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ABSTRACT. Carleman’s inequality reads

a1 ++arag + ... + Yaj..ap < e(ag +ag+....),

whereay, , k = 1,2, ...., are positive numbers. In this paper we present some simple proofs of and
several remarks (e.g. historical) about the inequality and its corresponding continuous version.
Moreover, we discuss and comment on some very new results. We also include some new proofs
and results e.g. a weight characterization of a general weighted Carleman type inequality for the
case < p < g < oo. We also include some facts about T. Carleman and his work.

Key words and phrasesnequalities, Carleman’s inequality, Pdlya-Knopp's inequality, Sharp constants, Proofs, Weights, His-
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1. INTRODUCTION

In this paper we discuss the following remarkable inequality:
(1.1) a; + arag + -+ Jayas - ap < e(ag +ag+---),

wherea,, a,, ... are positive numbers and;”, a; is convergent. This inequality was pre-
sented in 1922 in_|8] by the Swedish mathematician Torsten Carleman (1892-1942) and it is
called Carleman’s inequality. Carleman discovered this inequality during his important work
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2 MARIA JOHANSSON LARS-ERIK PERSSON AND ANNA WEDESTIG

on quasianalytical functions and he could hardly have imagined at that time that this discovery
would be an object of such great interest. The continuous versipn ¢f (1.1) reads

(1.2) /Oooexp<1/ In f(t )dt)dm<e/ f(z

wheref(t) > 0 and itis sometimes called Knopp’s inequality with reference to [32] (cf. Remark
[3.7). However, it seems that it was G. P6lya who first discovered this inequality (see Remark
[2.3). Therefore we prefer to callRolya-Knopp’s inequality

In Sectiorf 2 of this paper we present several proofs of and remarks ¢n (1.1). In $&ction 3 we
prove that[(1.R) implieg (I} 1) and present some proof§ of (1.2) (and thus some more proofs of
@I)).

In Sectior] # we give some examples of recently published generalizatignsjof (1.[) gnd (1.2).
We discuss and comment on these results and put them into the frame presented above. We
also include some new proofs and results, namely, we prove a new weight characterization of
a general weighted Carleman type inequality for the ¢asep < ¢ < oo, i.e., we prove a
necessary and sufficient condition on the sequefiggs: | and{d; },-, so that the inequality

(1.3) (Z (Varaz -akfbk) <C (Z aidk>
k=1

k=1

holds for some finite and positive constaritand for all sequenceguy},- ,of non-negative
numbers. Moreover, we give upper and lower estimates of the best cofstattie inequality

(the corresponding operator norm). Finally, we include some facts about Torsten Carleman
and his work, which we have found, for example, by studying [31] and [58] and this partly
complements the information given by Professor Lars Garding in his excellent description in
[19].

2. SoME Proors oF (1.7))

Proof 1.(Rough sketch of Carleman’s original proof) Carleman first noted that the problem can
be solved by finding a maximum of the expression

k

Z(CWQ ceay)

=1

k
Z a; = 1.
i=1

He then substituted; = e~** and obtained the simpler problem:
Find a maximum\/,, fork =1.2,... of

k
11+12+ zyteot-tay
G = E e~

=1
k
H = Z e "
i=1
This problem can be solved by using the Lagrange multiplier method. Unfortunately this leads

to some technical calculations, which of course Carleman carried out in an elegant way. We
leave out these calculations here, and only refer to Carleman’s paper [8], where all the details

s

under the constraint

under the constraint

J. Inequal. Pure and Appl. Math4(3) Art. 53, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

CARLEMAN’S INEQUALITY 3

are presented. The resultis thd}, < e for all £ € Z . Carleman then showed separately that
the inequality[(1.]1) is strict when the sum on the left hand side converges.

O

Remark 2.1. In the same paper|[8], Carleman proved that the inequdlity (1.1) does not hold in
general for any constanit < ¢, i.e., that the constantis sharp.

Proof 2.(via Hardy’s inequality)
The discrete version of Hardy’s inequality reads (seé [21], [23])

00 k p 00
(2.1) Z <12a1> < <L)p2ai, p> 1.
= \ko r-1) 3

Replaces; with a7 and note that by using that= ¢ and the definition of the derivative we
find that

1 Eoo\?P 1 koo k
(—Zaf) = exp — (anaf — ana?)
k i=1 p 1=1 i=1
k
— exp ( [D(ln Z af)] ) (whenp — o0)
. i=1 kx:O
= exp < [Z ailna;/ Zaf]

and we see th.1) leads to the non-strict inequ (1.1 s@@g)p — e whenp — oo.

Observe that this method does not automatically prove that we have strict inequdity] in (1.2)
and this has to be proved separately (see for example our later proofs).

O
Remark 2.2. G.H. Hardy formulated his inequality (2.1) in 1920 in [20] and proved it in 1925
[21] but it seems that Carleman did not know about the inequality (2.1) at this time, since he does
not refer to the simple connection that holds according to the proof above. This is somewhat

remarkable since Carleman worked together with Hardy at that time, see for example their joint
paper[9].

Remark 2.3. The above means that (IL.1) may be considered as a limit inequality for the scale
(2.7) of Hardy inequalities. This was pointed out by G.H. Hardy in 1925 in the paper [21, p.
156], but he pronounced that it was G. Pélya who made him aware of this interesting fact.

We now present two proofs which are based on variations of the arithmetic-geometric mean
inequality (the AG-inequality).

Proof 3.We use the AG-inequality together with the fact that
(k+1)F 1 1\? NN,
(2.2) 1 + ] + 5 + k <e
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to obtain

> 1
miZk(k+1)

k=i

'M8

@
Il
—

o0
> oai=
=1
1 L
—_— 1a;
1

k(k+1) &

1+2a2+---+kak
k(k+ 1)

)

k=1

Sty (0e) =1 (i)

This strict inequality holds, since we cannot have equality at the same time in all terms of the
inequality. This can only occur if;, = £ for somec > 0 but this cannot hold sincg {® a;, is
convergent.

NE

i

—_

Mg

i
I

g

==

O

Remark 2.4. In the paper[20, p. 77], G.H. Hardy presented essentially this proof but he also
pronounced that it was G. Knopp who pointed out this proof to him.

Proof 4.Because of the AG-inequality the following holds for eveért 1,2, ... , everyk and
all¢; > 0:

o (1) (1) () < (1) e

We now choose; = f*? i=1,2,...,k Then

Jun
e

1

k k
(2.4) (H ci) =k+1

1

and [2.3) and (2]4) give that
00 00 k
1
’“alaQ---akSZ— Ci;
k=1 k=1 k (k - 1) i=1
= i C;a; i m
i=1 k=1

= iciai/i = iai (1+%)1 < eiaz
i=1 i=1 i=1

The strict inequality can be proved in a similar manner to Hrpof 3.
O

Remark 2.5. This proof was presented by G. Pélya (de€ [47, p. 249]) but here we follow the
presentation which can be found in Professor Lars Hormander’s bobk [26, p. 24].
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Proof 5.(Carleson’s proof)

We first note that we can assume that> a;, > - - - (because the sum on the left hand side of
(1.1) obviously becomes the greatest if the sequéngeis rearranged in non-increasing order
while the sum at the right hand side will be the same for every rearrangement).(Lebe a
polygon through the pointg), 0) and (k:, Z’f log(l/ai)> , k=1,2,... The functionm(x) is
obviously convex and because of that it holds that for everyl

(2.5) m(rz) > m(z)+ (r — Dam/(z).

Furthermore

(2.6) m/(z) =log(1/ag), =€ (k—1,k),

and sincen (0) = 0 andm is convex we have

2.7) m;x) _ m(z) ; m(0) < m(k) ; m(0)
m(k)

k

1

= -~ =3 > log(1/a;) forall z < k.
1

We now make a substitution and use Hélder’s inequality (2.5). Then, we find, for every
A>0andr > 1,

1 A 1 rA
1 / em@/rgy < 1 / o=m(@)/ g
0 0

T T

A
_ / efm(rm)/rzdx
0

A
< / p—m(@) fre—((r=1)/r)m’ (z) .,
0

(r=1

A = A =
< (/ e_m(x)/xdx> (/ e_m/(x)dx)
0 0

A T A I
/ e MO/ gy < prT / e @ dy.
0 0

We letA — oo, — 1+ and note that-=1 — e so that

(2.8) / e @/ Ty < e/ e @y,
0 0
We now use[(2]6) andl (2.7) and get

so that

0 0 k [ee} e’}
/ (@) g — Z/ e @y = 3 st — 3 g

0 k=17 k=1 k=1 k=1

respectively,
x© ok
e dr = e dx

%) 1 k 1 [e%S) k ®

> ~=Nlog( =) )| = ;
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The non-strict inequality (I]1) follows by using these estimates[anf (2.8). The strict inequality
follows from the fact that we cannot have equality[in [2.7) at the same time foreailtl%.

O

Remark 2.6. This is L. Carleson’s proof (see [10]) and in fact he proved that the even more
general inequalityf (2]8) holds for every piecewise differentiable convex funetian on [0, o]

such thatn(0) = 0. In fact, Carleson formulated his inequality in the following slightly more
general form:

(2.9) / ahem@ /ey < ek+1/ e ™ @ dx k> —1.
0 0

Proof 6. (via Redheffer’s inequality) R.M. Redheffer proved in 1967 the following interesting
inequality (see [48] and alsb [49]):

(2.10) nGo+ Y k(bp—1)Gy <> arlf,
k=1 k=1

which holds for alln = 1,2, ... and all positive sequencés; } and where7,, = (Hle ai) .
In particular, we see that if

a)by=1,k=1,2,... ,thenG, <13  a, = A,, ie. the AG-inequality,

b)b =141 k=1,2,... ,thennG, +>1_ G <31, (1+ 1) a4,

which implies that the non-strict inequaliy (1L.1) follows when— oo. The strict inequality
can also be proved by using the arguments in the following proof of the ineqyality (2.10). We
use the elementary inequality

(2.11) l+a(z—1)<z%z>0,a>1,

(a simple proof of (Z.ﬂl) can be obtained by putting= % and replacinge with z® in the
following form of the AG-inequality:z*1!= < ax + (1 — ) 1). We now use[(2.11) with
a =k andz = z%-b; (k > 2) to obtain

14k b—1) < b | = —F pk
(Gk—l g — \Gro1 g Gr1 ¥

which can be written as
(2.12) Gr1 +k (Gpby — Gp_1) < apby.
We use|(2.1R) withk = n to get

o1 + 1 (Grby — Gry) < anb”

e.
nGy, +n (b, —1)G, —ayb) < (n—1)Gp_;.
In the same way we have, by usifg (2.12) with=n — 1,n —2,...,2,

(TL — 1) Gn—l + (TL — 1) (bn—l — 1) Gn—l — an_lbﬁ_} S (n — 2) Gn_g

2G2 + 2 (b2 - 1) G2 - a2b2 < Gl.

ObviouslyG; = a; so thatG; + (b — 1) Gi — a;by = 0 and the inequality] (2.10) follows by
summing the inequalities above.

O
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CARLEMAN’S INEQUALITY 7

Remark 2.7. The proof above is somewhat more complicated than the other proofs but it leads
to a better result. In fact, this method of proving inequalities uses a well-known principle which
is sometimes referred to as Redheffer’s recursion principle (sée [48]). This principle can also
be used to improve several other classical inequalities.

Leta™ = {a,,as,...,a,} be apositive sequence = 1,2, ...). We define the powermeans
M,.,, of ™ in the following way:

n

(%Za};)f r#0,

k=1

1
(H ak) ,  1r=0.
\ k=1

Note thatA,, = M, ,, G, = M,, andH, = M_,, are the usual arithmetic, geometric and
harmonic means, respectively. We also look at the following sequence of powermeans:

M" " = (Mr,h Mr,27 ) Mr,n) .

In 1996 B. Mond and J. RBaric proved the following interesting inequality (between iterative
powermeans), (see [38]):

Mr,n - Mr,n (a(n)) =

(2.13) Mg, (M™™) < M, ,, (M>"),
for everyr < s. We have equality if and only ii; = - - - = a,,. The next proof is based on this
result.

Proof 7.We use[(2.133) witls = 1 andr = 0 to obtain

1 1
k=1 k=1 =1
By using this inequality and the fact that

k
Zaiﬁi@i,kﬁn,
i—1 i—1

we find that
n n n
(2.15) Y G < > ay.
k=1 \/m k=1
We use our previous estimafe (2.2) with= » — 1 and get
n_ ! <l il <eln
n!  (n—1) B '

By combining this inequality with{ (2.14) we have

n k % n
(2.16) Z (H al-) <el™n Z aj.
1 \i=1 k=1

k=
The non-strict inequality (I} 1) follows when we let— co. The fact that the inequality actually
is strict follows from the fact that equality if (2]15) only can occur wherualire equal, but
this cannot be true under our assumption that , «, is convergent.

O
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8 MARIA JOHANSSON LARS-ERIK PERSSON AND ANNA WEDESTIG

Remark 2.8. More information about how (2.13) can be used to prove and improve inequalities
can be found in the fairly new papefs [11] ahd|[12].

Remark 2.9. We note that if we, in the proof above, combipe (2.14) with the following variant
of the AG-inequality

k

(ﬁ%Z%)i (%)i(al(a1+a2)'“(a1+a2+~-~+an))

k=1 =1

3=

<

)

1
1\" (nai+(n—1ar+ - +ay,)
n! n

we obtain the following strict improvement ¢f (2]16):

(M) <o (e

k=1 \i=1 k=1

3. POLYA -KNOPP'S INEQUALITY (1.7)

We begin by proving thaf (1].2) implies (1.1). As before we note that it is enough to prove
(1.1) when{a,}{" is a non-increasing sequence. Upe](1.2) with the funcfior) = ay ,
x€lk—1,k),k=1,2,.... Then

(3.1) /000 f(z)dx = Zak
k=1

and

(3.2) /OOO exp G /0 1nf(t)dt> iz — i/: exp (é /0 lnf(t)dt> da.
2 s

Furthermore, it yields that

(3.3) /1 exp (1 / 1nf(t)dt) dr = a
0 T Jo

and, fork =1,2,... ,

3 N k k-1 .
(3.4) exp (é/o In f(t)dt) dr = / exp (é Z Ina; + w In ak+1)> dz

k—1
> exp | — Ina; | de = a; | .
[ (k5 oe= (11
The crucial inequality in'(3]4) depends on the fact that the integrand is a weighted arithmetic
mean of the numbets a;, i = 1,2, ..., k, with weightsZ, ..., 2 (k — 1 weights) and”‘(',ji‘l).
Herek — 1 < z < k and since the sequence is decreasing the mean value is smallest for

i.e., when all weights= ;. Now (1.1) follows by combining (3]1) f (3.4).
We now present some simple proofs[of {1.2) ( and thereby some more propfs of (1.1)).

J. Inequal. Pure and Appl. Math4(3) Art. 53, 2003 http://jipam.vu.edu.au/
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Proof 8.We note that the functiom (z) = — [" In f* (¢) d¢ fulfils the conditions to use Car-
leson’s inequality[(2]9) (her¢* (¢) is the decreasing rearrangement of the funcfipnThere-
fore, according td (2]9), it holds that

(3.5) /wapexp(l/ In f* (¢)d ) :cgep“/oooxpf*(x)dx

for everyp > —1. Carleson’s argument shows that we in fact have strict inequalify in (3.5) and
especially forp = 0 we thereby get Polya-Knopp's inequalify (L.2).
O

Remark 3.1. Carleson did not note this fact explicitly in his pager|[10] since he was obviously
only interested in giving a simple proof of the inequaljty {1.1).

We now present two other proofs ¢f (JL.2) and thereby of| (1.1) which, like Carleson’s proof,
only are based on convexity arguments.

Proof 9.First we note that

(3.6) exp(l/ In f(t)d )—exp(i/oxlntf t)dt — %/0 lntdt)
= exp (i/ Intf(t) )exp( i lntdt)

1 [* 1
(3.7) ——/ Intdt = ——[tInt —t]; = —Inz +1
z J, T

Furthermore, it yields that

and, in view of Jensen’s inequality (or the AG-inequality),

(3.8) exp (i /O lntf(t)dt> < é/oxtf(t)dt

We integrate, us¢ (3.6) - (3.8), change the order of integration and find that

[[onC [roa)as ot ([on)
L[ o)
e / Lt / L e

—e /0 F(t)dt

The strict inequality follows since equality in Jensen’s inequality requireg ftiat is constant
a.e. but this cannot occur singg” f(x)dz is convergent.

0

Remark 3.2. The proof above is partly related to Knopp’s original idea (see [32, p. 211]).
However, Knopp worked with the interval, =] instead of{0, 2] and hence Jensen’s inequality

can not be used. Moreover, Knopp never wrote out the inequglity (1.2) explicitly even if it is
sometimes referred in the literature as this is the case, see for example [23, p. 250] and [37, p.
143].
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Remark 3.3. By modifying the proof above we can easily prove even some weighted versions
of (1.2), for instance the following

/Oooexp(l/ In f(t)d )xpdx<ﬁ Ooof(x):cpd:c

for everyp < 1 which is more general thah (1.2) and also than|(3.5)fer0.

Proof 10.We first note that if we replacg(t) by f(¢)/t in (L.2), then the left hand side in (1.2)
equals

/fe@(i(/ﬂgﬁlnf(t)dt_/Ozlntdt>)dx:e/oooexp( /lnf() )d?x

since
1 [7 1
——/ Intdt = ——[tInt —t]; = —Inz + 1.
T Jo z

Thus, [1.2) can be written in the equivalent and maybe more natural form

(3.9) /Oooexp< /lnf()dt) dr _ /f =

In order to prove[(3]9) we use the fact that the functjla) = e* is convex and Jensen’s

inequality
/Oooexp (é/oxlnf(t)dt) d% < /Oooé (/;f(t)dt) dx
:/Ooof(t) (/f%dm) dt

- [ 0%

The strict inequality follows in the same way as in Prjoof 9.

4. FURTHER RESULTS AND REMARKS

Remark 4.1. Proof[9 is of course similar to Propf[10 but it contains the important information
that (1.1) can be equivalently rewritten in the fofm [3.9) with the best constdy using this
observation and modifying the proof, we find that, in fact, the following more general theorem
holds (cf. [29, Theorem 4.1)):

Theorem 4.2. Let ¢ be a positive and convex function on the range of the measurable function
f. Then

@ [ [

Remark 4.3. By choosinge (1) = ¢* and replacingf (z) with In f (z) we see thaf (4]1) be-
comes|(3.p) and thereby the equivalent inequdlity (1.1) and by chopsing= v we find that
(4.7) implies Hardy’s inequality in the form

(4.2) /OOO (i/jf(t)dt) —</ Pz d“”,p>1

J. Inequal. Pure and Appl. Math4(3) Art. 53, 2003 http://jipam.vu.edu.au/
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which for the case > 1 (after some substitutions) can be written in the usual form

(4.3) /OOO e /Oxg(t)dt)pdx < <p%1)p/ooo ¢P(a)dz, p> 1,

whereg (z) = f (xl_%> 2~ v. Note especially that Hardy’s inequality written in the fo4.2)
holds even whep = 1 but that the inequality (4}3) then has no meaning.

Remark 4.4. This result and proof can be found in the relatively new papéer [29]. We note that
the same proof shows that also the more general inequality

[o(t [roa) %< [oan(i-1)%

holds for every positive and convex functiginon the range of the measurable functipand
0 < b < oco. Especially, this means that if we argue as in Remark 4.3, we get the following
improvement of the Polya-Knopp and Hardy inequalities for finite interf@ls) , b < oc:

/ObeXp <% /Omf(t)dt) dr < e/ob (1 — %) f(z)dz
respectively
/Obo (i /jg(t)dt)pda: < (]ﬁ)p/:o (1 - (%)) g(x)ds,

whereby = 0*/®~Y andg (z) = f (zP~1/P) 2”7 as before. These inequalities have recently
been proved in the paper [11] (see alsal [12] ) with a different method which is built on the
inequalities between mixed means (cf. our Pfgof 7). The idea in this remark is further developed
and applied in[[13].

Another interesting question which has recently been studied is to find general weighted
versions of the inequality (1.2). Partly guided by the development concerning Hardy type in-
equalities (see for example the books|[33] end [42]) one has asked:

Let0 < p,q < oo. Find necessary and sufficient conditions for the weights (i.e. the positive
and measurable functiong) z) andv (x) so that

(4.4) </O°O <exp (i /0 lnf(t)dt))qu(x) dq;)é <c </O°O ()0 (2) da;y

holds with a stable estimate of the operator norm (= the smallest coastanthat[(4.4) holds).
The following has recently been proved:

Theorem 4.5.Let0 < p < ¢ < oo. Then the inequality (4}4) holds if and only if

D:= Supri (/ w(s)ds> ' < 00,
>0 0

w(s) = (exp (2 /Oslnﬁdt))zu(s)

DgCge%D.

where

and

J. Inequal. Pure and Appl. Math4(3) Art. 53, 2003 http://jipam.vu.edu.au/
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1_1
a P

B:— (/OOO (é/0$w(x)dx);w(x)d$>i7

wherew(z) is defined as in Theoreim 4.5, a6t~ B

Theorem 4.6.Let0 < ¢ < p < o0, 2 = . Then the inequalit4) holds if and only if

Remark 4.7. These results were recently proved in/[45]. We also refer the reader to some earlier
results of this type which can be found in the papers$ [25], [41] and [46]. Further developments
of Theorem§ 415 arjd 4.6 can be found in/[40] and the new Ph.D thesis by Maria Nassyrova [39].

We will now present an example of a new generalizatiof of (1.1) (see [29, Theorem 2.1]).

Theorem 4.8. Let {a;};° be a sequence of positive numbers andgut ia; (1 + %)z i =

1,2,.... Then the following holds fav € Z+ :

k
(4.5) ZGk+Zk ]H g 3 (1—NL+1) (1+%) g,

where
) ,
p = Yaias -+ a; andly, ;= Z <\/x,’;_i+1 — \/If) )
i=1

Here [z] is the usual integer part of and {z}} is the sequencéz;} rearranged in non-
increasing order.

Remark 4.9. For previous results of this type we also refer to the papéers [2]/13],14], [44], [54],

[56] and the references found there. We note that by using the estitpates, (1 + %)k <e

and lettingV — oo we get[(1.1) as a special case[of {4.5).

Remark 4.10. Refinements of Carleman’s inequalil.l) withieplaced by(1 + %)k have

been known since at least 1967 (see [48] and [49] and compare with ourl Proof 6). We also note
that the factoﬂ—NLJr1 in ) means that the “usual” sum on the right hand side of the inequality
has been replaced by the equivalent Cesaro sum, i.e., we have calculated the arithmetic mean of
partial sums. This mean value is of course strictly less than the “usual” sum since the terms are
positive.

Remark 4.11. In the paper[[54], P. Yan and G. Sun proved Carleman’s inequglity (1.1) can be
improved in the following way:

o) k % e ,%
(4.6) Z (H ai> < ez ( ’ j_ l) ay.
5

k=1 \i=1 k=1

This result easily follows fr05) by estimating the important faélo% %)k in the following
way:

1\" 1\
(4.7) (HE) §e<1+k+c*) ,

wherec* = 2 5 ~ 0, 1802696 < . The mequallty ) does not hold for numbers smaller
thanc*. (See [29, Remark 12)). ThIS means that by u m (4.5) we seé thpt (4.6) actually can be

D=
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replaced with the sharper inequality

Z (Hai> +;k(l€—:—l)<€z(1+k+c*) .

k=1 \i=1 k=1

Remark 4.12. The factor (1 + %)k has also been of interest in some other new papers. For
example M. Gyllenberg and P. Yan recently proved in the papér [18] that

k 00
1 Qn,
L+ ) =e{1-)
(*k) ( <1+k>“)’
n=1
where alla,, are positive and can be calculated recursively. For exampie%, a9 =

4—18 etc. This answers an earlier question raised by Yang [(sée [56]).

Remark 4.13. We have noted before that Carleson’s inequality|(2.9) gives (1.1) and (1.2)
as special cases. Another inequality with that property has recently been proved, namely the
following (seel[29, Theorem 3.1]):

/OB exp {ﬁ /0 1nf<t)dM(t>} dM (z) + e/OB (1 _ ]\]\?g))) F@)dM (z)
< e/OB (1 — %(g) f(z)dM (z).

HereB € R, M(z) is a right continuous and increasing function (@noo) and M., (x) is a
special defined function with the property thiek.(x) < M(z). By using this theorem with
M(z) = z andB = oo we get [1.2) and by using it with

0<z<1,

1 _
540 A3 =

1
29

M(z) =

x>

, k<x<k+1 k=1,2,...
we get a refinement of (1.1).
In view of the questions raised in connection[to (4.4) it is natural to ask the following which

is connected to[ (I}]1): Leél < p,q < oo. Find necessary and sufficient conditions on the
non-negative sequencés, } ° and{dy };° such that

(4.8) (Z (¢araz - ~ak)qbk> ‘<c (Z agdk> p

k=1 k=1
holds.
We have the following generalized weighted Carleman’s inequality:

Theorem 4.14.Fork =1,2,...,leta, > 0,b, > 0andd, > 0. If 0 < p < g < oo, then the
inequality [4.8) holds for some finite constant> 0, if and only if

1

) N+1 k ’kq*p 1
(4.9) By =sup N » Z (H d,) b | < o0.

N>0 =1 \u=1

Moreover, for the best constaatin (4.8) it yields that
(4.10) C ~ B;.
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_1
Proof. Assume that9) holds. Let first; = 0, and replacer;, with a;d, * in ). Then
(4.9) is equivalent to

q

~ [k /R ~%p i ~ v
1 1)) (59
k=1 =1 =1 k=1

q

or, if wy, = (Hle di>_?p b,

Q=
-

P

~
Q|

(%)

Now if {a} },-,is the decreasing arrangement{af.},_ , , then

S(f1) «) < (S (i) )

o] k %
(4.11) P = Z(Ha) Wi

k=1 \i=1

k=1 \i=1 k=1 \i=1
Let
f*(z) = a; andw(z) = wy forz € [k — 1, k).
Then
00 k k q
(4.12) > (H az> wy,
k=1 \i=1
0o Lo k L q
— / exp (Z log a;k‘“) widx
k=17k-1 | i=1
0o A 1 k—1 q
= /k1 exp | Z loga; + —logay, wydx
k=1 =1
o T = 1 1
< / exp <— Zlog a; + v (k1) log ay, wydx
k—1 T
k=1 L =1
00 kE r 1 T q
- Z/ exp (—/ In f*(t)dt)} w(z)dx
o1 JE—1 L T Jo

_ (/OOO [exp (é /0 lnf*(t)dtﬂqw(x)dx);

Moreover, it follows from Theorein 4.5 that if

(4.13) D= supx_% (/xw(t)dt) " < 00,
0

>0

then the inequality

(4.14) </OOO (exp (i /0 In f*(t)dt))qw (z) d:c)é <c (/Ooo f*p(:c)d:c> ’
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holds, and ifC is the best possible constant(in (4.14), then
(4.15) C < evD.
Hence, by combining (4.12) with (4.14), we have that

1

(4.16) (fj (ﬁ)wk> <c ( /0 ) f*”(fv)dx> :
(£) ()

k=1

i.e. (4.11) (and thug (4.8)) holds whenever (4.13) holds.¥ar Z., we have

O NG
sup x » </ w(t)dt) <N » Zwk .
N<z<N+1 0 —
Hence

) z é . N+1 k _kip %
(4.17) supx” » (/ w(t)dt) <supN r Z < di) b | = Bu.
0 1

>0 N>0 =1

If wy # 0, then, by using what we just have proved and an elementary inequality, we have

q 1 1
) %) k k g ) 1 00 ?
(418) I+ = [dlw+ > (Ha) we | < max (1,2rl> (wf + O) (Zag) .
k=2 =1 k=1

Therefore, by using (4.9), (4.17), (4]13) apd (4.18), we conclude[that (4.8) holds, and also that
the upper estimate holds in (4]10) (whgn= 0).

On the contrary, assume that (4.8) (and, tHus, {4.11)) holds for all non-negative sequences. In
particular, leta, = 1,k =1,...,N + 1anda, = 0, K > N + 1. Then the left hand side in

(4.11) can be estimated as follows:
N+1 %
k=1

For the right hand side we have

z(nlai) w) > z(m) »
(iag)p = (i 1> L (N + 1) < (2N)7

k=1 k=1 1=1
and in view of [4.1]L), it follows that

) N+1 %
(2N)"» (Z wk> <C,
k=1
so that[(4.P) and the lower estimate(in (4.10) holds. The proof is complete. O

Remark 4.15. We note that our proof gives concrete values of the equivalence constants in
1
). For example, we always ha¥er B; < C' and, if, in additionp; = 0, then

25 B, < C < e By.

Q=
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Remark 4.16. In [25] the weighted Carleman’s inequalify (#.8) was proved with another con-
dition thanB; and without any estimate of the best constéant

5. FINAL REMARKS ABOUT TORSTEN CARLEMAN AND HIS WORK

Remark 5.1. A main reference concerning Torsten Carleman and his mathematics is of course
the book [19] of L. Garding (see pp. 233-276). In this book Carleman is described in the fol-
lowing way: “With Torsten Carleman (1892-1949) Sweden got their so far most outstanding
mathematician.” It is therefore not curious that Garding spent the next 30 pages to describe
Carleman and his mathematical work and no other mathematician was given even close to so
much space in the book. It is remarkable ttat](1.1) is not explicitly mentioned in Garding’s
book, which can depend on the fact that he (as well as Carleman himself) obviously regarded
the inequality only as a necessary tool to prove his important main results concerning quasian-
alytical functions. However, as we have seen in this article, Carleman’s ineqiiality (1.1) and its
continuous variant (Polya-Knopp’s inequality (1.2)) has attracted a lot of attention and it is even
mentioned in the title of a number of papers. See our list of references containing 58 references,
Chapter 4 in the book [37] (with 174 references), Chapter 1 in the book [33] and the recently
published review paper [44] (with 53 references). And the interest seems only to have increased
during the last few years.

Remark 5.2. (About the person Torsten Carleman). There is a lot of interesting information in
Garding’s book[[19] and some complementary information can be fourid in [58]. Tage Gillis
Torsten Carleman was born 8 July, 1892. He defended his Ph.D. thesis 1917 at Uppsala Uni-
versity. In 1923 he was appointed a full professor at the Lund University. Shortly after this,
and on an initiative of Professor Gosta Mittag-Leffler (which has initiated and given name of
the famous mathematical research institute in Djursholm, Sweden), he was called as professor
at Stockholms University, in 1924. He died in 1949. Carleman was a remarkable person and
there are many rumours concerning him (see e.g. Professor Bo Kjellberg’s interesting and very
personal description in [31, p. 93]).
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