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ABSTRACT. Let 0 < p ≤ q < ∞. Let A be a measurable subset of the unit sphere inRN , let
E =

{
x ∈ RN : x = sσ, 0 ≤ s < ∞, σ ∈ A

}
be a cone inRN and letSx be the part ofE with

’radius’≤ |x| . A characterization of the weightsu andv onE is given such that the inequality(∫
E

(
exp

(
1
|Sx|

∫
Sx

ln f(y)dy
))q

v(x)dx
) 1

q

≤ C

(∫
E

fp(x)u(x)dx
) 1

p

holds for allf ≥ 0 and some positive and finite constantC. The inequality is obtained as a
limiting case of a corresponding new Hardy type inequality. Also the corresponding companion
inequalities are proved and the sharpness of the constantC is discussed.
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1. I NTRODUCTION

In their paper [2] J.A. Cochran and C.S. Lee proved the inequality

(1.1)
∫ ∞

0

[
exp

(
εx−ε

∫ x

0

yε−1 ln f(y)dy

)]
xadx ≤ e

a+1
ε

∫ ∞

0

xaf(x)dx,

wherea, ε are real numbers withε > 0, f is a positive function defined on(0,∞) and the
constante

a+1
ε is the best possible. This inequality, in fact, is a generalization of what sometimes

is referred to as Knopp’s inequality1 , which is obtained by takingε = 1 anda = 0 in (1.1).
Inequalities of the type (1.1) and its analogues have further been investigated and generalized
by many authors e.g. see [1], [5] – [11], [14] and [16] – [21].

In particular, very recently A.̌Cižmešija, J. Pěcaríc and I. Períc [1, Th. 9, formula (23)]
proved anN− dimensional analogue of (1.1) by replacing the interval(0,∞) by RN and the
means are considered over the balls inRN centered at the origin. Their inequality reads:

(1.2)
∫

RN

[
exp

(
ε |Bx|−ε

∫
Bx

|By|ε−1 ln f(y)dy

)]
|Bx|a dx ≤ e

a+1
ε

∫
RN

f(x) |Bx|a dx,

wherea ∈ R, ε > 0, f is a positive function onRN , Bx is a ball inRN with radius|x| , x ∈ RN ,
centered at the origin and|Bx| is its volume.

In this paper we prove a more general result, namely we characterize the weightsu andv on
RN such that for0 < p ≤ q < ∞(∫

RN

[
exp

(
1

|Bx|

∫
Bx

ln f(y)dy

)]q

v(x)dx

) 1
q

≤ C

(∫
RN

fp(x)u(x)dx

) 1
p

holds for some finite positive constantC (See Corollary 3.3). In the case whenv(x) = |Sx|a

andu(x) = |Sx|b we obtain a genuine generalization of (1.2) (see Proposition 3.6 and Remark
3.7).

In this paper we also generalize the results in another direction, namely when the geometric
averages over spheres inRN are replaced by such averages over spherical cones inRN (see
notation below). This means in particular that our inequalities above and later on also hold
whenRN is replaced byRN

+ or even more general cones inRN .
The paper is organized in the following way. In Section 2 we collect some preliminaries

and prove a new Hardy inequality that averages functions over the cones inRN (see Theorem
2.1). In Section 3 we present and prove our main results concerning (the limiting) geometric
mean operators (see Theorem 3.1 and Proposition 3.6). Finally, in Section 4 we present the
corresponding companion inequalities (see Theorem 4.1, Corollary 4.2 and Proposition 4.4).

2. PRELIMINARIES

Let ΣN−1 be the unit sphere inRN , that is,ΣN−1 = {x ∈ RN : |x| = 1}, where|x| denotes
the Euclidean norm of the vectorx ∈ RN . Let A be a measurable subset ofΣN−1, and let
E ⊆ RN be a spherical cone, i.e.,

E =
{
x ∈ RN : x =sσ, 0 ≤ s < ∞, σ ∈ A

}
.

Let Sx, x ∈ RN denote the part ofE with ‘radius’≤ |x| , i.e.,

Sx =
{
y ∈ RN : y =sσ, 0 ≤ s ≤ |x| , σ ∈ A

}
.

1See e.g. [15, p. 143–144] and [12]. Note however that according to G.H. Hardy [ 4, p 156] this inequality was
pointed out to him already in 1925 by G. Polya.
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WEIGHTED GEOMETRIC MEAN INEQUALITIES 3

For 0 < p < ∞ and a non-negative measurable functionw on E, by Lp
w := Lp

w(E) we denote
the weighted Lebesgue space with the weight functionw, consisting of all measurable functions
f onE such that

‖f‖Lp
w

=

(∫
E

|f(x)|pw(x)dx

) 1
p

< ∞ ,

and make use of the abbreviationsLp and‖f‖L
p whenw(x) ≡ 1.

Let S = Sx, |x| = 1. The family of regions we shall average over is the collection of dilations
of S. Forx ∈ E \ {0} denote by|Sx| the Lebesgue measure ofSx. Using polar coordinates we
obtain (dσ denotes the usual surface measure onΣN−1)

|Sx| =
∫ |x|

0

∫
A

sN−1dσds =
|x|N

N
|A|.

Moreover, we say thatu is a weight function if it is a positive and measurable function onS.
Throughout the paper, for anyp > 1 we denotep′ = p

p−1
.

For later purposes but also of independent interest we now state and prove our announced
Hardy inequality.

Theorem 2.1. Let E be a cone inRN andSx, A be defined as above. Suppose that1 < p ≤
q < ∞ and thatu, v are weight functions onE. Then, the inequality

(2.1)

(∫
E

(∫
Sx

f(y)dy

)q

v(x)dx

) 1
q

≤ C

(∫
E

fp(x)u(x)dx

) 1
p

holds for allf ≥ 0 if and only if

(2.2) D := sup
t>0

(∫
tS

u1−p′
(x)dx

)− 1
p
(∫

tS

v(x)

(∫
Sx

u1−p′
(y)dy

)q

dx

) 1
q

< ∞.

Moreover, the best constantC in (2.1) can be estimated as follows:

D ≤ C ≤ p′D.

Remark 2.2. Another weight characterization of (2.1) over balls inRN was proved by P.
Drábek, H.P. Heinig and A. Kufner [3] . This result may be regarded as a generalization of
the usual (Muckenhaupt type) characterization in 1-dimension (see e.g. [13]) while our result
may be seen as a higher dimensional version of another characterization by V.D. Stepanov and
L.E. Persson (see [19] , [20]).

Proof. By the duality principle (see e.g. [13]), it can be shown that the inequality (2.1) is
equivalent to that the inequality

(2.3)

(∫
E

(∫
E\Sx

g(y)dy

)p′

u1−p′
(x)dx

) 1
p′

≤ C

(∫
E

gq′
(x)v1−q′

(x)dx

) 1
q′

holds for allg ≥ 0 and with the same best constantC. First assume that (2.2) holds. Using polar
coordinates and putting

(2.4) g̃(t) =

∫
A

g(tσ)tN−1dσ, t ∈ (0,∞)

and

(2.5) ũ(t) =

(∫
A

u1−p′
(tτ)tN−1dτ

)1−p

, t ∈ (0,∞)
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4 BABITA GUPTA, PANKAJ JAIN , LARS-ERIK PERSSON, AND ANNA WEDESTIG

we have

∫
E

(∫
E\Sx

g(y)dy

)p′

u1−p′
(x)dx

=

∫ ∞

0

∫
A

(∫ ∞

t

∫
A

g(sσ)sN−1dσds

)p′

u1−p′
(tτ)tN−1dτdt

=

∫ ∞

0

(∫ ∞

t

g̃(s)ds

)p′

ũ1−p′
(t)dt.

Thus, using this, changing the order of integration and finally using Hölder’s inequality, we get

I :=

∫
E

(∫
E\Sx

g(y)dy

)p′

u1−p′
(x)dx(2.6)

=

∫ ∞

0

(∫ ∞

t

g̃(s)ds

)p′

ũ1−p′
(t)dt

=

∫ ∞

0

(∫ ∞

z

− d

dt

(∫ ∞

t

g̃(s)ds

)p′

dt

)
ũ1−p′

(z)dz

= p′
∫ ∞

0

(∫ ∞

z

(∫ ∞

t

g̃(s)ds

)p′−1

g̃(t)dt

)
ũ1−p′

(z)dz

= p′
∫ ∞

0

(∫ ∞

t

g̃(s)ds

)p′−1

g̃(t)

(∫ t

0

ũ1−p′
(z)dz

)
dt

= p′
∫ ∞

0

∫
A

(∫ ∞

t

g̃(s)ds

)p′−1(∫ t

0

ũ1−p′
(s)ds

)
g(tτ)tN−1dτdt

≤ p′
(∫ ∞

0

∫
A

gq′
(tτ)v1−q′

(tτ)tN−1dτdt

) 1
q′

×

(∫ ∞

0

∫
A

(∫ ∞

t

g̃(s)ds

)(p′−1)q (∫ t

0

ũ1−p′
(s)ds

)q

v(tτ)tN−1dτdt

) 1
q

= p′
(∫

E

gq′
(x)v1−q′

(x)dx

) 1
q′

J
1
q ,

where

J =

∫ ∞

0

(∫ ∞

t

g̃(s)ds

)(p′−1)q (∫ t

0

ũ1−p′
(s)ds

)q

ṽ(t)dt

with

(2.7) ṽ(t) =

∫
A

v(tτ)tN−1dτ.
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WEIGHTED GEOMETRIC MEAN INEQUALITIES 5

Using Fubini’s theorem, (2.2), (2.5) and (2.7), we get

J =

∫ ∞

0

∫ ∞

t

d

dz

(
−
(∫ ∞

z

g̃(s)ds

)(p′−1)q
)

dz

(∫ t

0

ũ1−p′
(s)ds

)q

ṽ(t)dt

=

∫ ∞

0

[
d

dz

(
−
(∫ ∞

z

g̃(s)ds

)(p′−1)q
)]∫ z

0

(∫ t

0

ũ1−p′
(s)ds

)q

ṽ(t)dtdz

=

∫ ∞

0

[
d

dz

(
−
(∫ ∞

z

g̃(s)ds

)(p′−1)q
)]

×
(∫ z

0

∫
A

(∫ t

0

∫
A

u1−p′
(sσ)sN−1dσds

)q

v(tτ)tN−1dτdt

)
dz

=

∫ ∞

0

[
d

dz

(
−
(∫ ∞

z

g̃(s)ds

)(p′−1)q
)]

×
(∫

zS

(∫
Sx

u1−p′
(y)dy

)q

v(x)dx

)
dz

≤ Dq

∫ ∞

0

[
d

dz

(
−
(∫ ∞

z

g̃(s)ds

)(p′−1)q
)](∫

zS

u1−p′
(x)dx

) q
p

dz

= Dq

∫ ∞

0

[
d

dz

(
−
(∫ ∞

z

g̃(s)ds

)(p′−1)q
)](∫ z

0

ũ1−p′
(t)dt

) q
p

dz.

Thus, using Minkowski’s integral inequality, (2.4) and (2.5) we have

J ≤ Dq

∫ ∞

0

(∫ ∞

t

[
d

dz

(
−
(∫ ∞

z

g̃(s)ds

)(p′−1)q
)]

dz

) p
q

ũ1−p′
(t)dt


q
p

= Dq

(∫ ∞

0

(∫ ∞

t

g̃(s)ds

)p′

ũ1−p′
(t)dt

) q
p

= Dq

(∫
E

(∫
E\Sx

g(y)dy

)p′

u1−p′
(x)dx

) q
p

.

Assume first that in (2.6)I < ∞. Then

(∫
E

(∫
E\Sx

g(y)dy

)p′

u1−p′
(x)dx

) 1
p′

≤ p′D

(∫
E

gq′
(x)v1−q′

(x)dx

) 1
q′

i.e., (2.3) holds for allg ≥ 0 and also the constantC in (2.3) satisfiesC ≤ p′D. For the case
I = ∞ replaceg(y) by an approximating sequencegn(y) ≤ g(y) (such that the corresponding
In < ∞) and use the Monotone Convergence Theorem to obtain the result.
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6 BABITA GUPTA, PANKAJ JAIN , LARS-ERIK PERSSON, AND ANNA WEDESTIG

Conversely, suppose that (2.1) holds for allf ≥ 0. In this inequality, taking for any fixed
t > 0 the functionft = χtSu1−p′

, we find that

C ≥
(∫

E

(∫
Sx

ft(y)dy

)q

v(x)dx

) 1
q
(∫

E

fp
t (x)u(x)dx

)− 1
p

≥
(∫

tS

(∫
Sx

u1−p′
(y)dy

)q

v(x)dx

) 1
q
(∫

tS

u1−p′
(x)dx

)− 1
p

.

By taking the supremum we find that (2.2) holds and, moreover,D ≤ C. The proof is complete.
�

3. GEOMETRIC M EAN I NEQUALITIES

Here we prove our main geometric mean inequality by making a limit procedure in Theorem
2.1.

Theorem 3.1. Let 0 < p ≤ q < ∞ and suppose that all other assumptions of Theorem 2.1 are
satisfied. Then the inequality

(3.1)

(∫
E

(
exp

(
1

|Sx|

∫
Sx

ln f(y)dy

))q

v(x)dx

) 1
q

≤ C

(∫
E

fp(x)u(x)dx

) 1
p

holds for allf > 0 if and only if

D1 := sup
t>0

|tS|−
1
p

(∫
tS

w(x)dx

) 1
q

< ∞,

where

(3.2) w(t) := v(x)

(
exp

(
1

|Sx|

∫
Sx

ln
1

u(y)
dy

)) q
p

< ∞.

Moreover, the best constantC satisfiesD1 ≤ C ≤ e
1
p D1.

Proof. It is easy to see that (3.1) is equivalent to(∫
E

(
exp

(
1

|Sx|

∫
Sx

ln f(y)dy

))q

w(x)dx

) 1
q

≤ C

(∫
E

fp(x)dx

) 1
p

with w(x) defined by (3.2). Letv(x) = w(x) |Sx|−q andu(x) =1 in Theorem 2.1 and choose
anα such that0 < α < p ≤ q < ∞. Then1 < p

α
≤ q

α
< ∞. Now, replacingf, p, q andv(x)

by fα, p
α
, q

α
in Theorem 2.1, we find that the inequality

(3.3)

(∫
E

(
1

|Sx|

∫
Sx

fα(y)dy

) q
α

w(x)dx

) 1
q

≤ Cα

(∫
E

fp(x)dx

) 1
p

holds for all functionsf > 0 if and only if D1 holds. Moreover, it is easy to see that (c.f. [20])

(3.4) D1 ≤ Cα ≤
(

p

p− α

) 1
α

D1.

By lettingα → 0+ in (3.3) and (3.4) we find that
(

p
p−α

) 1
α → e

1
p and(

1

|Sx|

∫
Sx

fα(y)dy

) 1
α

→ exp

(
1

|Sx|

∫
Sx

ln f(y)dy

)
,
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i.e. the scale of power means converge to the geometric mean, and the proof follows.�

Remark 3.2. Our proof above shows that (3.1) in Theorem 3.1 may be regarded as a natural
limiting case of Hardy’s inequality (2.1) as it is in the classical one-dimensional situation. This
fact indicates that our formulation of Hardy’s inequality in Theorem 2.1 is very natural from
this point of view.

As a special case, if we takeE = RN andSx = Bx the ball centered at the origin and with
radius|x| , and|Bx| its volume, then we immediately obtain the following corollary to Theorem
3.1 that averages functions over balls inRN :

Corollary 3.3. Let0 < p ≤ q < ∞ andu, v be weight functions inRN . Then the inequality(∫
RN

(
exp

(
1

|Bx|

∫
Bx

ln f(y)dy

))q

v(x)dx

) 1
q

≤ C

(∫
RN

fp(x)u(x)dx

) 1
p

holds for allf > 0 if and only if

D2 := sup
z∈RN\{0}

|Bz|−
1
p

(∫
Bz

v(x)

(
exp

(
1

|Bx|

∫
Bx

ln
1

u(y)
dy

)) q
p

dx

) 1
q

< ∞.

Moreover, the best constantC satisfiesD2 ≤ C ≤ e
1
p D2.

Remark 3.4. Corollary 3.3 extends a result of P. Drábek, H.P. Heinig and A. Kufner [3, Theo-
rem 4.1], who obtained it for the casep = q = 1 and with a completely different proof.

Remark 3.5. SettingE = RN
+ =

{
(x1, . . . , xN) ∈ RN , x1 ≥ 0, . . . , xN ≥ 0

}
in Theorem 3.1

we obtain that Corollary 3.3 holds also forRN
+ instead ofRN andBx ∩ RN

+ instead ofBx.

We shall now consider the special weights discussed in our introduction and in [1].

Proposition 3.6. Let 0 < p ≤ q < ∞, a, b ∈ R, ε ∈ R+, andE, Sx be defined as in Theorem
2.1. Then

(3.5)

(∫
E

[
exp

(
ε |Sx|−ε

∫
Sx

|Sy|ε−1 ln f(y)dy

)]q

|Sx|a dx

) 1
q

≤ C

(∫
E

fp(x) |Sx|b dx

) 1
p

holds for all positive functionsf for some finite constantC if and only if

(3.6)
a + 1

q
=

b + 1

p

and the least constantC in (3.5) satisfies(
p

q

) 1
q

ε
1
p
− 1

q e
b+1
εp

− 1
p ≤ C ≤

(
p

q

) 1
q

ε
1
p
− 1

q e
b+1
εp .

Proof. By writing (3.5) in polar coordinates we find that(∫ ∞

0

∫
A

[
exp

εN ε

tNε |A|ε
∫ t

0

∫
A

(
|A|
N

)ε−1

sNε−1 ln f(sσ)dσds

]q

tNa+N−1

(
|A|
N

)a

dτdt

) 1
q

≤

(∫ ∞

0

∫
A

fp (tτ)

(
|A|
N

)b

tNb+N−1dτdt

) 1
p

.
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Exchanging variables,s = r
1
ε andt = z

1
ε we find that this inequality can be rewritten as(∫ ∞

0

∫
A

(
exp

(
N

|A| zN

∫ z

0

∫
A

ln f
(
r

1
ε σ
)

rN−1dσdr

))q

×
(
|A|
N

)a

zN(a+1
ε
−1)zN−1 1

ε
dτdz

) 1
q

≤ C

(∫ ∞

0

∫
A

fp
(
z

1
ε τ
)( |A|

N

)b

zN( b+1
ε
−1)zN−1 1

ε
dτdz

) 1
p

,

that is,

(3.7)

(∫
E

(
exp

(
1

|Sx|

∫
Sx

ln f1(y)dy

))q

|Sx|
a+1

ε
−1 dx

) 1
q

≤ C

(
|A|
N

)( b+1
p
−a+1

q )(1− 1
ε)

ε
1
q
− 1

p

(∫
E

fp
1 (x) |Sx|

b+1
ε
−1 dx

) 1
p

,

wheref1(rσ) = f(r
1
ε σ). This means that (3.5) is equivalent to (3.7) i.e., (3.1) holds with the

weightsv(x) = |Sx|
a+1

ε
−1 andu(x) = |Sx|

b+1
ε
−1. We note that for these weights we find after a

direct calculation that the constantD1 from Theorem 3.1 is

D1 = sup
t>0

|tS|
a+1
εq

− b+1
εp e

1
p(

b+1
ε
−1)(

a+1
ε
− q

p

(
b+1
ε
− 1
)) 1

q

so we conclude that (3.6) must hold and then

D1 = e
1
p(

b+1
ε
−1)
(

p

q

) 1
q

.

Thus, the proof follows from Theorem 3.1. �

Remark 3.7. Settingp = q = 1, a = b, we have that (3.5) implies the estimate (1.2).

Remark 3.8 (Sharp Constant). In the above proposition, if we takep = q, thena = b. In this
situation (3.5) holds with the constantC = e(b+1)/p. Indeed, this constant is sharp. In order to
show this forδ > 0, we consider the function

fδ(x) =


e−

b+1
εp |S|−(b+1) |x|−

N
p

(b+1−εδ) , x ∈ S,

e−
b+1
εp |S|−(b+1) |x|−

N
p

(b+1+εδ) , x ∈ E\S.

By using this function in (3.5), we find that

1 ≤ RHS

LHS
≤ e

δ
p → 1 as δ → 0

and consequently the constant is sharp. Note that the sharpness of the constant forp = q, in
Proposition 3.6 has been proved in the more general setting than that in [1].
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4. THE COMPANION I NEQUALITIES

We present the following result which is a companion of Theorem 3.1:

Theorem 4.1. Let 0 < p ≤ q < ∞, ε > 0, and suppose that all other hypotheses of Theorem
3.1 are satisfied. Then the inequality

(4.1)

(∫
E

(
exp

(
ε |Sx|ε

∫
E\Sx

|Sy|−ε−1 ln f(y)dy

))q

v(x)dx

) 1
q

≤ C

(∫
E

fp(x)u(x)dx

) 1
p

holds for allf > 0 if and only if

D3 := sup
t>0

|tS|−
1
p

(∫
tS

v∗(x)

(
exp

(
1

|Sx|

∫
Sx

ln
1

u∗(y)
dy

)) q
p

dx

) 1
q

< ∞,

where

u∗(y) := u(s−
1
ε σ)

1

ε
s−N(1+ 1

ε), v∗(y) := v(s−
1
ε σ)

1

ε
s−N(1+ 1

ε).

Moreover, the constantC satisfiesD3 ≤ C ≤ e
1
p D3.

Proof. Note that forx ∈ RN

|Sx| =
∫ |x|

0

∫
A

tN−1dτdt =
|x|N

N
|A|.

Now, using polar coordinates, (4.1) can be written as(∫ ∞

0

∫
A

(
exp

ε |A|ε tNε

N

∫ ∞

t

∫
A

(
|A|
N

)−ε−1

s−Nε−1 ln f(sσ)dσds

)q

v(tτ)tN−1dτdt

) 1
q

≤ C

(∫ ∞

0

∫
A

fp(tτ)u(tτ)tN−1dτdt

) 1
p

.

Using the exchange of variabless = r−1/ε andt = z−1/ε we obtain(∫ ∞

0

∫
A

[
exp

(
N

|A| zN

∫
A

∫ z

0

ln f(r−
1
ε σ)rN−1dσdr

)]q

v(z−
1
ε τ)z−N(1+ 1

ε
) 1

ε
zN−1dτdz

) 1
q

≤ C

(∫ ∞

0

∫
A

fp(z−
1
ε τ)u(z−

1
ε τ)z−N(1+ 1

ε
) 1

ε
zN−1dτdz

) 1
p

and putf∗(tτ) = f(t−
1
ε τ). (4.1) can be equivalently rewritten as(∫

E

(
exp

(
1

|Sx|

∫
Sx

ln f∗(y)dy

))q

v∗(x)dx

) 1
q

≤ C

(∫
E

fp
∗ (x)u∗(x)dx

) 1
p

.

Now, the result is obtained by using Theorem 3.1. �

Analogously to Corollary 3.3, we can immediately obtain a special case of Theorem 4.1 that
averages functions over balls inRN centered at origin.
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Corollary 4.2. Let 0 < p ≤ q < ∞, ε > 0, andu, v be weight functions inRN . Then the
inequality

(4.2)

(∫
RN

(
exp

(
ε |Bx|ε

∫
RN\Bx

|By|−ε−1 ln f(y)dy

))q

v(x)dx

) 1
q

≤ C

(∫
RN

fp(x)u(x)dx

) 1
p

holds for allf > 0 if and only if

B̃ := sup
z∈RN

|Bz|−
1
p

(∫
Bz

v0(x)

(
exp

(
1

|Bx|

∫
Bx

ln
1

u0

(y)dy

)) q
p

dx

) 1
q

< ∞,

where

u0(x) := u(t−
1
ε τ)

1

ε
t−N(1+ 1

ε
), v0(x) := v(t−

1
ε τ)

1

ε
t−N(1+ 1

ε
).

Moreover, the best constantC satisfiesB̃ ≤ C ≤ e
1
p B̃.

Remark 4.3. Note that by choosingE as in Remark 3.5 we see that Corollary 4.2 in fact holds
also whenRN is replaced byRN

+ or more general cones inRN .

The corresponding result to Proposition 3.6 reads as follows and the proof is analogous.

Proposition 4.4. Let0 < p ≤ q < ∞, ε > 0, anda, b ∈ R, andE, Sx be defined as in Theorem
2.1. Then the inequality

(4.3)

(∫
E

(
exp ε |Sx|ε

∫
E\Sx

|Sy|−ε−1 ln f(y)dy

)q

|Sx|a dx

) 1
q

≤ C

(∫
E

fp(x) |Sx|b dx

) 1
p

holds for allf > 0 and some finite positive constantC if and only if

a + 1

q
=

b + 1

p

and the least constantC in (4.3) satisfies(
p

q

)− 1
q

ε
1
p
− 1

q e−( b+1
εp

+ 1
p) ≤ C ≤

(
p

q

)− 1
q

ε
1
p
− 1

q e−
b+1
εp .

Remark 4.5 (Sharp Constant). Analogously to Proposition 3.6, in the above proposition we
also find that if we takep = q, thena = b. In this situation (4.3) holds with the constant
C = e−(b+1)/εp and the constant is sharp. This can be shown by considering, forδ > 0, the
function

fδ(x) =


e

b+1
εp |S|−(b+1) |x|−

N
p

(b+1−εδ) , x ∈ S

e
b+1

p |S|−(b+1) |x|−
N
p

(b+1+εδ) , x ∈ E\S.

Remark 4.6. It is tempting to think that the results in this paper hold also in general star-shaped
regions inRN (c.f. [22]) but this is not true in general as was pointed out to us by the referee.
See also [22] and note that the results there also hold at least for cones inRN .
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[15] D.S. MITRINOVIĆ, J.E. PĚCARIĆ AND A.M. FINK, Inequalities Involving Functions and their
Integrals and Derivatives, Kluwer Academic Publishers, 1991.

[16] M. NASSYROVA, Weighted inequalities involving Hardy-type and limiting geometric mean oper-
ators, PhD Thesis, Department of Mathematics, Luleå University of Technology, 2002.

[17] M. NASSYROVA, L.E. PERSSONAND V.D. STEPANOV, On weighted inequalities with geomet-
ric mean operator by the Hardy-type integral transform,J. Inequal. Pure Appl. Math., 3(4) (2002),
Art. 48. [ONLINE: http://jipam.vu.edu.au/v3n4/084_01.html ]
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