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Abstract

There are two natural metrics defined on an arbitrary convex cone: Thompson’s
part metric and Hilbert's projective metric. For both, we establish an inequality
giving information about how far the metric is from being non-positively curved.
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Let C be a cone in a vector spateé ThenC induces a partial ordering o
given byx < yifandonly ify — x € C. For eache € C\{0}, y € V, define
M(y/z) == inf{\ € R : y < Azx}. Thompson'’s part metrion C'is defined to
be

dr(,y) = logmax (M (z/y) , M (y/x))

andHilbert’s projective metrioon C' is defined to be

du(z,y) = log (M (z/y) M (y/z)) .

Two points inC are said to be in the same part if the distance between them is
finite in the Thompson metric. if’ is almost Archimedearthen, with respect

to this metric, each part af’ is a complete metric space. Hilbert's projective
metric, however, is only a pseudo-metric: it is possible to find two distinct points
which are zero distance apart. Indeed it is not difficult to seedhét, y) = 0

if and only if x = Ay for some) > 0. Thusdy is a metric on the space of rays

of the cone. For further details, see Chapter 1 of the monograph [

Suppose” is finite dimensional and le$ be a cross section af, that is
S:={x e C:l(x) =1}, wherel : V — R is some positive linear functional
with respect to the ordering ovi. Supposer,y € S are distinct. Letz and
b be the points in the boundary 6fsuch that:, x, y, andb are collinear and
are arranged in this order along the line in which they lie. It can be shown that
the Hilbert distance betweenandy is then given by the logarithm of the cross
ratio of these four points:

bz |ay]
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Indeed, this was the original definition of Hilbert.dfis the open unit disk, the
Hilbert metric is exactly the Klein model of the hyperbolic plane.

An interesting feature of the two metrics above is that they show many signs
of being non-positively curved. For example, when endowed with the Hilbert
metric, the Lorentz coné(t,z1,...,x,) € R : 2 > 22 + ... + 22} is
isometric ton-dimensional hyperbolic space. At the other extreme, the positive
coneR? := {(x1,...,2,) : x; > 0for1 <i < n} with either the Thompson
or the Hilbert metric is isometric to a normed space][ which one may think
of as being flat. In between, for Hilbert geometries having a strictly-cofifex
boundary with non-vanishing Hessian, the methods of Finsler geom&i}y [
apply. Itis known that such geometries have constant flag curvaturélore
general Hilbert geometries were investigated i [where a definition was
given of a point of positive curvature. It was shown that no Hilbert geometries
have such points.

However, there are some notions of non-positive curvature which do not ap-
ply. For example, a Hilbert geometry will only be a CAT(0) space (s3g [
if the cone is Lorentzian. Another notion related to negative curvature is that
of Gromov hyperbolicity {5]. In [Z], a condition is given characterising those
Hilbert geometries that are Gromov hyperbolic. This notion has also been in-
vestigated in the wider context of uniform Finsler Hadamard manifolds, which
includes certain Hilbert geometriess].

Busemann has defined non-positive curvaturectard space$/]. These

are metric spaces in which there is a distinguished set of geodesics, satisfying

certain axioms. In such a space, denoterby the midpoint along the distin-
guished geodesic connecting the pair of poingsdy. Then the chord space is
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non-positively curved if, for all points, =, andy in the space,
1
(1.2) d(Muz, M) < §d(x,y),

whered is the metric.

In the case of the Hilbert and Thompson geometries on a part of a closed
cone(, there will not necessarily be a unique minimal geodesic connecting
each pair of points. However, it is known that, setting= M (y/x; C) and
a:=1/M(x/y;C), the curvep : [0,1] — C':

B —a’ Ba® — af® .
(12) ¢(57(L”y) e ( ﬁ — ) Yy + <ﬁ) x, |f B # Q,
o'z, if 3=a

is always a minimal geodesic fromto y with respect to both the Thompson
and Hilbert metrics. We view these as distinguished geodesics. If the(¢one
is finite dimensional, then each part©fwill be a chord space under both the
Thompson and Hilbert metrics. Notice that the geodesics above are projective
straight lines. If the cone is strictly convex, these are the only geodesics that
are minimal with respect to the Hilbert metric. For Thompson’s metric, if two
points are in the same part 6f and are linearly independent, then there are
infinitely many minimal geodesics between them.

In this paper we investigate whether inequalities similarta)(hold for the
Hilbert and Thompson geometries with the geodesics giveh.k).(We prove
the following two theorems.
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Theorem 1.1.Let C' be an almost Archimedean cone. Suppose,y € C
are in the same part. Also suppose titakk s < 1 and R > 0, and that
dg(u,z) < Randdg(u,y) < R. If the linear span of{u, z,y} is 1- or 2-
dimensional, thed; (¢(s; u, z), ¢(s;u,y)) < sdr(z,y). In general

2(1 — et
(1.3) dT(¢(3§U7$)a¢(5§Uay)) < {(1_—6}2) ]
Note that the bracketed value on the right hand side of this inequality is
strictly increasing inkR. As R — 0, this value goes ta, which reflects the
fact that in small neighborhoods the Thompson metric looks like a norm. As
R — o0, the bracketed value goes2c- s.

Theorem 1.2. Let C' be an almost Archimedean cone. Suppose,y € C
are in the same part. Also suppose tliatc s < 1 and R > 0 and that
dg(u,z) < Randdy(u,y) < R. If the linear span ofu,x,y} is 1- or 2-
dimensional, thedy (¢(s; u, ), ¢(s;u,y)) < sdy(z,y). In general

1 — e Fs
1—e R

@8 (o) olsun) < | 7= | duen)

Again, the bracketed value on the right hand side increases strictly with in-
creasingR. This time, it ranges betweermas R — 0 and1 asR — oo.

Our method of proof will be to first establish the results wikiérs the pos-
itive coneRﬁ, with V> 3. It will be obvious from the proofs that the bounds
given are the best possible in this case. A crucial lemma will state that any fi-
nite set ofn elements of a Thomson or Hilbert geometry can be isometrically
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embedded irRZ(”_l) with, respectively, its Thompson or Hilbert metric. This
lemma will allow us to extend the same bounds to more general cones, although
in the general case the bounds may no longer be tight.

A special case of Theorefn2was proved in] ] using a simple geometrical
argument. It was shown that if two particles start at the same point and travel
along distinct straight-line geodesics at unit speed in the Hilbert metric, then
the Hilbert distance between them is strictly increasing. This is equivalent to
the special case of Theoretw2 whendy (u,z) = dy(u,y) and R approaches

infinity. A Metric Inequality for the
. Th d Hilbert
A consequence of Theorenisl and 1.2 is that both the Thompson and T s
Hilbert geometries are semihyperbolic in the sense of Alonso and Brid$on [
. . . . g . . . Roger D. Nussbaum and
Recall that a metric space is semihyperbolic if it admits a bounded quasi-geodesic Cormac Walsh

bicombing. A bicombing is a choice of path between each pair of points. We
may use the one given by

Title Page
t .
¢ (—a z, y) ) if ¢ € [07 d(mv y)] Contents
C(x,y) (t) = d(xu y)
. 44 44
v, otherwise
< | 2
for each pair of points andy in the same part af’. Hered is either the Thomp- E———
son or Hilbert metric. This bicombing is geodesic and hence quasi-geodesic. To
say it is bounded means that there exist const&hemnde such that Close
Quit
d(((aﬂ,y) (t)u C(w,z) (t)) S M max(d(x, UJ), d(y7 Z)) +e€
Page 7 of 33
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Corollary 1.3. Each part ofC' is semihyperbolic when endowed with either
Thompson'’s part metric or Hilbert’s projective metric.

It should be pointed out that for some cones there are other good choices of
distinguished geodesics. For example, for the cone of positive definite symmet-
ric matrices Syrtn), a natural choice would be

O(s; X,Y) = XXy X-12)e X2

for X, Y € Sym(n) ands € [0,1]. It can be shown that, with this choice,
Sym(n) is non-positively curved in the sense of Busemann under both the
Thompson and Hilbert metrics. This result has been generalized to both sym-
metric cones 6] and to the cone of positive elements of'&-algebra [.(].

Although Hilbert's projective metric arose in geometry, it has also been of
great interest to analysts. This is because many naturally occurring maps in
analysis, both linear and non-linear, are either non-expansive or contractive with
respect to it. Perhaps the first example of this is due to G. BirkGoff][ who
noted that matrices with strictly positive entries (or indeed integral operators
with strictly positive kernels) are strict contractions with respect to Hilbert’s
metric. References to the literature connecting this metric to positive linear
operators can be found in4, 13. It has also been used to study the spec-
tral radii of elements of Coxeter groups(]. Both metrics have been ap-
plied to questions concerning the convergence of iterates of non-linear oper-

ators [, 16, 23, 24, 25]. The two metrics have been used to solve problems in-
volving non-linear integral equations {, 3(], linear operator equations,[9],
and ordinary differential equations,[25, 31, 37]. Thompson’s metric has also

been usefully applied in?f, 26] to obtain “DAD theorems”, which are scal-
ing results concerning kernels of integral operators. Another application of this
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metric is in Optimal Filtering [9], while Hilbert’s metric has been used in Er-
godic Theory [L8] and Fractal Diffusions1].
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A cone is a subset of a (real) vector space that is convex, closed under mul-
tiplication by positive scalars, and does not contain any vector subspaces of
dimension one. We say that a cone is almost Archimedean if the closure of its
restriction to any two-dimensional subspace is also a cone.

The proofs of Theorems.1 and 1.2 will involve the use of some infinites-
imal arguments. We recall that both the Thompson and Hilbert geometries are
Finsler spaces]”]. If C is a closed cone iR with non-empty interior, then
int C' can be considered to be arrdimensional manifold and its tangent space
at each point can be identified wii¥. If a norm

o2 := inf{a > 0: —ar <v < ax}

is defined on the tangent space at each poiat int C, then the length of any
piecewiseC" curvea : [a,b] — int C' can be defined to be

b
L7(a) = / o/ (1) dt.
The Thompson distance between any two points is recovered by minimizing
over all paths connecting the points:
dr(z,y) = inf{L"(a) : a € PC'[z,y|},

where PC' [z, y] denotes the set of all piecewisé pathsa : [0,1] — int C
with a(0) = x anda(1) = y. A similar procedure yields the Hilbert metric
when the norm above is replaced by the semi-norm

lv|H .= M(v/x) — m(v/z).

A Metric Inequality for the
Thompson and Hilbert
Geometries

Roger D. Nussbaum and
Cormac Walsh

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 10 of 33

J. Ineq. Pure and Appl. Math. 5(3) Art. 54, 2004
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:nussbaum@math.rutgers.edu
mailto:
mailto:
mailto:cormac.walsh@inria.fr
http://jipam.vu.edu.au/

Here M (v/z) is as before aneh(v/x) := sup{\ € R : v > Az}. The Hilbert
geometry will be Riemannian only in the case of the Lorentz cone. The Thomp-
son geometry will be Riemannian only in the trivial case of the one-dimensional
coneR,.

Our strategy will be to first prove the theorems for the case of the positive
coneRY, and then extend them to the general case. The proof in the c&se of
will involve investigation of the map : int RY — intRY":

(2.1) g9(x) == ¢(s; 1, z)

o), (b 1, ifb+a,
- b—a b—a

a1, if b=a,

whereb := b(z) := max; z; anda := a(z) := min; z;. Heres € (0, 1) is fixed
and we are using the notatidn= (1,...,1). The derivative of; atz € int RY

is a linear map fronRY — R¥. Taking| - |7 as the norm on the domain and
| - |Tx) as the norm on the range, the nornytfr) is

g(
19 ()|l := sup{|g'(2)(v)[ gy : 0]z <1}

If, instead, we take the appropriate infinitesimal Hilbert semi-norms on the do-
main and range, then the normg({z) is given by

lg'(@)|l = sup{lg' (@) (v)lg(a : [0]s < 1}

For each pair of distinct integefsand.J contained in{1, ..., N}, let

Uy = {xe intRf:0<:cI<:ci <z forallie {1,...,N}\{I,J}}.
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On each set/; ;, the mapy is C* and is given by the formula

o(z) = (xf} — xi) - (xja:f — fE[(ESJ) "
Tjg— Xy Tjg— g
Let U denote the union of the set§ ;; I,J € {1,..., N}, I # J. If z €
RY\U, then there must exist distinct integersn € {1,..., N} with either
Ty, = T, = Max; x; Of x, = ,, = min; ;. The setr € ]Ri\_] with z,, = x,,, has
(N-dimensional) Lebesgue measure zero, so the compleméntimfRY has

A Metric Inequality for the

Lebesgue measure zero. Thompson and Hilbert
We recall the following results front[]. The firstis a combination of Corol- Geometries
laries 1.3 and 1.5 from that paper. Roger D. Nussbaum and

Cormac Walsh

Proposition 2.1. Let C' be a closed cone with non-empty interior in a finite
dimensional normed spadé. Supposé&- is an open subset daht C' such that

Title P
¢(s;x,y) € Gforall x,y € Gands € [0, 1]. Suppose also thgt: G — int C hee
is a locally Lipschitzian map with respect to the normiénThen Contents

, < 33
inf{k > 0:dr(f(x), f(y)) < kdr(z,y) forall z,y € G}
< 4
= ess sup,eq || f/(2)]|r-

Go Back

It is useful in this context to recall that every locally Lipschitzian map is ——
Fréchet differentiable Lebesgue almost everywhere. The next proposition is a
special case of Theorem 2.5 in’]. Quit
Proposition 2.2. Let C' be a closed cone with non-empty interior in a normed Page 12 of 33
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[(z) > 0forall x € intC, and defineS := {z € C : I(z) = 1}. LetG be
a relatively-open convex subset®f Suppose that : G — int C'is a locally
Lipschitzian map with respect to the norm @n Then

inf{k > 0:dy(f(x), f(y)) < kdy(x,y)forall z,y € G}
= ess sup,eq |1/ (2)] 4,

where|| f'(z)[| 5 := sup{[f'(z)(v)[}{,) : 0| <1,1(v) = 0}. Here the essen-
tial supremum is taken with respect to tNe- 1-dimensional Lebesgue measure
ons.

Since we wish to apply Propositiofisl and2.2to the mapy, we must prove
that it is locally Lipschitzian.

Lemma 2.3. The mapg : int(RY) — int(RY) defined by %.1) is locally
Lipschitzian.

Proof. We use the supremum nofif||., := max; |;| onRY. Clearly,|b(x) —
b(y)| < llz = ylle andla(z) — a(y)| < [l = yllx for all z,y € int(RY).
Therefore both andb are Lipschitzian with Lipschitz constant 1.

Lety : [0,00) — [0, 00) be defined by

-1
fort #£ 1
1 # 1,

s, fort =1.

v(t) =

Theng may be expressed as

glw) = a* "y (bfa)x + a*(1 = (bfa) )1,
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The Binomial Theorem gives that

A(t) = f: <Z)(t— F forft—1] <1

k=1

and soy is C* on a neighborhood of 1. Hence it on [0, c0), and thus
locally Lipschitzian. It follows thay is also locally Lipschitzian. ]

We have the following bound on the normgfz) with respect to the Thompson
metric.

Lemma 2.4. Consider the Thompson metric d‘mt]Rf. Letr e Uy n. IfN =1
or N = 2 then the norm of’ at z is given byl|¢'(z)||r = s. If N > 3, then

s+1 s s
- (o _ TN~ TN-1, (x_N> x] N (x% — 25)xN_1
(2.2) llg'(2)llr TN — X1 r1 ) En_q En—

s+1
IN—1 — T1 T T
LI Ty (2)

IN — T1 tn/) Ena
wherefd(t) := (1—s)—t*+standE;(x) := E; := x;(2% —xf) +onas —x12%.

Proof. If N = 1 andx > 0, theng(xz) = 2°. We leave the proof in this case to
the reader and assume that> 2.
Forz € U, v,

T3 — T TNTE — X125
g(x) = <—N 1>Jc+ <—N ! ! N) 1.
rNy — I IN — 21
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Let

.z Ogi

Straightforward calculation gives, for eaghe {1,..., N},
hlj(l') = Sélj
and th(ZL‘) = SéNj.
Herey,; is the Kronecker delta function which takes the value: = j and the

value( if 7 # j. Clearly,h;;(z) = 0for1l < i < N andj ¢ {1,7,N}. For
1<i< N,

(2.3) hale) =2=mg () o2 >,
(2.5) hv(z) =-—2z=z ()8 <o

Inequalities £.3) — (2.5) rely on the fact tha#(¢) > 0 for t > 0. This may be
established by observing thétl) = 6'(1) = 0 and#”(¢) > 0 for ¢ > 0.
Let
BT .= {veRY :max;|v;| < 1}.

We wish to calculate

(2.6) 19" ()|l = sup {

Z hijv;

J

:1§z’§N,v€BT}.
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Fori = 1ori = N, we havel ), h;;v;| < s for any choice ofv € BT, If
N = 2, then it follows that|¢'(z)||r = s forall z € U .

For the rest of the proof we shall therefore assume dhat 3. Forl < i <
N, itis clear from inequalitiesA.3) — (2.9) that| 3, h;;v;| is maximized when
v; = v; = 1 andvy = —1. In this case

1 oy — x4 TN
2.7 hivj| = — | —0 ( 22 ) ast!
(2.7) ; A B LUN_xl (xl)xl
r; — X1 T
s .8 ; —(9 It s+1
+(zy — )z —|—xN_x1 (xN>a:N]
2.8) _ Clxi+02’
C3%; + C4

wherec;, ¢, c3, ande, depend o, andx y but not onz;. Observe thatsz; +

cy # 0forzy < x; < xy. Given this fact, the general form of expressiarg|

leads us to conclude that it is either non-increasing or non-decreasing when
regarded as a function af. When we substitute; = z;, we get| Ej hijvi| =

s. When we substitute; = x, we get

(i)

(2.9) = (/o)

Z hijvj
J

Now, writing T'(¢) := 2(1 — ¢*) /(1 — t) — s, we havel”(¢) = —2t*0(¢t ') /(1 —
t)? < 0, in other wordsl" is decreasing off0, 1). In particular,I'(x;/xy) >
lim; ., I'(t) = s. Therefore expressior2(7) is non-decreasing im;. So, the
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supremum in%.6) is attained whem is as above and = N — 1. Recall that
xn_1 Is the second largest componentofThe conclusion follows. O

Corollary 2.5. LetR > 0. If N = 1 or N = 2, theness suf||¢'(z)||r : = €
intRﬂf} =s. If N > 3, then

2(1 — e fis
ess suplly(#)lr : du(e1) < Ry = 20L= 70
— €
Proof. Note that ifo : RY — RY is some permutation of the components, then A Metric Inequality for the
goo(z) = oo g(x)forall x € RY. Furthermoreg will be an isometry of both R L
the Thompson and Hilbert metrics. It follows that, given anyg U; ; with
I,Je{l,...,N}, I+ .J,we may reorder the componentsaofo find a point R ek

y in Uy y such that|¢'(y)||r = ||¢'(x)||r. Recall, also, that the complement
of U in intRY hasN-dimensional Lebesgue measure zero. From these two

facts, it follows that the essential supremum|gf(x)|| over Bg(1) := {z € Title Page

int RY : dp(z,1) < R} is the same as its supremum ovex (1) N U . Contents
In the case whetV = 1 or N = 2, the conclusion follows immediately. <« NS
For N = 3, we must maximize expressiof.p) under the constraints;, < p R

ry-—1 < zy andz;/xy > exp(—R). First, we maximize ovety_;, keeping
x, andzy fixed. In the proof of the previous lemma, we showed that expres- GoBack
sion 2.2 is non-decreasing imy_;, and so it will be maximized wheny_;
approaches . Here it will attain the value

2(1 ~(m /xN)S>

1= (a1/xy)

Close
Quit
Page 17 of 33
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We also showed thdt is decreasing o0, 1). Therefore .10 will be maxi-
mized whene, /xy = exp(—R), where it takes the value

2(1 — e~ )

1_€—R — S.

]

Lemma 2.6. Let C' be an almost Archimedean cone and{et : : € I} be
a finite collection of elements 6f of cardinality n, all lying in the same part.
Denote byl the linear span offz; : « € I} and writeCy, == C N W.
Denote byint C'y the interior of Cy, as a subset oft’, using onlV the unique
Hausdorff linear topology. Then each of the poinmtsi € I is contained in
int Cyy. Furthermore, there exists a linear madp : W — R™"~1 such that
F(int Cy) C int ]err(n_l) and

= M(F(z;)/F(a;);RE"Y)

(2.11) M(x,/;C)

for eachi, j € I.

Proof. Since the point§z; : i € I} all lie in the same part of’, they also all
lie in the same part af’y,. Therefore there exist positive constamtssuch that
x;—a;;x; € Cy foralld, j € 1. If we definea := min{a;; : 4, j € I} it follows
thatz; + d0x; € Cy wheneveld| < a andi, j € I. Now selectiy, ... i, € [
such that{z;, : 1 < k < m} form a linear basis folV. For eachy € W, we
define||y|| := max{|by| : 1 < k < m}, wherey = >/, byz;, is the unique
representation af in terms of this basis. The topology &% generated by this
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norm is the same as the one we have been using/If< a/m andj € I, then
xj + mbyz;, € Cy for 1 <k < m. Itfollows that

m

1
Ti+y= E Z(IJ + mbkx,k) e Cw
k=1

whenevet|y|| < a/m. This proves that; € int Cy forall j € 1.
It is easy to see that;; := M(z;/x;;C) = M(z;/x;; Cw) forall i, j € 1,
i # j. Observe that;;z; — z; € 0Cyw. Sinceint Cyy IS a non-empty open

A Metric Inequality for the

convex set which does not contétf)x; —x;, the geometric version of the Hahn- Thompson and Hilbert
Banach Theorem implies that there exists a linear functigpall/” — R and Geometries
a real number;; such thatf;;(8;;z; — z;) < ri; < fi;(z) forall z € int Cy. Roge AN lasbatrand
Becausé is in the closure ofint Cy, and f;;(0) = 0, we haver;; < 0. On the Cormac Walsh
other hand, iff;;(z) < 0 for somez € int Cyy, then considering;;(tz) we see
that f;; wo_ulql not be bounded below amt Cyy . It follows thatr;; = 0. Since Title Page
Bijxj — Z; |S'|n the closure ofint Cw, we must hancZ'j (ﬁijxj — $Z) =0. FeS—
Now, define
(e X >
F:W =R 2 (£35(2))iger iz,
< 4
so thatf;;(z);4,7 € 1,7 # j are the components @ (z). Clearly, F' is linear
and mapsint Cyy, into int RV Also, foralli, j € I, i # j, Go Back
Close
M(F(:L’Z-)/F(%);Ri(n_l)) =inf{\ > 0: flu(A\z; — ;) > 0forall k,l € I, k # [}.
Quit

For A\ > §,;;, we havelz; — z; € clCy and sofy(Az; — x;) > 0 for all
k,l € I,k # [. Onthe other hand, fox < 3;;, we havef;;(A\z; —z;) < 0 since
fi;(z;) > 0. We conclude thadd (F(x;)/F(z;): R7" ) = 3. O
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Lemma 2.7. Theorenil.1holds in the special case whéh= RY with N > 3.

Proof. Each part ofRY consists of elements @&’ all having the same com-
ponents equal to zero. Thus each part can be naturally identifiedimtiR’; ,
wheren is the number of strictly positive components of its elements. We may
therefore assume initially thdt:, y, u} C intRY.

DefineL : RY — RY by L(z) := (u121,...,unzy). Its inverse is given by
L7(2) = (u]'2,...,uy'2zn). Both L andL~! are linear maps which leave
RY invariant. It follows thatL and L' are isometries oR% with respect to
both the Thompson and Hilbert metrics. Therefore for € int RY,

LY o(s;u,2)) = ¢(s; L (), L71(2)).

Thus, we may as well assume that 1.

We now wish to apply Propositiok.1 with f := g andG := Br. (1) =
{z € RY : dy(z,1) < R+ €}. It was shown in }7] that G is a convex
cone, in other words that it is closed under multiplication by positive scalars
and under addition of its elements. Sing@; w, z) is a positive combination
of w andz, it follows that¢(s; w, z) is in G if w andz are. If we now apply
Lemma2.3, Proposition2.1, and Corollary2.5, and lete approach zero, we
obtain the desired result. O

Lemma 2.8. Theoreml.1 holds in the special case when the linear span of
{z,y,u} is one- or two-dimensional.

Proof. Let W denote the linear span ¢fc, y, u}, in other words the smallest
linear subspace containing these points. By Lenangazx, y, andu are in the
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interior of C N W in W. Itis easy to see that/(z/w;C) = M(z/w; C N W)
forall w, z € int(C' N W). Therefore, we can work in the coden W.

It is not difficult to show [ 4] that if m := dim WV is either one or two, then
there is a linear isomorphisii from 17 to R™ taking int(C' N W) to int R’}
It follows that F' is an isometry of both the Thompson and Hilbert metrics and
F(¢(s;z,w)) = ¢(s; F(z), F(w)) for all z,w € int(C' N W). We may thus
assume that’ = R andu, z,y € int C.

As in the proof of Lemm&.7, we may assume that= 1.

To obtain the required result, we apply Lemgnhd Corollary2.5, and Propo-
sition2.1with f := g andG := int R, [

of Theoreml.1 Let W denote the linear span dfc,y,u}. Lemma2.8 han-
dles the case when these three points are not linearly independent; we will
therefore assume that they are. Thus the five paintg, u, ¢(s;u, ), and
¢(s; u,y) are distinct. We apply Lemma 6 and obtain a linear map : W —
R2° with the specified properties. From.(1), it is clear thatdy(z,w) =
dr'(F(z), F(w)) for eachz,w € {x,y,u,¢(s;u,x),d(s;u,y)}. Here we are
using dr’ to denote the Thompson metric @t°. Note that¢(s;u, ) is a
positive combination of: and x and that the coefficients af andz depend
only ons, M(u/xz;C), andM (z/u; C). The latter two quantities are equal to
M(F(u)/F(z);R3’) and M (F(z)/F (u); R?) respectively. We conclude that
F(o(s;u,x)) = ¢(s; F(u), F(x)). A similar argument gives'(¢(s; u,y)) =
o(s; F(u), F(y)). Inequality (L.3) follows by applying Lemma&.7to the points
F(x), F(y), andF'(u) in the coneR?. O
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We shall continue to use the same notation. Thus, for a gNvea N and
s € (0,1), we useg to denote the function in2(1) andU to denote the union
of setsU; ; with I, J € {1,...,N}, I # J. We also use the functiortgt) :=
(1 —3s)—t°+ standE;(z) := E; := x;(z% — x3) + xyxf — z12%, and write
hij(x) = (x;/g:(x))0g;/0x;(x). As was noted earlief(t) > 0if ¢ > 0 and
t # 1. Also, vy(t) := (1 —t*)/(1 —t), v(1) := s is strictly decreasing on
[0,00). We shall also use the simple but useful observation thag, it,, cs,
andc, are constants such thejt + ¢4 # 0 for a < t < b, then the function
t — (1t + c2)/(cst + ¢4) is either increasing oifu, b] (if ¢icy — cacs > 0)

or decreasing ofu, b] (if cicqs — cac3 < 0). Either way, the function attains is

maximum ovella, b] ata or b.

Recall that ifg is Fréchet differentiable at € int R} then||¢/(z)||y denotes
the norm ofy'(x) as a linear map frortR™, || - [|') to (RY, || - ||/1,,), although,
of course|| - || and|| - ||/{,, are semi-norms rather than norms.

Lemma 2.9. Consider the Hilbert metric ofnt Rﬁ with N > 2. Letz € Uy y.
If N = 2then the norm of’ atz is given byl|¢'(z)||z = s. If N > 3, then

IN — TN x it xS — ) rN_
||9/($)||H:u9 (_N> 1 +( N E 1

(2.12)

Proof. The norm ofy’(x) as a map fronfR™, || - ||I7) to (R™, || - ||7/,,) is given
by
lg'(2)||a = sup max Z(hz’j — huj)vy,
J

veBH
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where
H.— {v e RV . max; v; — min; v; < 1}.

To calculatd|¢'(z)|| » we will need to determine the sign bf; — h,,; for each
i,7,k € {1,..., N}. We introduce the notation

(2.13) Lix := sup Z T

veBH

Note thaty is homogeneous of degreein other wordgy(Az) = \g(x) for
all z € RY andX > 0. Therefore,

foreachi € {1,..., N}. Thus}_, h;; = s for eachi € {1,..., N}, a fact that
could also have been obtained by straightforward calculation. It follows that

(2.14) D (i = hug)vy =Y (hig = i) (v + ©)
J J
for any constant € R.

It is clear that an optimal choice ofin (2.13 would be to takey; := 1 for
each componentsuch that,;; — h;; > 0 andv; := 0 for each component such
thath,;; — hy; < 0. Alternatively, we may choose; := 0 whenh;; — hy; > 0
andv; := —1 whenh;; — hy; < 0. That the optimal value is the same in both
cases follows from4.14). Also, it is easy to see thdt;, = Ly;.

Fixi,k € {1,..., N} sothati < k. There are four cases to consider.
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e Case 1.1 <i < k < N. Recall thath,;(z) = sd;; andhy;(z) = sdn;. A
calculation using equation&.Q) — (2.5) gives

Ei(2)Ep(x)(hi(z) — hpa () = 2525 (21, — xﬁ@(x—N) >

T -
and
Xz
(2.15) Ei(x) Bx(w) (han () = han (@) = 2i3 ™ (an — 20 =) 2 0
N
We also have thal;(z) — hyi(r) = hyi(z) > 0 andhy(z) — hy(z) =
—hie(x) < 0. So an optimal choice af € B in equation .13 is given
by v; := —d;,. We conclude thaL;;, = hyy, in this case.

Case 2.1 =i < k < N. We will show thath(x) < hyi(x) = s.
Considerz; andzy as fixed andr,, as varying in the range; < z, <
xzn. From equationd.3), hy () = (c1zk + ¢2)/(cszr + cq), Whereey,
o, ¢3, andcy depend one; andxy, and bothes andcy are positive. A
simple calculation shows thatc, — cocs = —0(xy/z)xi 2%, which
is negative. Hencéy, is decreasing in;;, and takes its maximum value
whenz;, = x;. Here it achieves the value

1—
R N e

TN — T1 T IN — 21
Thus we conclude thdt;;(x) — hy (z) > 0. We also have that,(z) —
hkk(x) = —hkk(l’) <0 gndth(x) — hkN([E) = —hkN(J]) > 0. Thus the
optimal choice ofv € B is given byv; := —4,,. We conclude that in
this casel . (z) = hyr(x).
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e Case 3.1 <i< k= N. Hereh;; > hyy = 0, hyy > hy; = 0, and

hiyn < hyy = s. So the optimab € Bfis given byv; := d;1 + 6;,. We
conclude that;y = h;; + hi;.

e Case 4.i = 1 andk = N. Heres = hy; > hyy = 0and0 = hjy <
hyn = s. Thus the optimalb € B¥ is given byv; := §;;. We conclude
thatLlN = S.

If N =2then Case 4 is the only one possible, andg0z)||y = s. So, for
the rest of the proof, we will assume thét> 3.

We know thath;, (z) + hi(z) = s—h;n(x) > s so Case 3 dominates Case 4,
thatis to sayl;y(z) > Lin(x) fori > 1. Sinceh; (z) > 0fori € {1,..., N},
Case 3 also dominates Cases 1 and 2, meaningthét) > L;.(z) fork < N,

1 < k.

The final step is to maximizé;y (z) = hy(x) + hy(z) = s — hyn(z) Over
i€{2,...,N —1}. From Q.19, hy,,n(z) > hu,n(x) fOor m < n. Thus the
maximum occurs wheh= N — 1. Recall that we have ordered the components
of z in such away that y_ is the second largest componentofWe conclude
that

g’ (2)||a = Zflifl?zik Ly = hn_11+ hn_in—a

By substituting the expressions iA.8) and @.4), we obtain the required for-
mula. O

Corollary 2.10. LetR > 0 and N > 2. Let!/ be a linear functional oiR" such
thati(z) > 0 for all z € intRY and defineS := {z € RY : i(z) = 1}. If
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N = 2, theness sup||¢'(z)||g : x € S} = s. If N > 3, then

1 — e—Rs

ess sup||g'(z)||g - du(z,1) < R,z € S} = 1_c R

In both cases, the essential supremum is taken with respect td/thel-
dimensional Lebesgue measure$n

Proof. Note that the complement 6fn.S in S hasN —1-dimensional Lebesgue

measure zero. Using the reordering argument in the proof of Cordlaryve A Metric Inequality for the

deduce the result in the case whEn= 2. IO G FL
The case wheV > 3 reduces to maximizing the right hand side &f1(?)

subject to the constrainty < ry_; < ry andx;/zy > exp(—R). We can FER e L e

write the expression in2(12) in the forms + (cizn_1 + ¢2)/(c3Tn_1 + c4),
wherecy, ¢s, c3, andey depend only orr; andzy ande; > 0, ¢ < 0, ¢3 > 0,

¢, > 0. It follows that, if we viewz, andzy as fixed andry_; as variable, the Tide Page
expression is maximized when,_; = x. The value obtained there will be Contents
_— = xr1/T .
= (o /ay)  (1/ow) < >
If we recall thaty is decreasing of, 1) andz,/xy > exp(—R), we see that Go Back
_ Close
1 — e Bis
lg'(@)[|u < T o & Quit

If ,/xy5 = exp(—R), then, by choosing € U, y with z_, close tory, we Page 26 of 33
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Lemma 2.11.Theoremil.2holds in the special case whéh= RY with N > 3.

Proof. As in the proof of Lemm&.7, we may assume thaty € int RY and
u = 1. Definel : RN — Rbyl(z) := SV, 2;/N and letS := {z € RY -
() = 1}. Thenl is a linear functional and(z) > 0 for all z € intRY.
It is easy to check that(s; Az, pw) = A =5u*¢(s; z,w) for all A\, u > 0 and
z,w € intRY. Thus

Uu T Uu
du (925 (55 ) m) ¢ <5; 1008 %)) = du(o(s;u, ), ¢(s;u,y)). A%e()t;%lsr;iqgsgt{“fgetrftle
Geometries
We also have thady (z/l(z),y/l(y)) = du(z,y). Therefore we may assume Roger D, Nussbaum and
thatx,y € S. Lete > 0 and defineG := {Z €S dH(Z,]l) < R+ 6}. It Cormac Walsh
was shown in 77 that G is convex. Also, Lemma&.3 states thay is locally
Lipschitzian. We may therefore apply Propositiar? with f := ¢. Since

) Title Page
g is homogeneous of degree we have thaty/(x)(x) = sg(x) for all x €
G. This, combined with the fact thag(z)[% | = 0, implies that||g'(z)||; = GO
l|¢'(x)||g. Using Corollary2.10, and lettinge approach zero, we deduce the <« 9
required result. O
< >
Lemma 2.12. Theoreml.2 holds in the special case when the linear span of
. . . Go Back
{u,z,y} is 1- or 2-dimensional.
- - - - - - Close
Proof. If the linear span ofu, =, y} is one-dimensional, then all Hilbert metric _
distances are zero, so assume that it is two-dimensional. The same argument as QU
was used in Lemma.8 shows that it suffices to prove the result for= R, Page 27 of 33

u = 1, andz,y € intR?. As shown in the proof of Lemma.11, we may
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assume that(z) = I(y) = 1 wherel((z1, 22)) := (21 + 22)/2. We now apply
Proposition2.2with f := g andG := S := {z € intR% : [(z) = 1}. Again,
Il (x)||z = ||g'(x)||x for all z € G. The result follows from the first part of
Corollary2.10 O

of Theorenil.2. The proof uses Lemmaslland2.12and is exactly analogous
to the proof of Theorem.L O

of Corollary 1.3. We first prove the result for the case of Thompson’s met-
ric. We will use the alternative characterization of semihyperbolicity given in
Lemma 1.2 of []. Supposer, y,x’,y’ € C are all in the same part and are such
that neitherdr(x, 2') nordr(y,y') is greater thai. Lett € [0,00) and write
2= (zy) () @ndw := ¢(dr(z, 2)/dr(z,y); z,y'). Observe thatly(y,y') <1
implies|dr(z,y)—dr(x,y')| < 1. Sincedr(z,w) = dr(z, ¢ )dr(z, 2)/dr(z,y),

we have

dr(z, w) — dr(x,2)| < dp(x,2) /dr(z,y) < 1

Similar reasoning allows us to conclude that
dr(z, w') — dr (2, 2)] < 1,

wherez' := (v, (t) andw’ := ¢(dp(2', 2") /dr (2’ y'); 2, y'). Fromdr(z, z) =
min(t, dr(z,y)) anddr(2’, 2’) = min(¢, dr(2',y')), we have that

|dr(x, 2) — dr(2', 2| < |dr(z,y) — dr(2',y')] < 2.

So
dr(w,w'") = |dp(z,w) — dr(z,w")| < 4.
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By Theoreml.1, dr(z,w) < 2dr(y,vy') < 2 anddr(2',w') < 2dp(z,2") < 2.
The triangle inequality givesr(z, 2’') < dr(z, w)+dr(w, w')+dp(w', 2') < 8.
This is the uniform bound required by the characterization of semihyperbolicity

we are using.
The proof that”' is semihyperbolic when endowed with Hilbert's metric is

similar. O
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