_0^\infty \int_0^\infty \frac{|\ln(x/y)| f(x) g(y)}{x+y} dx dy < c_0 \left\{ \int_0^\infty f^2(x) dx \int_0^\infty g^2(x) dx \right\}^{\frac{1}{2}};$$

(1.4)
$$\int_0^\infty \int_0^\infty \frac{|\ln(x/y)| f(x) g(y)}{\max\{x,y\}} dx dy < 8 \left\{ \int_0^\infty f^2(x) dx \int_0^\infty g^2(x) dx \right\}^{\frac{1}{2}},$$

where the constant factors 4, $c_0 \left(= \sum_{k=1}^{\infty} \frac{8(-1)^{k-1}}{(2k-1)^2} = 7.3277^+ \right)$ and 8 are the best possible. In 2005, Hardy-Riesz gave a best extension of (1.1) by introducing one pair of conjugate exponents (p,q) $(p>1,\frac{1}{p}+\frac{1}{q}=1)$ as [4]

$$(1.5) \quad \int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y} dx dy < \frac{\pi}{\sin\left(\frac{\pi}{p}\right)} \left\{ \int_0^\infty f^p(x) dx \right\}^{\frac{1}{p}} \left\{ \int_0^\infty g^q(x) dx \right\}^{\frac{1}{q}},$$

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

44 >>>

4 >

Page 3 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

where the constant factor $\frac{\pi}{\sin(\pi/p)}$ is the best possible. Inequality (1.5) is referred to as Hardy-Hilbert's integral inequality, which is important in analysis and its applications [5]. In 1998, Yang gave a best extension of (1.1) by introducing an independent parameter $\lambda > 0$ as [6, 7]

$$(1.6) \int_0^\infty \int_0^\infty \frac{f(x)g(y)}{(x+y)^{\lambda}} dx dy$$

$$< B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) \left\{ \int_0^\infty x^{1-\lambda} f^2(x) dx \int_0^\infty x^{1-\lambda} g^2(x) dx \right\}^{\frac{1}{2}},$$

where the constant factor $B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)$ is the best possible and the Beta function B(u, v) is defined by [8]:

(1.7)
$$B(u,v) := \int_0^\infty \frac{1}{(1+t)^{u+v}} t^{u-1} dt \qquad (u,v>0).$$

In 2004-2005, by introducing two pairs of conjugate exponents and an independent parameter, Yang et al. [9, 10] gave two different extensions of (1.1) and (1.5) as: If p, r > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{r} + \frac{1}{s} = 1$, $\lambda > 0$, $\phi(x) = x^{p(1-\frac{\lambda}{r})-1}$, $\psi(x) = x^{q(1-\frac{\lambda}{s})-1}$, $f, g \ge 0$,

$$0 < ||f||_{p,\phi} := \left\{ \int_0^\infty x^{p(1-\frac{\lambda}{r})-1} f^p(x) dx \right\}^{\frac{1}{p}} < \infty$$

and

$$0 < ||g||_{q,\psi} := \left\{ \int_0^\infty x^{q(1-\frac{\lambda}{s})-1} g^q(x) dx \right\}^{\frac{1}{q}} < \infty,$$

then

(1.8)
$$\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x^\lambda + y^\lambda} dx dy < \frac{\pi}{\lambda \sin(\frac{\pi}{x})} ||f||_{p,\phi} ||g||_{q,\psi};$$

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

44 >>>

Page 4 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

(1.9)
$$\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{(x+y)^{\lambda}} dx dy < B\left(\frac{\lambda}{r}, \frac{\lambda}{s}\right) ||f||_{p,\phi} ||g||_{q,\psi},$$

where the constant factors $\frac{\pi}{\lambda \sin(\frac{\pi}{r})}$ and $B\left(\frac{\lambda}{r}, \frac{\lambda}{s}\right)$ are the best possible. Yang [11] also considered the reverse of (1.8) and (1.9).

In this paper, by using weight functions and real analysis techniques, a new integral inequality with the homogeneous kernel of $-\lambda$ degree

$$k_{\lambda}(x,y) = \frac{|\ln(x/y)|^{\beta}}{(x+y)^{\lambda-\alpha}(\max\{x,y\})^{\alpha}} \qquad (\lambda > 0, \alpha \in \mathbb{R}, \beta > -1)$$

is given, which is a relation to (1.1) and the above basic Hilbert-type integral inequalities (1.2), (1.3) and (1.4). The equivalent and reverse forms are considered. All the new inequalities possess the best constant factors.

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

44

Page 5 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. Some Lemmas

We introduce the following Gamma function [8]:

(2.1)
$$\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt \qquad (s > 0).$$

Lemma 2.1. For a, b > 0, it follows that

(2.2)
$$\int_0^1 x^{a-1} (-\ln x)^{b-1} dx = \frac{1}{a^b} \Gamma(b) = \int_1^\infty y^{-a-1} (\ln y)^{b-1} dy.$$

Proof. Setting $x = e^{-t/a}$ in first integral of (2.2), by (2.1), we find the first equation of (2.2). Setting y = 1/x in the first integral of (2.2), we obtain the second equation of (2.2). The lemma is hence proved.

Lemma 2.2. If r > 1, $\frac{1}{r} + \frac{1}{s} = 1$, $\lambda > 0$, $\alpha \in \mathbb{R}$ and $\beta > -1$, define the weight function as

(2.3)
$$\varpi_{\lambda}(s,x) := x^{\frac{\lambda}{r}} \int_{0}^{\infty} \frac{\left| \ln \left(\frac{x}{y} \right) \right|^{\beta} y^{\frac{\lambda}{s}-1}}{(x+y)^{\lambda-\alpha} (\max\{x,y\})^{\alpha}} dy \qquad (x \in (0,\infty)).$$

Then we have

(2.4)
$$\varpi_{\lambda}(s,x) = k_{\lambda}(r) := \int_{0}^{\infty} \frac{|\ln u|^{\beta} u^{\frac{\lambda}{r}-1}}{(u+1)^{\lambda-\alpha} (\max\{u,1\})^{\alpha}} du,$$

where $k_{\lambda}(r)$ is a positive number and

(2.5)
$$k_{\lambda}(r) = \Gamma(\beta + 1) \sum_{k=0}^{\infty} {\alpha - \lambda \choose k} \left[\frac{1}{\left(k + \frac{\lambda}{r}\right)^{\beta + 1}} + \frac{1}{\left(k + \frac{\lambda}{s}\right)^{\beta + 1}} \right].$$

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

Page 6 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proof. Setting u = x/y in (2.3), by simplification, we obtain (2.4). In view of (2.2), we obtain

$$0 < k_{\lambda}(r) = \int_{0}^{1} \frac{(-\ln u)^{\beta} u^{\frac{\lambda}{r} - 1}}{(u+1)^{\lambda - \alpha}} du + \int_{1}^{\infty} \frac{(\ln u)^{\beta} u^{\frac{\lambda}{r} - \alpha - 1}}{(u+1)^{\lambda - \alpha}} du$$

$$\leq 2^{|\alpha - \lambda|} \left[\int_{0}^{1} (-\ln u)^{(\beta + 1) - 1} u^{\frac{\lambda}{r} - 1} du + \int_{1}^{\infty} (\ln u)^{(\beta + 1) - 1} u^{\frac{-\lambda}{s} - 1} du \right]$$

$$= 2^{|\alpha - \lambda|} \left[\left(\frac{r}{\lambda} \right)^{\beta + 1} + \left(\frac{s}{\lambda} \right)^{\beta + 1} \right] \Gamma(\beta + 1) < \infty.$$

Hence $k_{\lambda}(r)$ is a positive number. Using the property of power series, we find

$$k_{\lambda}(r) = \int_{0}^{1} \frac{(-\ln u)^{\beta} u^{\frac{\lambda}{r}-1}}{(u+1)^{\lambda-\alpha}} du + \int_{1}^{\infty} \frac{(\ln u)^{\beta} u^{\frac{-\lambda}{s}-1}}{(1+u^{-1})^{\lambda-\alpha}} du$$

$$= \int_{0}^{1} \sum_{k=0}^{\infty} {\alpha - \lambda \choose k} (-\ln u)^{\beta} u^{\frac{\lambda}{r}+k-1} du + \int_{1}^{\infty} \sum_{k=0}^{\infty} {\alpha - \lambda \choose k} (\ln u)^{\beta} u^{\frac{-\lambda}{s}-k-1} du$$

$$= \sum_{k=0}^{\infty} {\alpha - \lambda \choose k} \left[\int_{0}^{1} (-\ln u)^{\beta} u^{\frac{\lambda}{r}+k-1} du + \int_{1}^{\infty} (\ln u)^{\beta} u^{\frac{-\lambda}{s}-k-1} du \right].$$

Then in view of (2.2), we have (2.5). The lemma is proved.

Lemma 2.3. If p > 0 $(p \neq 1)$, r > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{r} + \frac{1}{s} = 1$, $\lambda > 0$, $\alpha \in \mathbb{R}$, $\beta > -1$, $n \in \mathbb{N}$, $n > \frac{r}{|q|\lambda}$, then for $n \to \infty$, we have

(2.6)
$$I_n := \frac{1}{n} \int_1^{\infty} \int_1^{\infty} \frac{\left| \ln \left(\frac{x}{y} \right) \right|^{\beta} x^{\frac{\lambda}{r} - \frac{1}{np} - 1} y^{\frac{\lambda}{s} - \frac{1}{nq} - 1}}{(x+y)^{\lambda - \alpha} (\max\{x, y\})^{\alpha}} dx dy = k_{\lambda}(r) + o(1).$$

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

Page **7** of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proof. Setting u = y/x, by Fubini's theorem [12], we obtain

$$I_{n} = \frac{1}{n} \int_{1}^{\infty} \left[\int_{1}^{\infty} \frac{\left| \ln \left(\frac{x}{y} \right) \right|^{\beta} x^{\frac{\lambda}{r} - \frac{1}{np} - 1} y^{\frac{\lambda}{s} - \frac{1}{nq} - 1}}{(x + y)^{\lambda - \alpha} (\max\{x, y\})^{\alpha}} dx \right] dy$$

$$= \frac{1}{n} \int_{1}^{\infty} y^{-\frac{1}{n} - 1} \left[\int_{0}^{y} \frac{\left| \ln u \right|^{\beta} u^{\frac{\lambda}{s} + \frac{1}{np} - 1}}{(1 + u)^{\lambda - \alpha} (\max\{1, u\})^{\alpha}} du \right] dy$$

$$= \frac{1}{n} \int_{1}^{\infty} y^{-\frac{1}{n} - 1} \left[\int_{0}^{1} \frac{(-\ln u)^{\beta} u^{\frac{\lambda}{s} + \frac{1}{np} - 1}}{(1 + u)^{\lambda - \alpha}} du + \int_{1}^{y} \frac{(\ln u)^{\beta} u^{\frac{\lambda}{s} + \frac{1}{np} - 1}}{(1 + u)^{\lambda - \alpha} u^{\alpha}} du \right] dy$$

$$= \int_{0}^{1} \frac{(-\ln u)^{\beta} u^{\frac{\lambda}{s} + \frac{1}{np} - 1}}{(1 + u)^{\lambda - \alpha}} du + \frac{1}{n} \int_{1}^{\infty} y^{-\frac{1}{n} - 1} \left[\int_{1}^{y} \frac{(\ln u)^{\beta} u^{\frac{\lambda}{s} + \frac{1}{np} - 1}}{(1 + u)^{\lambda - \alpha} u^{\alpha}} du \right] dy$$

$$= \int_{0}^{1} \frac{(-\ln u)^{\beta} u^{\frac{\lambda}{s} + \frac{1}{np} - 1}}{(1 + u)^{\lambda - \alpha}} du + \frac{1}{n} \int_{1}^{\infty} \left(\int_{u}^{\infty} y^{-\frac{1}{n} - 1} dy \right) \frac{(\ln u)^{\beta} u^{\frac{\lambda}{s} + \frac{1}{np} - 1}}{(1 + u)^{\lambda - \alpha} u^{\alpha}} du$$

$$(2.7) = \int_{0}^{1} \frac{(-\ln u)^{\beta} u^{\frac{\lambda}{s} + \frac{1}{np} - 1}}{(1 + u)^{\lambda - \alpha}} du + \int_{1}^{\infty} \frac{(\ln u)^{\beta} u^{\frac{\lambda}{s} - \frac{1}{nq} - 1}}{(1 + u)^{\lambda - \alpha} u^{\alpha}} du.$$

(i) If p > 0 $(p \neq 1)$ and q > 0, then by Levi's theorem [12], we find

$$\int_{0}^{1} \frac{(-\ln u)^{\beta} u^{\frac{\lambda}{s} + \frac{1}{np} - 1}}{(1+u)^{\lambda - \alpha}} du = \int_{0}^{1} \frac{(-\ln u)^{\beta} u^{\frac{\lambda}{s} - 1}}{(1+u)^{\lambda - \alpha}} du + o_{1}(1),$$

$$\int_{1}^{\infty} \frac{(\ln u)^{\beta} u^{\frac{\lambda}{s} - \frac{1}{nq} - 1}}{(1+u)^{\lambda - \alpha} u^{\alpha}} du = \int_{1}^{\infty} \frac{(\ln u)^{\beta} u^{\frac{\lambda}{s} - 1}}{(1+u)^{\lambda - \alpha} u^{\alpha}} du + o_{2}(1) \quad (n \to \infty);$$

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

Page 8 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

(ii) If q < 0, setting $n_0 \in \mathbb{N}$, $n_0 > \frac{r}{|q|\lambda}$, $\frac{1}{s'} = \frac{1}{s} - \frac{1}{n_0 q \lambda}$, $\frac{1}{r'} = \frac{1}{r} + \frac{1}{n_0 q \lambda}$, then for $n \ge n_0$, we find

$$\int_{1}^{\infty} \frac{(\ln u)^{\beta} u^{\frac{\lambda}{s} - \frac{1}{n_q} - 1}}{(1+u)^{\lambda - \alpha} u^{\alpha}} du \le \int_{1}^{\infty} \frac{(\ln u)^{\beta} u^{\frac{\lambda}{s} - \frac{1}{n_0 q} - 1}}{(1+u)^{\lambda - \alpha} u^{\alpha}} du \le k_{\lambda}(r'),$$

and by Lebesgue's control convergence theorem, we have

$$\int_{1}^{\infty} \frac{(\ln u)^{\beta} u^{\frac{\lambda}{s} - \frac{1}{nq} - 1}}{(1+u)^{\lambda - \alpha} u^{\alpha}} du = \int_{1}^{\infty} \frac{(\ln u)^{\beta} u^{\frac{\lambda}{s} - 1}}{(1+u)^{\lambda - \alpha} u^{\alpha}} du + o_{3}(1) \quad (n \to \infty).$$

Hence by the above results and (2.7), we obtain (2.6). The lemma is proved.

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Full Screen

Go Back

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

3. Main Results

Theorem 3.1. Assume that p > 0 $(p \neq 1)$, r > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{r} + \frac{1}{s} = 1$, $\lambda > 0$, $\alpha \in \mathbb{R}$, $\beta > -1$, $\phi(x) = x^{p(1-\frac{\lambda}{r})-1}$, $\psi(x) = x^{q(1-\frac{\lambda}{s})-1}$ $(x \in (0,\infty))$, $f,g \geq 0$,

$$0 < ||f||_{p,\phi} = \left\{ \int_0^\infty x^{p(1-\frac{\lambda}{r})-1} f^p(x) dx \right\}^{\frac{1}{p}} < \infty, \qquad 0 < ||g||_{q,\psi} < \infty.$$

(i) For p > 1, we have the following inequality:

$$(3.1) \quad I := \int_0^\infty \int_0^\infty \frac{\left|\ln\left(\frac{x}{y}\right)\right|^\beta f(x)g(y)}{(x+y)^{\lambda-\alpha}(\max\{x,y\})^\alpha} dxdy < k_\lambda(r)||f||_{p,\phi}||g||_{q,\psi};$$

(ii) For $0 , we have the reverse of (3.1), where the constant factor <math>k_{\lambda}(r)$ expressed by (2.5) in (3.1) and its reverse is the best possible.

Proof. (i) By Hölder's inequality with weight [13], in view of (2.3), we find

$$I = \int_{0}^{\infty} \int_{0}^{\infty} \frac{\left| \ln \left(\frac{x}{y} \right) \right|^{\beta}}{(x+y)^{\lambda-\alpha} (\max\{x,y\})^{\alpha}} \left[\frac{x^{(1-\frac{\lambda}{r})/q}}{y^{(1-\frac{\lambda}{s})/p}} f(x) \right] \left[\frac{y^{(1-\frac{\lambda}{s})/p}}{x^{(1-\frac{\lambda}{r})/q}} g(y) \right] dxdy$$

$$\leq \left\{ \int_{0}^{\infty} \int_{0}^{\infty} \frac{\left| \ln \left(\frac{x}{y} \right) \right|^{\beta}}{(x+y)^{\lambda-\alpha} (\max\{x,y\})^{\alpha}} \cdot \frac{x^{(1-\frac{\lambda}{r})(p-1)}}{y^{1-\frac{\lambda}{s}}} f^{p}(x) dxdy \right\}^{\frac{1}{p}}$$

$$\times \left\{ \int_{0}^{\infty} \int_{0}^{\infty} \frac{\left| \ln \left(\frac{x}{y} \right) \right|^{\beta}}{(x+y)^{\lambda-\alpha} (\max\{x,y\})^{\alpha}} \cdot \frac{y^{(1-\frac{\lambda}{s})(q-1)}}{x^{1-\frac{\lambda}{r}}} g^{q}(y) dxdy \right\}^{\frac{1}{q}}$$

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

(3.2)
$$= \left\{ \int_0^\infty \varpi_\lambda(s, x) \phi(x) f^p(x) dx \right\}^{\frac{1}{p}} \left\{ \int_0^\infty \varpi_\lambda(r, y) \psi(y) g^q(y) dy \right\}^{\frac{1}{q}}.$$

We confirm that the middle of (3.2) keeps the form of strict inequality. Otherwise, there exist constants A and B, such that they are not all zero and [13]

$$A\frac{x^{(1-\frac{\lambda}{r})(p-1)}}{y^{1-\frac{\lambda}{s}}}f^p(x) = B\frac{y^{(1-\frac{\lambda}{s})(q-1)}}{x^{1-\frac{\lambda}{r}}}g^q(y) \quad a.e. \text{ in } (0,\infty)\times(0,\infty).$$

It follows that $Ax^{p(1-\frac{\lambda}{r})}f^p(x)=By^{q(1-\frac{\lambda}{s})}g^q(y)$ a.e. in $(0,\infty)\times(0,\infty)$. Assuming that $A\neq 0$, there exists y>0, such that $x^{p(1-\frac{\lambda}{r})-1}f^p(x)=\left[By^{q(1-\frac{\lambda}{s})}g^q(y)\right]\frac{1}{Ax}$ a.e. in $x\in(0,\infty)$. This contradicts the fact that $0<||f||_{p,\phi}<\infty$. Then inequality (3.1) is valid by using (2.4) and (2.5).

For $n \in \mathbb{N}$, $n > \frac{r}{|q|\lambda}$, setting f_n, g_n as

$$f_n(x) := \begin{cases} 0, & 0 < x \le 1; \\ x^{\frac{\lambda}{r} - \frac{1}{np} - 1}, & x > 1; \end{cases} \qquad g_n(x) := \begin{cases} 0, & 0 < x \le 1; \\ x^{\frac{\lambda}{r} - \frac{1}{nq} - 1}, & x > 1; \end{cases}$$

if there exists a constant factor $0 < k \le k_{\lambda}(r)$, such that (3.1) is still valid if we replace $k_{\lambda}(r)$ by k, then by (2.6), we have

$$k_{\lambda}(r) + o(1) = I_n = \frac{1}{n} \int_0^{\infty} \int_0^{\infty} \frac{\left| \ln \left(\frac{x}{y} \right) \right|^{\beta} f_n(x) g_n(y)}{(x+y)^{\lambda-\alpha} (\max\{x,y\})^{\alpha}} dx dy$$
$$< \frac{1}{n} k ||f_n||_{p,\phi} ||g_n||_{q,\psi} = k,$$

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

44 >>

• •

Page 11 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

and $k_{\lambda}(r) \leq k \ (n \to \infty)$. Hence $k = k_{\lambda}(r)$ is the best constant factor of (3.1).

(ii) For 0 , by the reverse Hölder's inequality with weight [13], in view of (2.3), we find the reverse of (3.2), which still keeps the strict form. Then by (2.4) and (2.5), we have the reverse of (3.1). By using (2.6) and the same manner as mentioned above, we can show that the constant factor in the reverse of (3.1) is still the best possible. The theorem is proved.

Theorem 3.2. Assume that p > 0 $(p \neq 1)$, r > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\frac{1}{r} + \frac{1}{s} = 1$, $\lambda > 0$, $\alpha \in \mathbb{R}$, $\beta > -1$, $\phi(x) = x^{p(1-\frac{\lambda}{r})-1}$, $\psi(x) = x^{q(1-\frac{\lambda}{s})-1}$ $(x \in (0,\infty))$, $f \geq 0$, $0 < ||f||_{p,\phi} < \infty$.

(i) For p > 1, we have the following inequality, which is equivalent to (3.1) and with the best constant factor $k_{\lambda}^{p}(r)$:

(3.3)
$$J := \int_0^\infty y^{\frac{p\lambda}{s} - 1} \left[\int_0^\infty \frac{\left| \ln\left(\frac{x}{y}\right) \right|^{\beta} f(x)}{(x+y)^{\lambda - \alpha} (\max\{x, y\})^{\alpha}} dx \right]^p dy$$
$$< k_{\lambda}^p(r) ||f||_{p, \phi}^p;$$

(ii) For $0 , we have the reverse of (3.3), which is equivalent to the reverse of (3.1), with the best constant factor <math>k_{\lambda}^{p}(r)$.

Proof. (i) For p > 1, x > 0, setting a bounded measurable function as

$$[f(x)]_n := \min\{f(x), n\} = \begin{cases} f(x), & \text{for } f(x) < n; \\ n, & \text{for } f(x) \ge n, \end{cases}$$

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

Page 12 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

since $||f||_{p,\phi} > 0$, there exists $n_0 \in \mathbb{N}$, such that $\int_{\frac{1}{n}}^n \phi(x) [f(x)]_n^p dx > 0$ $(n \ge n_0)$. Setting $\widetilde{g}_n(y)$ $(y \in (\frac{1}{n}, n); n \ge n_0)$ as

$$(3.4) \widetilde{g}_n(y) := y^{\frac{p\lambda}{s}-1} \left[\int_{\frac{1}{n}}^n \frac{\left| \ln\left(\frac{x}{y}\right) \right|^{\beta}}{(x+y)^{\lambda-\alpha} (\max\{x,y\})^{\alpha}} [f(x)]_n dx \right]^{p-1},$$

then by (3.1), we find

(3.6)

$$0 < \int_{\frac{1}{n}}^{n} \psi(y) \widetilde{g}_{n}^{q}(y) dy$$

$$= \int_{\frac{1}{n}}^{n} y^{\frac{p\lambda}{s} - 1} \left[\int_{\frac{1}{n}}^{n} \frac{\left| \ln \left(\frac{x}{y} \right) \right|^{\beta} [f(x)]_{n} dx}{(x + y)^{\lambda - \alpha} (\max\{x, y\})^{\alpha}} \right]^{p} dy$$

$$= \int_{\frac{1}{n}}^{n} \int_{\frac{1}{n}}^{n} \frac{\left| \ln \left(\frac{x}{y} \right) \right|^{\beta} [f(x)]_{n} \widetilde{g}_{n}(y)}{(x + y)^{\lambda - \alpha} (\max\{x, y\})^{\alpha}} dx dy$$

$$< k_{\lambda}(r) \left\{ \int_{\frac{1}{n}}^{n} \phi(x) [f(x)]_{n}^{p} dx \right\}^{\frac{1}{p}} \left\{ \int_{\frac{1}{n}}^{n} \psi(y) \widetilde{g}_{n}^{q}(y) dy \right\}^{\frac{1}{q}} < \infty;$$

$$(3.5)$$

It follows $0 < ||g||_{q,\psi} < \infty$. For $n \to \infty$, by (3.1), both (3.5) and (3.6) still keep the forms of strict inequality. Hence we have (3.3). On the other-hand, suppose (3.3) is

 $0 < \int_{\frac{1}{n}}^{n} \psi(y) \widetilde{g}_{n}^{q}(y) dy < k_{\lambda}^{p}(r) \int_{0}^{\infty} \phi(x) f^{p}(x) dx < \infty.$

Hilbert's Integral Inequality

Bicheng Yang vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

←

>>

Page 13 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

valid. By Hölder's inequality, we have

$$(3.7) I = \int_0^\infty \left[y^{\frac{-1}{p} + \frac{\lambda}{s}} \int_0^\infty \frac{\left| \ln \left(\frac{x}{y} \right) \right|^{\beta} f(x) dx}{(x+y)^{\lambda - \alpha} (\max\{x, y\})^{\alpha}} \right] \left[y^{\frac{1}{p} - \frac{\lambda}{s}} g(y) \right] dy$$
$$\leq J^{\frac{1}{p}} ||g||_{q,\psi}.$$

In view of (3.3), we have (3.1), which is equivalent to (3.3). We confirm that the constant factor in (3.3) is the best possible. Otherwise, we may get a contradiction by (3.7) that the constant factor in (3.1) is not the best possible.

(ii) For $0 , since <math>||f||_{p,\phi} > 0$, we confirm that J > 0. If $J = \infty$, then the reverse of (3.3) is naturally valid. Suppose $0 < J < \infty$. Setting

$$g(y) := y^{\frac{p\lambda}{s} - 1} \left[\int_0^\infty \frac{\left| \ln\left(\frac{x}{y}\right) \right|^{\beta}}{(x+y)^{\lambda - \alpha} (\max\{x, y\})^{\alpha}} f(x) dx \right]^{p-1},$$

by the reverse of (3.1), we obtain

$$\infty > ||g||_{q,\psi}^{q} = J = I > k_{\lambda}(r)||f||_{p,\phi}||g||_{q,\psi} > 0;$$
$$J^{\frac{1}{p}} = ||g||_{q,\psi}^{q-1} > k_{\lambda}(r)||f||_{p,\phi}.$$

Hence we have the reverse of (3.3). On the other-hand, suppose the reverse of (3.3) is valid. By the reverse Hölder's inequality, we can get the reverse of (3.7). Hence in view of the reverse of (3.3), we obtain the reverse of (3.1), which is equivalent to the reverse of (3.3). We confirm that the constant factor in the reverse of (3.3) is the best possible. Otherwise, we may get a contradiction by the reverse of (3.7) that

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

Page 14 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

the constant factor in the reverse of (3.1) is not the best possible. The theorem is proved.

Remark 1. For p=r=2 in (3.1), setting $\alpha=\beta=0, \lambda=1$, we obtain (1.1); setting $\alpha=0, \beta=\lambda=1$, we obtain (1.3). For $\alpha=\lambda>0, \beta>-1$ in (3.1), we have

(3.8)
$$\int_0^\infty \int_0^\infty \frac{\left| \ln \left(\frac{x}{y} \right) \right|^{\beta} f(x) g(y)}{(\max\{x,y\})^{\lambda}} dx dy < \frac{r^{\beta+1} + s^{\beta+1}}{\lambda^{\beta+1}} \Gamma(\beta+1) ||f||_{p,\phi} ||g||_{q,\psi},$$

where the constant factor $\frac{1}{\lambda^{\beta+1}}(r^{\beta+1}+s^{\beta+1})\Gamma(\beta+1)$ is the best possible. For p=r=2 in (3.8), setting $\lambda=1,\beta=0$, we obtain (1.2); setting $\lambda=1,\beta=1$, we obtain (1.4). Hence inequality (3.1) is a relation to (1.1), (1.2), (1.3) and (1.4).

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

Page 15 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

References

- [1] G.H. HARDY, J.E. LITTLEWOOD AND G. PÓLYA, *Inequalities*, Cambridge Univ. Press, Cambridge, 1952.
- [2] BICHENG YANG, On a base Hilbert-type inequality, *Journal of Guangdong Education Institute*, **26**(3) (2006), 1–5.
- [3] BICHENG YANG, On a base Hilbert-type integral inequality and extensions, *College Mathematics*, **24**(2) (2008), 87–92.
- [4] G.H. HARDY, Note on a theorem of Hilbert concerning series of positive terms, *Proc. London Math. Soc.*, **23**(2) (1925), Records of Proc. xlv-xlvi.
- [5] D.S. MINTRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, *Inequalities Involving Functions and their Integrals and Derivatives*, Kluwer Academic Publishers, Boston, 1991.
- [6] BICHENG YANG, On Hilbert's integral inequality, *J. Math. Anal. Appl.*, **220** (1998), 778–785.
- [7] BICHENG YANG, A note on Hilbert's integral inequality, *Chin. Quart. J. Math.*, **13**(4) (1998), 83–86.
- [8] ZHUXI WANG AND DUNREN GUO, *Introduction to Special Functions*, Science Press, Beijing, 1979.
- [9] BICHENG YANG, On an extension of Hilbert's integral inequality with some parameters, *Austral. J. Math. Anal. Applies.*, **1**(1) (2004), Art. 11. [ONLINE: http://ajmaa.org/].

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

44

Page 16 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

- [10] BICHENG YANG, ILKO BRNETIC, MARIO KRNIC AND J. PEČARIĆ, Generalization of Hilbert and Hardy-Hilbert integral inequalities, *Math. Ineq. and Applics.*, **8**(2) (2005), 259–272.
- [11] BICHENG YANG, On a reverse Hardy-Hilbert's inequality, *Kyungpook Math. J.*, **47** (2007), 411–423.
- [12] JICHANG KUANG, *Introduction to Real Analysis*, Hunan Education Press, Changsha, 1996.
- [13] JICHANG KUANG, Applied Inequalities, Shangdong Science Press, Jinan, 2004.

Hilbert's Integral Inequality

Bicheng Yang

vol. 9, iss. 2, art. 59, 2008

Title Page

Contents

Page 17 of 17

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756