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Abstract

There are two natural metrics defined on an arbitrary convex cone: Thompson’s
part metric and Hilbert’s projective metric. For both, we establish an inequality
giving information about how far the metric is from being non-positively curved.
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1. Introduction
Let C be a cone in a vector spaceV . ThenC induces a partial ordering onV
given byx ≤ y if and only if y − x ∈ C. For eachx ∈ C\{0}, y ∈ V , define
M(y/x) := inf{λ ∈ R : y ≤ λx}. Thompson’s part metricon C is defined to
be

dT (x, y) := log max (M (x/y) , M (y/x))

andHilbert’s projective metriconC is defined to be

dH(x, y) := log (M (x/y) M (y/x)) .

Two points inC are said to be in the same part if the distance between them is
finite in the Thompson metric. IfC is almost Archimedean, then, with respect
to this metric, each part ofC is a complete metric space. Hilbert’s projective
metric, however, is only a pseudo-metric: it is possible to find two distinct points
which are zero distance apart. Indeed it is not difficult to see thatdH(x, y) = 0
if and only if x = λy for someλ > 0. ThusdH is a metric on the space of rays
of the cone. For further details, see Chapter 1 of the monograph [23].

SupposeC is finite dimensional and letS be a cross section ofC, that is
S := {x ∈ C : l(x) = 1}, wherel : V → R is some positive linear functional
with respect to the ordering onV . Supposex, y ∈ S are distinct. Leta and
b be the points in the boundary ofS such thata, x, y, andb are collinear and
are arranged in this order along the line in which they lie. It can be shown that
the Hilbert distance betweenx andy is then given by the logarithm of the cross
ratio of these four points:

dH(x, y) = log
|bx| |ay|
|by| |ax|

.
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Indeed, this was the original definition of Hilbert. IfS is the open unit disk, the
Hilbert metric is exactly the Klein model of the hyperbolic plane.

An interesting feature of the two metrics above is that they show many signs
of being non-positively curved. For example, when endowed with the Hilbert
metric, the Lorentz cone{(t, x1, . . . , xn) ∈ Rn+1 : t2 > x2

1 + · · · + x2
n} is

isometric ton-dimensional hyperbolic space. At the other extreme, the positive
coneRn

+ := {(x1, . . . , xn) : xi ≥ 0 for 1 ≤ i ≤ n} with either the Thompson
or the Hilbert metric is isometric to a normed space [11], which one may think
of as being flat. In between, for Hilbert geometries having a strictly-convexC2

boundary with non-vanishing Hessian, the methods of Finsler geometry [28]
apply. It is known that such geometries have constant flag curvature−1. More
general Hilbert geometries were investigated in [17] where a definition was
given of a point of positive curvature. It was shown that no Hilbert geometries
have such points.

However, there are some notions of non-positive curvature which do not ap-
ply. For example, a Hilbert geometry will only be a CAT(0) space (see [6])
if the cone is Lorentzian. Another notion related to negative curvature is that
of Gromov hyperbolicity [15]. In [2], a condition is given characterising those
Hilbert geometries that are Gromov hyperbolic. This notion has also been in-
vestigated in the wider context of uniform Finsler Hadamard manifolds, which
includes certain Hilbert geometries [12].

Busemann has defined non-positive curvature forchord spaces[7]. These
are metric spaces in which there is a distinguished set of geodesics, satisfying
certain axioms. In such a space, denote bymxy the midpoint along the distin-
guished geodesic connecting the pair of pointsx andy. Then the chord space is
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non-positively curved if, for all pointsu, x, andy in the space,

(1.1) d(mux, muy) ≤
1

2
d(x, y),

whered is the metric.
In the case of the Hilbert and Thompson geometries on a part of a closed

coneC, there will not necessarily be a unique minimal geodesic connecting
each pair of points. However, it is known that, settingβ := M(y/x; C) and
α := 1/M(x/y; C), the curveφ : [0, 1] → C :

(1.2) φ(s; x, y) :=


(

βs − αs

β − α

)
y +

(
βαs − αβs

β − α

)
x, if β 6= α,

αsx, if β = α

is always a minimal geodesic fromx to y with respect to both the Thompson
and Hilbert metrics. We view these as distinguished geodesics. If the coneC
is finite dimensional, then each part ofC will be a chord space under both the
Thompson and Hilbert metrics. Notice that the geodesics above are projective
straight lines. If the cone is strictly convex, these are the only geodesics that
are minimal with respect to the Hilbert metric. For Thompson’s metric, if two
points are in the same part ofC and are linearly independent, then there are
infinitely many minimal geodesics between them.

In this paper we investigate whether inequalities similar to (1.1) hold for the
Hilbert and Thompson geometries with the geodesics given in (1.2). We prove
the following two theorems.
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Theorem 1.1. Let C be an almost Archimedean cone. Supposeu, x, y ∈ C
are in the same part. Also suppose that0 < s < 1 and R > 0, and that
dH(u, x) ≤ R and dH(u, y) ≤ R. If the linear span of{u, x, y} is 1- or 2-
dimensional, thendT (φ(s; u, x), φ(s; u, y)) ≤ sdT (x, y). In general

(1.3) dT

(
φ(s; u, x), φ(s; u, y)

)
≤

[
2(1− e−Rs)

1− e−R
− s

]
dT (x, y).

Note that the bracketed value on the right hand side of this inequality is
strictly increasing inR. As R → 0, this value goes tos, which reflects the
fact that in small neighborhoods the Thompson metric looks like a norm. As
R →∞, the bracketed value goes to2− s.

Theorem 1.2. Let C be an almost Archimedean cone. Supposeu, x, y ∈ C
are in the same part. Also suppose that0 < s < 1 and R > 0 and that
dH(u, x) ≤ R and dH(u, y) ≤ R. If the linear span of{u, x, y} is 1- or 2-
dimensional, thendH(φ(s; u, x), φ(s; u, y)) ≤ sdH(x, y). In general

(1.4) dH

(
φ(s; u, x), φ(s; u, y)

)
≤

[
1− e−Rs

1− e−R

]
dH(x, y).

Again, the bracketed value on the right hand side increases strictly with in-
creasingR. This time, it ranges betweens asR → 0 and1 asR →∞.

Our method of proof will be to first establish the results whenC is the pos-
itive coneRN

+ , with N ≥ 3. It will be obvious from the proofs that the bounds
given are the best possible in this case. A crucial lemma will state that any fi-
nite set ofn elements of a Thomson or Hilbert geometry can be isometrically
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embedded inRn(n−1)
+ with, respectively, its Thompson or Hilbert metric. This

lemma will allow us to extend the same bounds to more general cones, although
in the general case the bounds may no longer be tight.

A special case of Theorem1.2was proved in [29] using a simple geometrical
argument. It was shown that if two particles start at the same point and travel
along distinct straight-line geodesics at unit speed in the Hilbert metric, then
the Hilbert distance between them is strictly increasing. This is equivalent to
the special case of Theorem1.2 whendH(u, x) = dH(u, y) andR approaches
infinity.

A consequence of Theorems1.1 and 1.2 is that both the Thompson and
Hilbert geometries are semihyperbolic in the sense of Alonso and Bridson [1].
Recall that a metric space is semihyperbolic if it admits a bounded quasi-geodesic
bicombing. A bicombing is a choice of path between each pair of points. We
may use the one given by

ζ(x,y)(t) :=

φ

(
t

d(x, y)
; x, y

)
, if t ∈ [0, d(x, y)]

y, otherwise

for each pair of pointsx andy in the same part ofC. Hered is either the Thomp-
son or Hilbert metric. This bicombing is geodesic and hence quasi-geodesic. To
say it is bounded means that there exist constantsM andε such that

d(ζ(x,y)(t), ζ(w,z)(t)) ≤ M max(d(x, w), d(y, z)) + ε

for eachx, y, w, z ∈ C andt ∈ [0,∞).
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Corollary 1.3. Each part ofC is semihyperbolic when endowed with either
Thompson’s part metric or Hilbert’s projective metric.

It should be pointed out that for some cones there are other good choices of
distinguished geodesics. For example, for the cone of positive definite symmet-
ric matrices Sym(n), a natural choice would be

φ(s; X, Y ) := X1/2(X−1/2Y X−1/2)sX1/2

for X, Y ∈ Sym(n) and s ∈ [0, 1]. It can be shown that, with this choice,
Sym(n) is non-positively curved in the sense of Busemann under both the
Thompson and Hilbert metrics. This result has been generalized to both sym-
metric cones [16] and to the cone of positive elements of aC∗-algebra [10].

Although Hilbert’s projective metric arose in geometry, it has also been of
great interest to analysts. This is because many naturally occurring maps in
analysis, both linear and non-linear, are either non-expansive or contractive with
respect to it. Perhaps the first example of this is due to G. Birkhoff [3, 4], who
noted that matrices with strictly positive entries (or indeed integral operators
with strictly positive kernels) are strict contractions with respect to Hilbert’s
metric. References to the literature connecting this metric to positive linear
operators can be found in [14, 13]. It has also been used to study the spec-
tral radii of elements of Coxeter groups [20]. Both metrics have been ap-
plied to questions concerning the convergence of iterates of non-linear oper-
ators [8, 16, 23, 24, 25]. The two metrics have been used to solve problems in-
volving non-linear integral equations [27, 30], linear operator equations [8, 9],
and ordinary differential equations [5, 25, 31, 32]. Thompson’s metric has also
been usefully applied in [24, 26] to obtain “DAD theorems”, which are scal-
ing results concerning kernels of integral operators. Another application of this
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metric is in Optimal Filtering [19], while Hilbert’s metric has been used in Er-
godic Theory [18] and Fractal Diffusions [21].
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2. Proofs
A cone is a subset of a (real) vector space that is convex, closed under mul-
tiplication by positive scalars, and does not contain any vector subspaces of
dimension one. We say that a cone is almost Archimedean if the closure of its
restriction to any two-dimensional subspace is also a cone.

The proofs of Theorems1.1 and 1.2 will involve the use of some infinites-
imal arguments. We recall that both the Thompson and Hilbert geometries are
Finsler spaces [22]. If C is a closed cone inRN with non-empty interior, then
int C can be considered to be anN -dimensional manifold and its tangent space
at each point can be identified withRN . If a norm

|v|Tx := inf{α > 0 : −αx ≤ v ≤ αx}

is defined on the tangent space at each pointx ∈ int C, then the length of any
piecewiseC1 curveα : [a, b] → int C can be defined to be

LT (α) :=

∫ b

a

|α′(t)|Tα(t) dt.

The Thompson distance between any two points is recovered by minimizing
over all paths connecting the points:

dT (x, y) = inf{LT (α) : α ∈ PC1[x, y]},

wherePC1[x, y] denotes the set of all piecewiseC1 pathsα : [0, 1] → int C
with α(0) = x andα(1) = y. A similar procedure yields the Hilbert metric
when the norm above is replaced by the semi-norm

|v|Hx := M(v/x)−m(v/x).
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HereM(v/x) is as before andm(v/x) := sup{λ ∈ R : v ≥ λx}. The Hilbert
geometry will be Riemannian only in the case of the Lorentz cone. The Thomp-
son geometry will be Riemannian only in the trivial case of the one-dimensional
coneR+.

Our strategy will be to first prove the theorems for the case of the positive
coneRN

+ , and then extend them to the general case. The proof in the case ofRN
+

will involve investigation of the mapg : int RN
+ → int RN

+ :

g(x) := φ(s;1, x)(2.1)

=


(

bs − as

b− a

)
x +

(
bas − abs

b− a

)
1, if b 6= a,

as
1, if b = a,

whereb := b(x) := maxi xi anda := a(x) := mini xi. Heres ∈ (0, 1) is fixed
and we are using the notation1 := (1, . . . , 1). The derivative ofg atx ∈ int RN

+

is a linear map fromRN → RN . Taking | · |Tx as the norm on the domain and
| · |Tg(x) as the norm on the range, the norm ofg′(x) is

||g′(x)||T := sup{|g′(x)(v)|Tg(x) : |v|Tx ≤ 1}.

If, instead, we take the appropriate infinitesimal Hilbert semi-norms on the do-
main and range, then the norm ofg′(x) is given by

||g′(x)||H := sup{|g′(x)(v)|Hg(x) : |v|Hx ≤ 1}.

For each pair of distinct integersI andJ contained in{1, . . . , N}, let

UI,J :=
{

x ∈ int RN
+ : 0 < xI < xi < xJ for all i ∈ {1, . . . , N}\{I, J}

}
.

http://jipam.vu.edu.au/
mailto:
mailto:nussbaum@math.rutgers.edu
mailto:
mailto:
mailto:cormac.walsh@inria.fr
http://jipam.vu.edu.au/


A Metric Inequality for the
Thompson and Hilbert

Geometries

Roger D. Nussbaum and
Cormac Walsh

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 33

J. Ineq. Pure and Appl. Math. 5(3) Art. 54, 2004

http://jipam.vu.edu.au

On each setUI,J , the mapg is C1 and is given by the formula

g(x) =

(
xs

J − xs
I

xJ − xI

)
x +

(
xJxs

I − xIx
s
J

xJ − xI

)
1.

Let U denote the union of the setsUI,J ; I, J ∈ {1, . . . , N}, I 6= J . If x ∈
RN

+\U , then there must exist distinct integersm, n ∈ {1, . . . , N} with either
xn = xm = maxi xi or xn = xm = mini xi. The setx ∈ RN

+ with xn = xm has
(N -dimensional) Lebesgue measure zero, so the complement ofU in RN

+ has
Lebesgue measure zero.

We recall the following results from [22]. The first is a combination of Corol-
laries 1.3 and 1.5 from that paper.

Proposition 2.1. Let C be a closed cone with non-empty interior in a finite
dimensional normed spaceV . SupposeG is an open subset ofint C such that
φ(s; x, y) ∈ G for all x, y ∈ G ands ∈ [0, 1]. Suppose also thatf : G → int C
is a locally Lipschitzian map with respect to the norm onV . Then

inf{k ≥ 0 : dT (f(x), f(y)) ≤ kdT (x, y) for all x, y ∈ G}
= ess supx∈G ||f ′(x)||T .

It is useful in this context to recall that every locally Lipschitzian map is
Fréchet differentiable Lebesgue almost everywhere. The next proposition is a
special case of Theorem 2.5 in [22].

Proposition 2.2. Let C be a closed cone with non-empty interior in a normed
spaceV of finite dimensionN . Let l be a linear functional onV such that
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l(x) > 0 for all x ∈ int C, and defineS := {x ∈ C : l(x) = 1}. Let G be
a relatively-open convex subset ofS. Suppose thatf : G → int C is a locally
Lipschitzian map with respect to the norm onV . Then

inf{k ≥ 0 : dH(f(x), f(y)) ≤ kdH(x, y) for all x, y ∈ G}
= ess supx∈G ||f ′(x)||H̃ ,

where||f ′(x)||H̃ := sup{|f ′(x)(v)|Hf(x) : |v|Hx ≤ 1, l(v) = 0}. Here the essen-
tial supremum is taken with respect to theN−1-dimensional Lebesgue measure
onS.

Since we wish to apply Propositions2.1and2.2to the mapg, we must prove
that it is locally Lipschitzian.

Lemma 2.3. The mapg : int(RN
+ ) → int(RN

+ ) defined by (2.1) is locally
Lipschitzian.

Proof. We use the supremum norm||x||∞ := maxi |xi| onRN . Clearly,|b(x)−
b(y)| ≤ ||x − y||∞ and |a(x) − a(y)| ≤ ||x − y||∞ for all x, y ∈ int(RN

+ ).
Therefore botha andb are Lipschitzian with Lipschitz constant 1.

Let γ : [0,∞) → [0,∞) be defined by

γ(t) :=


ts − 1

t− 1
, for t 6= 1,

s, for t = 1.

Theng may be expressed as

g(x) = as−1γ (b/a) x + as
(
1− γ (b/a)

)
1.
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The Binomial Theorem gives that

γ(t) =
∞∑

k=1

(
s

k

)
(t− 1)k for |t− 1| < 1

and soγ is C∞ on a neighborhood of 1. Hence it isC∞ on [0,∞), and thus
locally Lipschitzian. It follows thatg is also locally Lipschitzian.

2.1. Thompson’s Metric

We have the following bound on the norm ofg′(x) with respect to the Thompson
metric.

Lemma 2.4.Consider the Thompson metric onint RN
+ . Letx ∈ U1,N . If N = 1

or N = 2 then the norm ofg′ at x is given by||g′(x)||T = s. If N ≥ 3, then

(2.2) ||g′(x)||T =
xN − xN−1

xN − x1

θ

(
xN

x1

)
xs+1

1

EN−1

+
(xs

N − xs
1)xN−1

EN−1

+
xN−1 − x1

xN − x1

θ

(
x1

xN

)
xs+1

N

EN−1

whereθ(t) := (1−s)−ts+st andEi(x) := Ei := xi(x
s
N−xs

1)+xNxs
1−x1x

s
N .

Proof. If N = 1 andx > 0, theng(x) = xs. We leave the proof in this case to
the reader and assume thatN ≥ 2.

Forx ∈ U1,N ,

g(x) =

(
xs

N − xs
1

xN − x1

)
x +

(
xNxs

1 − x1x
s
N

xN − x1

)
1.
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Let

hij(x) :=
xj

gi(x)

∂gi

∂xj

(x).

Straightforward calculation gives, for eachj ∈ {1, . . . , N},

h1j(x) = sδ1j

and hNj(x) = sδNj.

Hereδij is the Kronecker delta function which takes the value1 if i = j and the
value0 if i 6= j. Clearly,hij(x) = 0 for 1 < i < N andj 6∈ {1, i, N}. For
1 < i < N ,

hi1(x) = xN−xi

xN−x1
θ
(

xN

x1

)
xs+1
1

Ei
≥ 0,(2.3)

hii(x) =
xs

N−xs
1

Ei
xi ≥ 0,(2.4)

hiN(x) = − xi−x1

xN−x1
θ
(

x1

xN

)
xs+1

N

Ei
≤ 0.(2.5)

Inequalities (2.3) – (2.5) rely on the fact thatθ(t) ≥ 0 for t ≥ 0. This may be
established by observing thatθ(1) = θ′(1) = 0 andθ′′(t) > 0 for t ≥ 0.

Let
B̃T :=

{
v ∈ RN : maxj |vj| ≤ 1

}
.

We wish to calculate

(2.6) ||g′(x)||T = sup

{∣∣∣∣∣∑
j

hijvj

∣∣∣∣∣ : 1 ≤ i ≤ N , v ∈ B̃T

}
.
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For i = 1 or i = N , we have|
∑

j hijvj| ≤ s for any choice ofv ∈ B̃T . If
N = 2, then it follows that||g′(x)||T = s for all x ∈ U1,N .

For the rest of the proof we shall therefore assume thatN ≥ 3. For1 < i <
N , it is clear from inequalities (2.3) – (2.5) that |

∑
j hijvj| is maximized when

v1 = vi = 1 andvN = −1. In this case∣∣∣∣∣∑
j

hijvj

∣∣∣∣∣ =
1

Ei

[
xN − xi

xN − x1

θ

(
xN

x1

)
xs+1

1(2.7)

+(xs
N − xs

1)xi +
xi − x1

xN − x1

θ

(
x1

xN

)
xs+1

N

]
=

c1xi + c2

c3xi + c4

,(2.8)

wherec1, c2, c3, andc4 depend onx1 andxN but not onxi. Observe thatc3xi +
c4 6= 0 for x1 ≤ xi ≤ xN . Given this fact, the general form of expression (2.8)
leads us to conclude that it is either non-increasing or non-decreasing when
regarded as a function ofxi. When we substitutexi = x1, we get|

∑
j hijvj| =

s. When we substitutexi = xN , we get

(2.9)

∣∣∣∣∣∑
j

hijvj

∣∣∣∣∣ =
2
(
1− (x1/xN)s

)
1− (x1/xN)

− s.

Now, writing Γ(t) := 2(1− ts)/(1− t)− s, we haveΓ′(t) = −2tsθ(t−1)/(1−
t)2 < 0, in other wordsΓ is decreasing on(0, 1). In particular,Γ(x1/xN) ≥
limt→1 Γ(t) = s. Therefore expression (2.7) is non-decreasing inxi. So, the
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supremum in (2.6) is attained whenv is as above andi = N − 1. Recall that
xN−1 is the second largest component ofx. The conclusion follows.

Corollary 2.5. Let R > 0. If N = 1 or N = 2, theness sup{||g′(x)||T : x ∈
int RN

+} = s. If N ≥ 3, then

ess sup{||g′(x)||T : dH(x,1) ≤ R} =
2(1− e−Rs)

1− e−R
− s.

Proof. Note that ifσ : RN
+ → RN

+ is some permutation of the components, then
g ◦ σ(x) = σ ◦ g(x) for all x ∈ RN

+ . Furthermore,σ will be an isometry of both
the Thompson and Hilbert metrics. It follows that, given anyx ∈ UI,J with
I, J ∈ {1, . . . , N}, I 6= J , we may reorder the components ofx to find a point
y in U1,N such that||g′(y)||T = ||g′(x)||T . Recall, also, that the complement
of U in int RN

+ hasN -dimensional Lebesgue measure zero. From these two
facts, it follows that the essential supremum of||g′(x)||T overBR(1) := {x ∈
int RN

+ : dH(x,1) ≤ R} is the same as its supremum overBR(1) ∩ U1,N .
In the case whenN = 1 or N = 2, the conclusion follows immediately.
For N = 3, we must maximize expression (2.2) under the constraintsx1 <

xN−1 < xN andx1/xN ≥ exp(−R). First, we maximize overxN−1, keeping
x1 andxN fixed. In the proof of the previous lemma, we showed that expres-
sion (2.2) is non-decreasing inxN−1, and so it will be maximized whenxN−1

approachesxN . Here it will attain the value

(2.10)
2
(
1− (x1/xN)s

)
1− (x1/xN)

− s = Γ(x1/xN).
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We also showed thatΓ is decreasing on(0, 1). Therefore (2.10) will be maxi-
mized whenx1/xN = exp(−R), where it takes the value

2(1− e−Rs)

1− e−R
− s.

Lemma 2.6. Let C be an almost Archimedean cone and let{xi : i ∈ I} be
a finite collection of elements ofC of cardinalityn, all lying in the same part.
Denote byW the linear span of{xi : i ∈ I} and write CW := C ∩ W .
Denote byint CW the interior ofCW as a subset ofW , using onW the unique
Hausdorff linear topology. Then each of the pointsxi; i ∈ I is contained in
int CW . Furthermore, there exists a linear mapF : W → Rn(n−1) such that
F ( int CW ) ⊂ int Rn(n−1)

+ and

(2.11) M(xi/xj; C) = M(F (xi)/F (xj); Rn(n−1)
+ )

for eachi, j ∈ I.

Proof. Since the points{xi : i ∈ I} all lie in the same part ofC, they also all
lie in the same part ofCW . Therefore there exist positive constantsaij such that
xj −aijxi ∈ CW for all i, j ∈ I. If we definea := min{aij : i, j ∈ I} it follows
thatxj + δxi ∈ CW whenever|δ| ≤ a andi, j ∈ I. Now selecti1, . . . , im ∈ I
such that{xik : 1 ≤ k ≤ m} form a linear basis forW . For eachy ∈ W , we
define||y|| := max{|bk| : 1 ≤ k ≤ m}, wherey =

∑m
k=1 bkxik is the unique

representation ofy in terms of this basis. The topology onW generated by this
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norm is the same as the one we have been using. If||y|| ≤ a/m andj ∈ I, then
xj + mbkxik ∈ CW for 1 ≤ k ≤ m. It follows that

xj + y =
1

m

m∑
k=1

(xj + mbkxik) ∈ CW

whenever||y|| ≤ a/m. This proves thatxj ∈ int CW for all j ∈ I.
It is easy to see thatβij := M(xi/xj; C) = M(xi/xj; CW ) for all i, j ∈ I,

i 6= j. Observe thatβijxj − xi ∈ ∂CW . Since int CW is a non-empty open
convex set which does not containβijxj−xi, the geometric version of the Hahn-
Banach Theorem implies that there exists a linear functionalfij : W → R and
a real numberrij such thatfij(βijxj − xi) ≤ rij < fij(z) for all z ∈ int CW .
Because0 is in the closure ofint CW andfij(0) = 0, we haverij ≤ 0. On the
other hand, iffij(z) < 0 for somez ∈ int CW , then consideringfij(tz) we see
thatfij would not be bounded below onint CW . It follows thatrij = 0. Since
βijxj − xi is in the closure ofint CW , we must havefij(βijxj − xi) = 0.

Now, define

F : W → Rn(n−1) : z 7→ (fij(z))i,j∈I, i6=j,

so thatfij(z); i, j ∈ I, i 6= j are the components ofF (z). Clearly,F is linear
and mapsint CW into int Rn(n−1)

+ . Also, for all i, j ∈ I, i 6= j,

M(F (xi)/F (xj); Rn(n−1)
+ ) = inf{λ > 0 : fkl(λxj − xi) ≥ 0 for all k, l ∈ I, k 6= l}.

For λ ≥ βij, we haveλxj − xi ∈ clCW and sofkl(λxj − xi) ≥ 0 for all
k, l ∈ I, k 6= l. On the other hand, forλ < βij, we havefij(λxj −xi) < 0 since
fij(xj) > 0. We conclude thatM(F (xi)/F (xj); Rn(n−1)

+ ) = βij.

http://jipam.vu.edu.au/
mailto:
mailto:nussbaum@math.rutgers.edu
mailto:
mailto:
mailto:cormac.walsh@inria.fr
http://jipam.vu.edu.au/


A Metric Inequality for the
Thompson and Hilbert

Geometries

Roger D. Nussbaum and
Cormac Walsh

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 20 of 33

J. Ineq. Pure and Appl. Math. 5(3) Art. 54, 2004

http://jipam.vu.edu.au

Lemma 2.7. Theorem1.1holds in the special case whenC = RN
+ with N ≥ 3.

Proof. Each part ofRN
+ consists of elements ofRN

+ all having the same com-
ponents equal to zero. Thus each part can be naturally identified withint Rn

+,
wheren is the number of strictly positive components of its elements. We may
therefore assume initially that{x, y, u} ⊂ int RN

+ .
DefineL : RN → RN by L(z) := (u1z1, . . . , uNzN). Its inverse is given by

L−1(z) := (u−1
1 z1, . . . , u

−1
N zN). Both L andL−1 are linear maps which leave

RN
+ invariant. It follows thatL andL−1 are isometries ofRN

+ with respect to
both the Thompson and Hilbert metrics. Therefore, foru, z ∈ int RN

+ ,

L−1(φ(s; u, z)) = φ(s; L−1(u), L−1(z)).

Thus, we may as well assume thatu = 1.
We now wish to apply Proposition2.1 with f := g andG := BR+ε(1) =

{z ∈ RN
+ : dH(z,1) < R + ε}. It was shown in [23] that G is a convex

cone, in other words that it is closed under multiplication by positive scalars
and under addition of its elements. Sinceφ(s; w, z) is a positive combination
of w andz, it follows thatφ(s; w, z) is in G if w andz are. If we now apply
Lemma2.3, Proposition2.1, and Corollary2.5, and letε approach zero, we
obtain the desired result.

Lemma 2.8. Theorem1.1 holds in the special case when the linear span of
{x, y, u} is one- or two-dimensional.

Proof. Let W denote the linear span of{x, y, u}, in other words the smallest
linear subspace containing these points. By Lemma2.6, x, y, andu are in the
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interior of C ∩W in W . It is easy to see thatM(z/w; C) = M(z/w; C ∩W )
for all w, z ∈ int(C ∩W ). Therefore, we can work in the coneC ∩W .

It is not difficult to show [14] that if m := dim W is either one or two, then
there is a linear isomorphismF from W to Rm taking int(C ∩W ) to int Rm

+ .
It follows thatF is an isometry of both the Thompson and Hilbert metrics and
F (φ(s; z, w)) = φ(s; F (z), F (w)) for all z, w ∈ int(C ∩ W ). We may thus
assume thatC = Rm

+ andu, x, y ∈ int C.
As in the proof of Lemma2.7, we may assume thatu = 1.
To obtain the required result, we apply Lemma2.3, Corollary2.5, and Propo-

sition2.1with f := g andG := int Rm
+ .

of Theorem1.1. Let W denote the linear span of{x, y, u}. Lemma2.8 han-
dles the case when these three points are not linearly independent; we will
therefore assume that they are. Thus the five pointsx, y, u, φ(s; u, x), and
φ(s; u, y) are distinct. We apply Lemma2.6and obtain a linear mapF : W →
R20

+ with the specified properties. From (2.11), it is clear thatdT (z, w) =
dT

′(F (z), F (w)) for eachz, w ∈ {x, y, u, φ(s; u, x), φ(s; u, y)}. Here we are
using dT

′ to denote the Thompson metric onR20
+ . Note thatφ(s; u, x) is a

positive combination ofu andx and that the coefficients ofu andx depend
only ons, M(u/x; C), andM(x/u; C). The latter two quantities are equal to
M(F (u)/F (x); R20

+ ) andM(F (x)/F (u); R20
+ ) respectively. We conclude that

F (φ(s; u, x)) = φ(s; F (u), F (x)). A similar argument givesF (φ(s; u, y)) =
φ(s; F (u), F (y)). Inequality (1.3) follows by applying Lemma2.7to the points
F (x), F (y), andF (u) in the coneR20

+ .
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2.2. Hilbert’s Metric

We shall continue to use the same notation. Thus, for a givenN ∈ N and
s ∈ (0, 1), we useg to denote the function in (2.1) andU to denote the union
of setsUI,J with I, J ∈ {1, . . . , N}, I 6= J . We also use the functionsθ(t) :=
(1− s)− ts + st andEi(x) := Ei := xi(x

s
N − xs

1) + xNxs
1 − x1x

s
N , and write

hij(x) := (xj/gi(x))∂gi/∂xj(x). As was noted earlier,θ(t) > 0 if t > 0 and
t 6= 1. Also, γ(t) := (1 − ts)/(1 − t), γ(1) := s is strictly decreasing on
[0,∞). We shall also use the simple but useful observation that ifc1, c2, c3,
andc4 are constants such thatc3t + c4 6= 0 for a ≤ t ≤ b, then the function
t 7→ (c1t + c2)/(c3t + c4) is either increasing on[a, b] (if c1c4 − c2c3 ≥ 0)
or decreasing on[a, b] (if c1c4 − c2c3 ≤ 0). Either way, the function attains is
maximum over[a, b] ata or b.

Recall that ifg is Fréchet differentiable atx ∈ int RN
+ then||g′(x)||H denotes

the norm ofg′(x) as a linear map from(RN , || · ||Hx ) to (RN , || · ||Hg(x)), although,
of course,|| · ||Hx and|| · ||Hg(x) are semi-norms rather than norms.

Lemma 2.9. Consider the Hilbert metric onint RN
+ with N ≥ 2. Letx ∈ U1,N .

If N = 2 then the norm ofg′ at x is given by||g′(x)||H = s. If N ≥ 3, then

(2.12) ||g′(x)||H =
xN − xN−1

xN − x1

θ

(
xN

x1

)
xs+1

1

EN−1

+
(xs

N − xs
1)xN−1

EN−1

.

Proof. The norm ofg′(x) as a map from(RN , || · ||Hx ) to (RN , || · ||Hg(x)) is given
by

||g′(x)||H = sup
v∈B̃H

max
i,k

∑
j

(hij − hkj)vj,
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where
B̃H :=

{
v ∈ RN : maxj vj −minj vj ≤ 1

}
.

To calculate||g′(x)||H we will need to determine the sign ofhij − hkj for each
i, j, k ∈ {1, . . . , N}. We introduce the notation

(2.13) Lik := sup
v∈B̃H

∑
j

(hij − hkj)vj.

Note thatg is homogeneous of degrees, in other wordsg(λx) = λsg(x) for
all x ∈ RN

+ andλ > 0. Therefore,∑
j

xj
∂gi

∂xj

(x) = sgi(x)

for eachi ∈ {1, . . . , N}. Thus
∑

j hij = s for eachi ∈ {1, . . . , N}, a fact that
could also have been obtained by straightforward calculation. It follows that

(2.14)
∑

j

(hij − hkj)vj =
∑

j

(hij − hkj)(vj + c)

for any constantc ∈ R.
It is clear that an optimal choice ofv in (2.13) would be to takevj := 1 for

each componentj such thathij −hkj > 0 andvj := 0 for each component such
thathij − hkj < 0. Alternatively, we may choosevj := 0 whenhij − hkj > 0
andvj := −1 whenhij − hkj < 0. That the optimal value is the same in both
cases follows from (2.14). Also, it is easy to see thatLik = Lki.

Fix i, k ∈ {1, . . . , N} so thati < k. There are four cases to consider.
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• Case 1.1 < i < k < N . Recall thath1j(x) = sδ1j andhNj(x) = sδNj. A
calculation using equations (2.3) – (2.5) gives

Ei(x)Ek(x)(hi1(x)− hk1(x)) = xs
Nxs+1

1 (xk − xi)θ
(xN

x1

)
≥ 0

and

(2.15) Ei(x)Ek(x)(hiN(x)− hkN(x)) = xs
1x

s+1
N (xk − xi)θ

( x1

xN

)
≥ 0.

We also have thathii(x) − hki(x) = hii(x) > 0 andhik(x) − hkk(x) =
−hkk(x) < 0. So an optimal choice ofv ∈ B̃H in equation (2.13) is given
by vj := −δjk. We conclude thatLik = hkk in this case.

• Case 2. 1 = i < k < N . We will show thathk1(x) ≤ h11(x) = s.
Considerx1 andxN as fixed andxk as varying in the rangex1 ≤ xk ≤
xN . From equation (2.3), hk1(x) = (c1xk + c2)/(c3xk + c4), wherec1,
c2, c3, andc4 depend onx1 andxN , and bothc3 andc4 are positive. A
simple calculation shows thatc1c4 − c2c3 = −θ(xN/x1)x

s+1
1 xs

N , which
is negative. Hencehk1 is decreasing inxk and takes its maximum value
whenxk = x1. Here it achieves the value

x1

xN − x1

θ
(xN

x1

)
= s− x1−s

1 (xs
N − xs

1)

xN − x1

< s.

Thus we conclude thath11(x) − hk1(x) > 0. We also have thath1k(x) −
hkk(x) = −hkk(x) ≤ 0 andh1N(x)− hkN(x) = −hkN(x) ≥ 0. Thus the
optimal choice ofv ∈ B̃H is given byvj := −δjk. We conclude that in
this caseL1k(x) = hkk(x).
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• Case 3. 1 < i < k = N . Herehi1 ≥ hN1 = 0, hii ≥ hNi = 0, and
hiN ≤ hNN = s. So the optimalv ∈ B̃H is given byvj := δj1 + δji. We
conclude thatLiN = hi1 + hii.

• Case 4. i = 1 andk = N . Heres = h11 ≥ hN1 = 0 and0 = h1N ≤
hNN = s. Thus the optimalv ∈ B̃H is given byvj := δ1j. We conclude
thatL1N = s.

If N = 2 then Case 4 is the only one possible, and so||g′(x)||H = s. So, for
the rest of the proof, we will assume thatN ≥ 3.

We know thathi1(x)+hii(x) = s−hiN(x) ≥ s so Case 3 dominates Case 4,
that is to sayLiN(x) ≥ L1N(x) for i > 1. Sincehi1(x) ≥ 0 for i ∈ {1, . . . , N},
Case 3 also dominates Cases 1 and 2, meaning thatLiN(x) ≥ Lik(x) for k < N ,
i < k.

The final step is to maximizeLiN(x) = hi1(x) + hii(x) = s − hiN(x) over
i ∈ {2, . . . , N − 1}. From (2.15), hmN(x) ≥ hnN(x) for m < n. Thus the
maximum occurs wheni = N−1. Recall that we have ordered the components
of x in such a way thatxN−1 is the second largest component ofx. We conclude
that

||g′(x)||H = max
i,k:i<k

Lik = hN−1,1 + hN−1,N−1

By substituting the expressions in (2.3) and (2.4), we obtain the required for-
mula.

Corollary 2.10. LetR > 0 andN ≥ 2. Let l be a linear functional onRN such
that l(x) > 0 for all x ∈ int RN

+ and defineS := {x ∈ RN
+ : l(x) = 1}. If
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N = 2, theness sup{||g′(x)||H : x ∈ S} = s. If N ≥ 3, then

ess sup{||g′(x)||H : dH(x,1) ≤ R, x ∈ S} =
1− e−Rs

1− e−R
.

In both cases, the essential supremum is taken with respect to theN − 1-
dimensional Lebesgue measure onS.

Proof. Note that the complement ofU∩S in S hasN−1-dimensional Lebesgue
measure zero. Using the reordering argument in the proof of Corollary2.5, we
deduce the result in the case whenN = 2.

The case whenN ≥ 3 reduces to maximizing the right hand side of (2.12)
subject to the constraintsx1 < xN−1 < xN andx1/xN ≥ exp(−R). We can
write the expression in (2.12) in the forms + (c1xN−1 + c2)/(c3xN−1 + c4),
wherec1, c2, c3, andc4 depend only onx1 andxN andc1 ≥ 0, c2 ≤ 0, c3 ≥ 0,
c4 ≥ 0. It follows that, if we viewx1 andxN as fixed andxN−1 as variable, the
expression is maximized whenxN−1 = xN . The value obtained there will be

1− (x1/xN)s

1− (x1/xN)
= γ(x1/xN).

If we recall thatγ is decreasing on[0, 1) andx1/xN ≥ exp(−R), we see that

||g′(x)||H ≤ 1− e−Rs

1− e−R
.

If x1/xN = exp(−R), then, by choosingx ∈ U1,N with xN−1 close toxN , we
can arrange that||g′(x)||H is as close as desired to this value.
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Lemma 2.11.Theorem1.2holds in the special case whenC = RN
+ withN ≥ 3.

Proof. As in the proof of Lemma2.7, we may assume thatx, y ∈ int RN
+ and

u = 1. Definel : RN → R by l(z) :=
∑N

i=1 zi/N and letS := {x ∈ RN
+ :

l(x) = 1}. Then l is a linear functional andl(z) > 0 for all z ∈ int RN
+ .

It is easy to check thatφ(s; λz, µw) = λ1−sµsφ(s; z, w) for all λ, µ > 0 and
z, w ∈ int RN

+ . Thus

dH

(
φ

(
s;

u

l(u)
,

x

l(x)

)
, φ

(
s;

u

l(u)
,

y

l(y)

))
= dH(φ(s; u, x), φ(s; u, y)).

We also have thatdH(x/l(x), y/l(y)) = dH(x, y). Therefore we may assume
that x, y ∈ S. Let ε > 0 and defineG := {z ∈ S : dH(z,1) < R + ε}. It
was shown in [23] that G is convex. Also, Lemma2.3 states thatg is locally
Lipschitzian. We may therefore apply Proposition2.2 with f := g. Since
g is homogeneous of degrees, we have thatg′(x)(x) = sg(x) for all x ∈
G. This, combined with the fact that|g(x)|Hg(x) = 0, implies that||g′(x)||H̃ =

||g′(x)||H . Using Corollary2.10, and lettingε approach zero, we deduce the
required result.

Lemma 2.12. Theorem1.2 holds in the special case when the linear span of
{u, x, y} is 1- or 2-dimensional.

Proof. If the linear span of{u, x, y} is one-dimensional, then all Hilbert metric
distances are zero, so assume that it is two-dimensional. The same argument as
was used in Lemma2.8 shows that it suffices to prove the result forC = R2

+,
u = 1, andx, y ∈ int R2

+. As shown in the proof of Lemma2.11, we may
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assume thatl(x) = l(y) = 1 wherel((z1, z2)) := (z1 + z2)/2. We now apply
Proposition2.2 with f := g andG := S := {z ∈ int R2

+ : l(z) = 1}. Again,
||g′(x)||H̃ = ||g′(x)||H for all x ∈ G. The result follows from the first part of
Corollary2.10.

of Theorem1.2. The proof uses Lemmas2.11and2.12and is exactly analogous
to the proof of Theorem1.1.

of Corollary1.3. We first prove the result for the case of Thompson’s met-
ric. We will use the alternative characterization of semihyperbolicity given in
Lemma 1.2 of [1]. Supposex, y, x′, y′ ∈ C are all in the same part and are such
that neitherdT (x, x′) nor dT (y, y′) is greater than1. Let t ∈ [0,∞) and write
z := ζ(x,y)(t) andw := φ(dT (x, z)/dT (x, y); x, y′). Observe thatdT (y, y′) ≤ 1
implies|dT (x, y)−dT (x, y′)| ≤ 1. SincedT (x, w) = dT (x, y′)dT (x, z)/dT (x, y),
we have

|dT (x, w)− dT (x, z)| ≤ dT (x, z)/dT (x, y) ≤ 1

Similar reasoning allows us to conclude that

|dT (x, w′)− dT (x′, z′)| ≤ 1,

wherez′ := ζ(x′,y′)(t) andw′ := φ(dT (x′, z′)/dT (x′, y′); x, y′). FromdT (x, z) =
min(t, dT (x, y)) anddT (x′, z′) = min(t, dT (x′, y′)), we have that

|dT (x, z)− dT (x′, z′)| ≤ |dT (x, y)− dT (x′, y′)| ≤ 2.

So
dT (w,w′) = |dT (x, w)− dT (x, w′)| ≤ 4.
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By Theorem1.1, dT (z, w) ≤ 2dT (y, y′) ≤ 2 anddT (z′, w′) ≤ 2dT (x, x′) ≤ 2.
The triangle inequality givesdT (z, z′) ≤ dT (z, w)+dT (w, w′)+dT (w′, z′) ≤ 8.
This is the uniform bound required by the characterization of semihyperbolicity
we are using.

The proof thatC is semihyperbolic when endowed with Hilbert’s metric is
similar.
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