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ABSTRACT. Let0 < p < ¢ < co. Let A be a measurable subset of the unit sphef®@’h let
E={xeRY:x=s50,0<5<o00,0€ A} beaconeiR" and letSy be the part ofz with
radius’ < |x|. A characterization of the weightsandv on E is given such that the inequality

(/E <eXp <51x| /Sx In f(}’)d}'>)qv(x)dx>é <cC (/E fp(X)u(x)dx>;

holds for all f > 0 and some positive and finite constapit The inequality is obtained as a
limiting case of a corresponding new Hardy type inequality. Also the corresponding companion
inequalities are proved and the sharpness of the conStantliscussed.
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1. INTRODUCTION

In their paperl[2] J.A. Cochran and C.S. Lee proved the inequality

(1.2) /OOO [exp (5:55 /Ox ¥ 11n f(y)dy)} P /OOO 2 f(x)dx,

wherea, ¢ are real numbers with > 0, f is a positive function defined of0, o) and the
constant“* is the best possible. This inequality, in fact, is a generalization of what sometimes
is referred to as Knopp’s inequalit}, which is obtained by taking = 1 anda = 0 in (1.1).
Inequalities of the type (1.1) and its analogues have further been investigated and generalized
by many authors e.g. see€ [1]] [5]=[11], [14] and[[16] =I[21].

In particular, very recently ACizmeSija, J. Paaric and |. Peg [1, Th. 9, formula (23)]
proved anN — dimensional analogue .1) by replacing the intefdabo) by RY and the
means are considered over the ball®ih centered at the origin. Their inequality reads:

(1.2) /R i [exp (e\er‘f /B rByF‘llnﬂy)dyﬂ [Bul"dx < e /R T 1B dx,

wherea € R, ¢ > 0, f is a positive function o™, B, is a ball inR" with radius|x|, x € R",
centered at the origin arj@,| is its volume.

In this paper we prove a more general result, namely we characterize the weagids on
R such that fo) < p < ¢ < oo

( /. [exp <| il lmf(y)olyﬂqv(x)dx)é < o( . f%x)u(x)dx)’l’

holds for some finite positive constafit(See Corollary 3/3). In the case whefx) = |Sx|"
andu(x) = |Sx|" we obtain a genuine generalizationl.Z) (see Propon 3.6 and Remark
B.7).

In this paper we also generalize the results in another direction, namely when the geometric
averages over spheresti’ are replaced by such averages over spherical con®¢’ifsee
notation below). This means in particular that our inequalities above and later on also hold
whenR" is replaced bR’ or even more general conesi".

The paper is organized in the following way. In Section 2 we collect some preliminaries
and prove a new Hardy inequality that averages functions over the coi®es (see Theorem
[2.7). In Section 3 we present and prove our main results concerning (the limiting) geometric
mean operators (see Theorem|3.1 and Propositign 3.6). Finally, in Sektion 4 we present the
corresponding companion inequalities (see Thegrein 4.1, Corpllgry 4.2 and Progosjtion 4.4).

2. PRELIMINARIES

Let XV~ be the unit sphere iRY, that is, >V ~! = {x € RY : |x| = 1}, where|x| denotes
the Euclidean norm of the vectar € R". Let A be a measurable subset B!, and let
E C RY be a spherical cone, i.e.,

E:{XGRN:XZSJ,O§3<OO,U€A}.
Let Sy, x € RY denote the part of with ‘radius’ < |x], i.e.,
Sx:{yERN:y:sa,O§s§\x[,aeA}.

ISee e.g. [15, p. 143-144] and [12]. Note however that according to G.H. Hardy [ 4, p 156] this inequality was
pointed out to him already in 1925 by G. Polya.
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For0 < p < oo and a non-negative measurable functioon £, by L? := LP (E) we denote
the weighted Lebesgue space with the weight funciipoonsisting of all measurable functions
f on E such that

Iz = ( [ \f<x>|pw<x>dx)’l’ < o0,

and make use of the abbreviatiobsand|| f||,» whenw(x) = 1.

LetS = Sy, |x| = 1. The family of regions we shall average over is the collection of dilations
of S. Forx € E '\ {0} denote by S| the Lebesgue measure $f. Using polar coordinates we
obtain (o denotes the usual surface measur&dnt!)

| Sx| /X|/5N1d ds —|X|N|A\
x| = o) = .
0o Ja N

Moreover, we say that is a weight function if it is a positive and measurable functionSon
Throughout the paper, for anpy> 1 we denotey’ = Iﬁ

For later purposes but also of independent interest we now state and prove our announced
Hardy inequality.

Theorem 2.1. Let E be a cone inRY and S, A be defined as above. Suppose that p <
q < oo and thatu, v are weight functions o&’. Then, the inequality

2.1) ( / ( Sxf(y)dy)qwx)dxf <c ( / fp(x)u(x)dx);

holds for all f > 0 if and only if

R ([S ul_p/(x)dx); </tsv(x) </ ul—p’(y)dy)qu) " < 0.

Moreover, the best consta6tin (2.7) can be estimated as follows:
D<C<ypD.

Remark 2.2. Another weight characterization .1) over balls®Y was proved by P.
Drabek, H.P. Heinig and A. Kufner[[3] . This result may be regarded as a generalization of
the usual (Muckenhaupt type) characterization in 1-dimension (se€_elg. [13]) while our result
may be seen as a higher dimensional version of another characterization by V.D. Stepanov and
L.E. Persson (see [19][, [20]).

Proof. By the duality principle (see e.g. [13]), it can be shown that the inequality (2.1) is
equivalent to that the inequality

2 1

(2.3) ( /E ( /E \ng(y)dyy u””(X)dx>p <C ( /E gQ’(x)vlq’(x)dx) '

holds for allg > 0 and with the same best consté@ntFirst assume thai (4.2) holds. Using polar
coordinates and putting

(2.4) () = /A gt ldo,  te (0,00)

and

(2.5) a@):</}HPKWﬁN1m>_w, t € (0,00)
A
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we have

/

/E ( /E \Szg(}’)d}’)p u' P (x)dx
— /0 h /A ( /t h /A g(sa)sN_ldads>p/ w7 (tr) N drdt
_ /0 h ( /t h g(s)ds)pl T (8)dr.

Thus, using this, changing the order of integration and finally using Holder’s inequality, we get

@8 1= [ ( / \ng<y>dy)plu1—f°’<x>dx
_ / ) ( / ) 5<s>ds)p/ P (¢)dt
(7 4o <)o
v ( (] 'g“(s)ds)p'_l a@)dt) T ()
(] a<s>ds)p/_1 a0 ([ t w2z )
/0 ) /A gq/(tT)vlq/(tT)tNldet>l
(

/0 ) /A (/t ) §<S)d8) o (/ot o (8)d8> q U(tT)tN_ldet> |

~

I
S

where
[ ([

with

@7) i) = [ oryar
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Using Fubini’s theorem[ (21 2), (2.5) arjd (2.7), we get

() ) a
L o) ) ()
L))

X < /0 Z /A < /0 t /A ul—P’(sa)sN—ldads)

q

v(tT)tN_ldet) dz

Thus, using Minkowski’s integral inequality, (2.4) and (2.5) we have

J < Df /OOO (/too [dilz <— (/OO §(s)d3> Wl)q)] dz) ‘ alp/(t)dt)
= D4 /OOO (/too ﬁ(s)ds)p/ ﬁlp’(t)dt)g
= DI /E ( /E \ng(}’)d}’)p/ ul‘p’(X)dX>p-

Assume first that i (2]6) < co. Then

IS}

s 1

(L) ) 2on( e

i.e., (2.3) holds for aly > 0 and also the constant in (2.3) satisfies” < p'D. For the case
I = oo replacey(y) by an approximating sequengg(y) < ¢(y) (such that the corresponding
I,, < o0) and use the Monotone Convergence Theorem to obtain the result.
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Conversely, suppose th@ 1) holds for AI> 0. In this inequality, taking for any fixed
t > 0 the functionf, = y;su!~?", we find that

o= ([ ([ stnay) o ) ( / o ) 1
L] o) ) ([

By taking the supremum we find that (2.2) holds and, moreaves, C'. The proof is complete.
O

3. GEOMETRIC MEAN INEQUALITIES

Here we prove our main geometric mean inequality by making a limit procedure in Theorem
2.1.

Theorem 3.1.Let0 < p < ¢ < oo and suppose that all other assumptions of Thegrein 2.1 are
satisfied. Then the inequality

0 ([ (on (i ) ) ()

holds for all f > 0 if and only if

1
Dy :=sup |tS]_% (/ w(x)dx) " < 00,
t>0 tS
where

(3.2) w(t) == v(x) <exp(|51|/ In (1y)dy>>g<oo.

Moreover, the best consta@t satisfiesD; < C' < 65D1.

Proof. It is easy to see thdt (3.1) is equivalent to

</E (exp <|5L| / Z lnf(y')dy)>qw(x)dx)é <c ( [ 70 dx)é

with w(x) defined by[(3.). Let(x) = w(x)|Sx| * andu(x) =1 in Theoren] 21 and choose
ana suchthad) < a < p < g < oo. Thenl < £ < £ < oo. Now, replacingf, p, ¢ andv(x)
by f*, £, 4 in Theorenj 21, we find that the inequality

1

(3.3) ( / <‘S1’ [ ey >3w<x>dx)qsca ( / f%x)dx)’l’

holds for all functionsf > 0 if and only if D; holds. Moreover, it is easy to see that (¢.f./[20])

1

(3.4) D, < C, <( P )QDl.

—

By lettinga — 07 in ( .) andl) we find tha(t >E — v and
(] f“(y)dy)” v (1 [ sy
— €XP n )
5% Js, |Sx|
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i.e. the scale of power means converge to the geometric mean, and the proof follows.[]

Remark 3.2. Our proof above shows thdt (8.1) in Theorem 3.1 may be regarded as a natural
limiting case of Hardy's inequality (2.1) as it is in the classical one-dimensional situation. This
fact indicates that our formulation of Hardy’s inequality in Theofen 2.1 is very natural from
this point of view.

As a special case, if we také = R" andS, = B, the ball centered at the origin and with
radius|x| , and| B, | its volume, then we immediately obtain the following corollary to Theorem
that averages functions over ballgiif:

Corollary 3.3. Let0 < p < ¢ < oo andu,v be weight functions iiR". Then the inequality

([ (o (i ) lnf(y)dy))qv(X)dxy <o [ o)’

holds for all f > 0 if and only if

1
D \B\_l/ ()< (1 1 1d)>pd o
9 1= sup 2| P v(x) [ exp n—-—dy X 0.
zeRN\ {0} 2 | Bl Bx u(y)

Moreover, the best constaftsatisfiesD, < C' < eiDQ.

Remark 3.4. Corollary[3.3 extends a result of P. Drabek, H.P. Heinig and A. Kufner [3, Theo-
rem 4.1], who obtained it for the cage= ¢ = 1 and with a completely different proof.

Remark 3.5. Settinge = RY = {(z1,...,2x) € RY, 2, > 0,..., 2y > 0} in Theoren] 3L
we obtain that Corollar3 holds also f@ instead ofR" and B, N RY instead ofBy.

We shall now consider the special weights discussed in our introduction &nd in [1].

Proposition 3.6. Let0 < p < ¢ < 00, a,b € R, e € R, and E, S be defined as in Theorem
2.1. Then

@) ([ |ow (c1s [ 15 i f )y ) | |Sx|adx); <c([ re rsx|”dx)p

holds for all positive functiong for some finite constardt' if and only if
a+1l b+1

q p
and the least constaudt in (3.5) satisfies

-

(3.6)

1

1 1
q q
(E) it <o (2) (b1t
q q

Proof. By writing (3.5) in polar coordinates we find that

1

* Ne (AN v " vaenen (A
</0 /A[expth ’A‘E/o /A(W) s In f(so)dods| t (W) drdt

< (/OOO/Afp (tT) (%)thHN_ldrdt)p.
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Exchanging variables, = r= andt = 2= we find that this inequality can be rewritten as

(/OOO/A (exp (w% /OZ/Alnf<ri0) TN_ldadr))lq

AN y(e 1 a
X (%) ZN(:ll)zN_lngdz)

<C (/OOO/Afp (ZéT) (%)sz(bil_l)leédez> ,

=

that is,

(3.7) (/E (exp(|;x|/lenfl(y)dy>)q\5x|af_ldx>(11

A (%_%ﬂ)(l_%) 11 1 %
o) ()
E

where fi(ro) = f(ria). This means tha.5) is equivalent @3.7) i.g(&l) holds with the
weightsu(z) = |S,]“F " andu(z) = |S,|* . We note that for these weights we find after a
direct calculation that the constaht from Theoreni 31 is

atl_ b+l l(b+1_1)

tS € €] e
Dl:sup | | q P ep

so we conclude thaft (3.6) must hold and then

Dy = (20 (2)7)

q
Thus, the proof follows from Theorem 3.1. O

Remark 3.7. Settingp = ¢ = 1, a = b, we have thaf (3]5) implies the estimdte {1.2).

Remark 3.8 (Sharp Constant)in the above proposition, if we take= ¢, thena = b. In this
situation [(3.5) holds with the constafit= ¢(+)/?. Indeed, this constant is sharp. In order to
show this for§ > 0, we consider the function

e_b;;jl |S|_(b+1) |X’—%(b+1—55)7 res,
fs(x) =

bt

e o |S|f(b+1) |){|7%(b+1+55)7 = E\S

By using this function in[(3]5), we find that
1< THS <er —1 as 0—0
and consequently the constant is sharp. Note that the sharpness of the consiaatfom

Propositior) 3.6 has been proved in the more general setting than that in [1].
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4. THE COMPANION INEQUALITIES
We present the following result which is a companion of Thedrein 3.1:

Theorem 4.1.Let0 < p < g < 00, € > 0, and suppose that all other hypotheses of Theorem
[3.1 are satisfied. Then the inequality

N VAT T i 53y ) i)’

<C (/ fp(x)u(x)dx> ’
E
holds for all f > 0 if and only if

1 1 1 % %
D3 :=sup|tS| » /v*x (eX ( /ln d )) dx | < oo,
= sup eS| ( PP Jo M e ™

u(y) == u(sfa)ls_N(H%), 0 (y) = U(S{U)ES—N(Hl).

where

Moreover, the constanit’ satisfiesD; < C' < G%Dg.

15| /x/tN—ld dt —‘X’N|A|
x| — Tat = :
0 Ja N

Now, using polar coordinate$, (#.1) can be written as

> & Ve o0 —e—1 q %
(/0 /A (exp #/t /A (%) s Ne=11p f(sa)dads) “(tT)tN_ldet)
C h P N-144 %
< (/0 /Af (tT)u(tT)t T t>

Using the exchange of variables= /¢ andt = z~'/¢ we obtain

& N # 1 1 1 1 1 %
(/ /{exp (—N// lnf(rsa)erdadr>] U(ZET)ZN(HS)—ZNldez)
0 JA Al 2N Ja Jo €
& 1 1 1 1 %
<C (/ / fp(z‘sT)U(z‘eT)z_N(Hs)—zN‘ldez)
0o Ja

and putf,(tT) = f (t‘ir). ) can be equivalently rewritten as

(o ) sz )

Now, the result is obtained by using Theoremn 3.1. O

Proof. Note that forz € RY

Analogously to Corollary 3]3, we can immediately obtain a special case of Théorem 4.1 that
averages functions over ballsilV centered at origin.
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Corollary 4.2. Let0 < p < ¢ < oo, ¢ > 0, andu, v be weight functions iiR". Then the
inequality

“2 (/RN (eXp (5 Bl /RN\BX IByI‘E‘llnf(y)dy) qv(x)dx);

<C ( - fp<x)u<x>d><>

holds for all f > 0 if and only if

- ; 1 1 Lo\
B := sup |B,| » / vo(x) (exp ( / ln—(y)dy)> dx | < o0,
2€RN 2 |Bx| JB, w0

1 1
Uo(X) = u( _%T)gt—N(H-%)’ Uo(X) — U(t_%T)gt_N(H_%),

Moreover, the best consta@t satisfiesB <0< v B.

where

Remark 4.3. Note that by choosing as in Remark 3|5 we see that Corollary]4.2 in fact holds
also wheriR" is replaced byR%Y or more general cones .

The corresponding result to Propositjon|3.6 reads as follows and the proof is analogous.

Proposition4.4.Let0 < p < g < oo,e > 0,anda,b € R, and E, S, be defined as in Theorem
[2.1. Then the inequality

4.3) (/ (exps | S |® 1Sy~ lnf(y)dy)q | S| dx)q <C </ fP(x) |Sx|bdx>p
B E\Sx B

holds for all f > 0 and some finite positive constatitif and only if

a+1_b+1

q p
and the least constardt in (4.3) satisfies

(2) Tt <o < (2) "l
q q

Remark 4.5 (Sharp Constant)Analogously to Proposition 3.6, in the above proposition we
also find that if we take = ¢, thena = b. In this situation [(4.8) holds with the constant
C = e~ (+1/er and the constant is sharp. This can be shown by considering, fo10, the
function

eb;;1 ‘S‘—(b-l-l) b(,—%(b—&-l—sé)

, XES
fs(x) =

eHTl ‘S|_(b+1) ‘X|—%(b+1+€5) . X € E\S

Remark 4.6. It is tempting to think that the results in this paper hold also in general star-shaped
regions inRY (c.f. [22]) but this is not true in general as was pointed out to us by the referee.
See also[[22] and note that the results there also hold at least for cdR&s in
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