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ABSTRACT. Let X C R/Z be a non-empty finite set anf{x) be a real-valued function on
[0, 3]. Let an energy of{ be the average value ¢f||z — y|) for z,y € X where|-|| is the

Euclidean distance oR/Z. Let X,, C R/Z be an equally spacedpoint set. It is shown that
if fis monotone decreasing and convex, then among-pbbint sets, the energy is minimized
by X,,. Moreover, by giving a variant of a result of Bennett and Jameson, it is shown that if

convex,f’(z) is concave anim,,_,1 f'(z) = 0, then the energy ok, decreases with.
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1. INTRODUCTION

In digital imaging technologies, sometimes we are required to give well-dispersed points or
measure the goodness of point dispersion. For example, in digital halftoning technology, there
is a method called dispersed dot halftoning that provides a binary image where many small
dispersed dots represent each tone of an original continuous tone image. Therefore, we want
to focus on the mathematics of well-dispersed point sets’ structures or estimating functions that
can measure the goodness of dispersed point sets.

From a purely mathematical point of view, "sphere packing problems," are problems which
are concerned with well-dispersed points. The sphere packing problems contain the problem
that asks the maximum value of the minimum distance among every two pointa.afigfiersed
point sets in the-dimensional unit square and ask its structure [3) 5, 6]. On the other hand, in
order to measure the goodness of dispersed points, there are some problems of the type that ask
for a placement of points which minimize or maximize a given energy[2, 4, 3].

In general, these two problems are hard to deal with in spaces higher than 2-dimensions.
However, we expect that a solution in a 1-dimensional space will give us some useful hints for
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applications to digital imaging technologies. For this purpose, we also need to combine these
two problems. The reason why the usage of the sphere packing idea itself is problematic in
digital discrete spaces, is because in the spaces, placements of points are limited and it is hard
to remove local distortions without using the idea of energies.

Therefore, we would like to investigate the problem "if the sphere packing placement in a 1-
dimensional space minimizes some energy value among every two points". For ease of analysis,
we impose the target space on symmetry, that is, we work on the periodic sphere packing case [5,
pp. 25]. In fact, the periodic sphere packing placement in a 1-dimensional space is precisely
calculated as an equally spaced set with periodic boundary. Hence, the energy value is precisely
calculated, too. Therefore, the interest is to investigate the condition and property of the energy
itself that takes the minimum value when given points are equally spaced points.

For the above reasons, we investigate the following two points.

(A). A global minimum condition of the energy of equally spaeegdoint sets.
(B). A condition so that the energy of equally spaeedoint sets decreases with

2. DEFINITION AND PRELIMINARIES
Definition 2.1. Let E = [0, 1). Let the distancéx — y|| between two points, y € F be
|z —y|| =min{|lz —y+e|:e=—1,0,1}.

Let X C (E,]-||) be a non-empty finite set. L¢tbe any real-valued function o, 1]. Then,
let the energy of a point € X be

(X2, f) === > flz—yl)
IX! =
and the energy of the sét be
X, f)= (X,z, f) =
6,0) = [y 1 X7

zeX

DY flz—wl),

rzeX yeX

where| X | means the cardinality of . Let X,, C (E, ||-||) denote an equally spaceepoint set.

The space€E, ||-||) is metrically equivalent to the circl§! with the arcwise distance, and
i D, < L holds foranyr,y € (£, ||||).

Remark 2.1. To compare energies for fixefl we can assumg¢ (%) = 0, because energies
are written byl (X, z, f) = I(X,z,9) + f (3) andI(X, f) = I(X,g) + [ (3) whereg(z) =
f(z) = f(3) with g (3) = 0. Moreover, we can extenfionto (3, 0] by f(z) = f (3) = 0.
Then,

2.1) 1(X 2, f) = Zf( )

(2.2) I(Xn, f) = I(me, /)
hold for anyX,, C (£, ||-||) andz € X,,.

3. GLOBAL MINIMUM CONDITION FOR FIXED n

We investigate the problem (A) and give a sufficient condition so that the minimum energy
amongn-point sets is given by (X,, f). In a 1-dimensional space, we do not need a local
minimum condition analysis, because we can obtain a global minimum condition from the
following.
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Theorem 3.1.LetY C (E, ||-||) be anyn-point set. Iff is monotone decreasing and convex,
then/(Y, f) > I(X,, f) holds.

Proof. By Remark| 2.]l, we can assunféx) = 0 (z > 1). Then, by the assumptiory, is
convex on0, oo). LetY = {y,+1,..., %2} C [0, 1) for convenience and assume

Yi <yiy1 (t=n+1,...,2n—1).
Moreover, take points on both sides of the Beds

Yi = Yign — 1 (i:1,...,n)
Vi=VYin+1 (1=2n+1,...,3n).

Then, for{y,...,ys.} C [-1,2),

(3.1) i <yip1 (i=1,...,3n—1)
holds. Next, let

(3.2) di=vyim1—y (E=1,...,3n—1).

Here,d; = d;,,, = d; 2, holds foreachi = 1,... n.
By (3.1) and[(3.R), foreach=n+1,...,2nandi = 1,...,n,

(3.3 |k — Yngi | = Z di+j-1,
j=1
(3.4) | Yk — yr—i| = Z dp—;
j=1
holds. In addition, the following hold for each= 1, ..., 2n.
(3.5) > diy=1.
j=1

By (3.3). (3.4) andf(x) = 0 onz € [L, 00), the following holds for eack = n+1,..., 2n:

@6) IV f) =3 F (e —ul)

yey
3n
1
= ;1 f vk — wil)

= 3 )+ 3 = i) + 50

=2 (Z dkﬂ—l) £ 130 (Z dk-j) +21(0).
i=1 Jj=1 i=1 j=1
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Since f is convex on0, co), by Jensen’s inequality and by (B.5), (3.6), {2.1) gnd](2.2), the
following holds.

10, )=~ S 1Yy, )

yey

:% Z 1Y)

k n+1

- %Z > (Z dk+j_1> - %Z Z / (Z dk_j> +27(0)

i=1 k=n+1 j=1 i=1 k=n+1 j=1
1 n 1 7 2n 1 n 1 1 2n 1
> EZ [nf (ﬁz Z dk+j—1> + ﬁz [nf (EZ Z dk—j) + ﬁf(o)
i=1 j=1 k=n+1 i=1 j=1 k=n+1
1
s (3) o
= I1(X,, f).
I(Y, f) > I(X,, f) holds whenf is bounded and strictly convex ({ﬂ, %] This concludes

the proof of Theorerp 3 1. O

4, MONOTONE DECREASING CONDITION WITH n

We investigate Problem (B) and give a sufficient condition so that the erdgrgy, f) de-
creases wit. For this, we give a variant of a result of Bennett and Jameson [1, Theorem 5].

Let 7, (f) be the trapezium estimate fﬁ f given by dividing[0, 1] into n equal subintervals:

n—1 . .
1 1 1+1
Tu(f) =5 - .
n(f) %; [f (n> +f( - )}
The result of[[1] is that iff is convex andf’ is either convex or concave, th&h(f) decreases
with n. Here we show the same holdsfifs convex,f’ (2) is concave antim, ., f'(z) = 0.

Theorem 4.1. Let f be a differentiable function oft), 1. If f(z) is convex,f’(z7) is concave
andlirq f'(x) =0, thenT,,(f) decreases with.

Proof. Without loss of generality, we can assurfid) = 0. Extendf onto (1, 00) by f(z) =
f(1) = 0. Then,f is differentiable convex off), o). For a real numbed# > 1, extendT,,(f)

by
Ta<f>:;—a§{f(')+f(”l)].

Here, ifa is a natural number, then| can be replaced by — 1. We show thaf, (/) decreases
with « > 1 by analyzing the differential coefficient af,(f) for a. The differentiability of
T.(f) for a is guaranteed by the fact thais differentiable or0, co) andf(z) = f'(z) = 0 for
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z > 1. In fact, the differential coefficierit,’(f) is expressed b¥,'(f) = —= - S.(f) where
Sa(f) is given by the following.

[a] . . . . . .
1 v, (1 1+ 1 1+1, (141
=2 (0) e o )+ ()= (50)]
Thus, it is enough to show that,(f) > 0 fora > 1.
In the following, we shows,,(f) > 0 for any natural numbet. Let g(z) = 3. Here,f o g

is concave o1j0, o), becausé’ o g is concave o0, 1] and f'(z) = 0 (z > 1). Hence, we get
the following inequality for; by considering the trapezium estimate for the integraf’of ¢

(Figure[4.1).
1251 g — n? g n

2%, (i
n? nj)’

Thus, by remarking (z) = f'(z) = 0 onz > 1, we get the following.

> ()= z/

AT ) 1 . . . .
- or ()40 () 50 (5
=0 -
[, (i i+1 2. ., (i
:;-f(5>+f( ) ()]
SINE i+1 "o (i
2 G) ()] 5 ()
n—1 r X ) )
z f(%)‘Ff(ZZl)}—Zn s
=0 *“
> 0.

The last inequality holds by the the trapezium estimate for the integrairdfich is convex on
[0, 1]. Thus,S,,(f) > 0 holds for any natural number.

We note again the condition thgtis convex on[0, o), f'(z2) is concave orj0, c0) and
f(z) = f'(x) = 0forz > 1. Then, we gelS,(f) > 0 for any real numbes > 1 in the same
manner as for natural number
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Nl=

Figure 4.1: A trapezium estimate for the integral of the concave fungtierny whereg(z) = z=.

Therefore,T,,(f) decreases with. T, (f) strictly decreases with when f is bounded and
strictly convex on0, 1]. By the assumption of this theorerhjs indeed a monotone decreasing
C! class function. This concludes the proof of Theofen 4.1. O

Now we apply Theorein 4.1 to the energy.

Corollary 4.2. If f(x) is differentiable convex’(x2) is concave andim, 1 f'(x) = 0, then
I(X,, f) decreases with.

Proof. By Remark 2.1L, we can assunfiér) = 0 (z > 1) and then/(X,,, f) = 27,,(f) holds
by (2.1) and[(2). By the assumptiofi,is differentiable on0, 1] with lim,_, f'(z) = 0.
Hence, by Theoren 4.1(X,,, f) decreases with. O

Although Theorenj 3]1 guarantees that the energy is minimized by equally spaced points,
it does not necessarily guarantee that the energy takes lower value by more dispersed points.
Corollary[4.2 guarantees the latter matter and reinforces Thgor¢m 3.1.

5. SUMMARY AND EXAMPLES

We summarize the previous results in the following Corol[ary 5.1 by changjitiga real-
valued functioni defined on0, 1]. In potential theory, potential energies are determined as
[ [z = y|~*du(x)du(y) for real numbers [2]. However, it is convenient to give the sphere
of influencer (0 < r < %) for each point, for our purpose of application to digital imaging
technologies, for ease of calculations. That is, points that are placed in a distance larger than
from a noticed point do not influence the energy.

Corollary 5.1. Letr be0 < r < 1. For the energy defined by Definitipn 2.1, let

|z — 9]
I

07 |.§C—y’27’
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whereh is a real-valued function ofv), 1]. Assume that the following conditions are satisfied.
(H1) h(z)is monotone decreasing.

(H2) h(x) is differentiable orj0, 1].

(H3) A(1)=0.

(H4) lim, ., h'(z)=0.

(H5) h(x) is convex.

(H6) #'(x2)is concave.

Then, for anym-point setY” C (E, ||-||) with1 <m <n, I(Y, f) > I(X,, f) holds.

Proof. From H2, H3 and H4f is differentiable. From H1 and H(x) is monotone decreasing
and convex. From H4 and H@!(x>) is concave ono, 5] andlim,_,: f'(z) = 0. Hence, by
Theorenj 3./l and Corollafy 4.2(Y, f) > I(X,, f) holds.I(Y, f) > I(X,, f) holds wher is
bounded, strictly convex o), 1] andr > <. In fact, the condition H1 is derived from H4 and
H5. From H2 and H6k is indeed aC! class function. 0J

We give the following examples for the functidrof the Corollary 5.]1.
Letp > 0. In the following, we consider four examples as the funcfion

Example 5.1. hy(z) = (1 — x)P.

hy(z) is monotone decreasing and convex if and onjy ¥ 1. Sincehl’(:z;%) = —p(1—z2) !,
H1-H6 all hold forp > 2. Inthe case of = 1, H4 and H6 do not hold. In the caselok p < 2,
H6 does not hold.

Example 5.2. hy(z) = (2 — z + 123)".

ho(x) is monotone decreasing and convex if and onjy3¥ 1. Sinceh,'(z) =p (2 — z + %373);;71.
(22 = 1), hg’(x%) is concave whep > 1, too. Thus, in the case of> 1, H1-H6 all hold. This
function gives the power gf value of the intersection volume of two 3-dimensional balls with

diameterl, where the center points of these balls are placed with dista(teigure 5.1 (upper)).

Example 5.3. hs(x) =1 — x4+ (2P — 1) /p.

hs(z) is monotone decreasing and convex forgatt 0. In the case op = 1, h3(z) equals to
the functionk, (z) with p = 2, and in the case qof = 2, hs(x) equals to the functiod 2, (x)
with p = 1. As p goes to infinity,h3(z) converges to the functioh — z. Sincehs'(z) =
—1+ (p+1)/pa? — 1/p, hy'(x7) is concave whef < p < 2 and H1-H6 all hold. In the case
of p > 2, H6 does not hold.

Example 5.4. hy(z) = (2cos™!(z) — sin(2 cos}(2)))".
hy(z) is monotone decreasing and convex when 1. Since

1 -2

1—22

h'(z) =p (2cos™'(z) — sin(2cos ' (z)))” - (1 — cos(2cos™!(x))),

one can check that,’ (x%) IS concave ifp is to some extent large, for example> 1.5. At

least, in the case qof = 1, h,’ (x%) is not concave. This function gives the powerpofalue

of the intersection area of two circles with diametewhere the center points of these circles
are placed with distance (Figure/5.1(lower)). Therefore, although the functignwith p = 1,
which is the volume of the cross region of 2 balls, satisfies the condition H1-H6, the function
h4 with p = 1, which is the area of the cross region of 2 circles, does not satisfy the condition
H6.
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intersection volume of 2 equal balls

x)]

intersection area of 2 equal circles
Figure 5.1: lllustrations of functions(z) (upper) andhy(z) (lower).
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