J Journal of Inequalities in Pure and
I > <M Applied Mathematics

0 http://jipam.vu.edu.au/

\olume 6, Issue 3, Article 87, 2005

A MINKOWSKI-TYPE INEQUALITY FOR THE SCHATTEN NORM
MARKUS SIGG

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF KONSTANZ
GERMANY

mail@MarkusSigg.de

Received 16 July, 2004; accepted 29 June, 2005
Communicated by F. Hansen

ABSTRACT. Let F' be a Schattep-operator andR, S positive operators. We show that the
inequality| ' (R + )= |; < |FR* |;+ |FS* |;forthe Schattep-norm|- |, is true forp > ¢ =1
and forp > ¢ = 2, conjecture it to be true far > ¢ € [1, 2], give counterexamples for the other
cases, and present a numerical study2or 2 matrices. Furthermore, we have a look at a
generalisation of the inequality which involves an additional fae{e p).
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1. INTRODUCTION

Let H and K be complex Hilbert spaces afid< p < oco. Following [1], we denote by
c,(H, K) the space of SchattgmoperatorsI” : H — K, equipped with the Schattgn
norm or quasi-norm- | . Note that[[1] deals only with the spacegH) := c,(H, H). The
generalisations,(H, K') can be found in textbooks like![2] and [3] (there writtenBg H, K)
andS,(H, K) respectively).

By L(H) we denote the space of bounded linear operatord pand byL(H ), the subset
of positive operators. Withl'| := (T*T)"/? € L(H), for T € L(H, K) we have fop < co

T, =tr|T|P forT € c,(H, K), and consequently
TS =t TP forT € c,(H)y = c,(H) N L(H)4.
Applying [T'|, = [T| for T' € ¢,(H, K), this shows in case gf < co

2

’FU% - <tr (FUF*)§>; = |FUF"|,

2 1
- ‘U?F*
p

2
p
ISSN (electronic): 1443-5756
(© 2005 Victoria University. All rights reserved.

This work was supported by the Dr. Helmut Manfred Riedl Foundation.
135-04


http://jipam.vu.edu.au/
mailto:mail@MarkusSigg.de
http://www.ams.org/msc/

2 MARKUS SIGG

for F' € ¢,(H, K) andU € L(H),. Because - |__ is the usual operator norm,

(FU%

2
=|FUF*|,
p 2
is also true fop = oo, with the common conventioff := oo.
Our question, which arose while studying the integration of Schatten operator valued func-
tions in [4], is: For what values qf € (0, o] andc € (0, co) is the Minkowski-like inequality

1
c

(MS) ‘F (R+S)

s ‘FR% T4 }FS%
p p

p
true for all /" € ¢,(H, K) andR, S € L(H).?
2. THE CONJECTURE
LetH, K,p,c, F, R, S be as above.

Theorem 2.1. Inequality (M$) is true fop > ¢ = 1 and forp > ¢ = 2.
Proof. Forp > ¢ = 1, the triangle inequality fof - | shows

|[F(R+95)|, =|[FR+FS|, <|FR|, + [FS],
Forp > ¢ = 2, the triangle inequality fof - ’g shows

2

)F(R+S)%

= |[F(R+ S)F"|, < |[FRF"[, +|FSF*|, = )FR%

2 1
n (FSa
P

2
p p
Theorenj 2.1 suggests the following conjecture.
Conjecture 2.2. Inequality (M$) is true fop > ¢ € [1, 2].

Forc € (1,2) we have at the present time no proof of this conjecture for other than trivial
situations, not even for the special case of 2 matrices. However, some justification will be
given in Sectiof }.

3. THE CASEp < ¢ AND THE CASE ¢ ¢ [1,2]

In this section we will demonstrate, by providing counterexamples, that inequality (MS) is
not necessarily true for other values(of p) than those stated in Conjectiire|2.2. We will offer
one example fof < p < ¢ < oo, and one for arbitrary whenc < 1 or ¢ > 2, both examples
using2 x 2 matrices. The powel/* for ¢+ > 0 of a non-negative matrix/ can be calculated
easily with help of the spectral decomposition’af

Example 3.1.Inequality [M$) is violated fof < p < ¢ < oo by

P00 () -0

Proof. FromU" = U for U € {R, S, R+ S} andt € (0, 00) we get
FU

= U], = (tr U?)» = (trU)7,
p

yielding

1 1
c = 21’7
p

‘FR%

_ 1, ‘FS%

—1, ‘F(RJr S)

p p
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and using < ¢,
1]¢

‘FR%

4 ‘FS%
p

C:2<2§:’F(R+S)
p

p

O

The second example makes use of an inequality which is interesting in its own right. Seeming
simple, it is surprisingly fiddly to prove:

Lemma 3.1. For z € (0,1) U (2, 00) we have

(1+%) <3+2\/3>m+ (1—%) <3_2\/3)I <1+3"

Proof. Settingr := v/5, a; :=1+ 1, ay ;=1 — 1, andw := 3, we have to show

oWt Fagw <1+ 3%

The caser € (2,00): Setf(z) == ayw?, g(z) := aww ™™, h(z) == 1+ 3% forz € (0,00).
Becausey, > 0 andw > 1, g is strictly decreasing, thuf(z) + g(z) < f(z) + g(2) for z > 2.
We will show f(z) + g(2) < h(x) for x > 2. Becausef(2) + ¢g(2) = h(2), this is done if we
prove f'(x) < h'(x) for z > 2, which is equivalent tay; (%)* Inw < In3. This inequality is
true forz = 2. All factors of its left side are positive, and < 3, so the left side is strictly
decreasing for: > 2. Hence the inequality is true far > 2 as well.

The caser € (0,1): After substitutings := w* and setting) := 11;1—3 we have to prove the

equivalent inequality
11 ( 1) 5
s+t—-—+—-|s——]<1l+s
S T S

for s € (1,w), which can be done by building a sandwich with a suitable polynomial function

inside: Set
©(s) :—s+§+% <s—§), p(s) =2 (1—1—5):11),
(s =1D(s—w)

for s > 0. The claim is

p(s) <p(s) +q(s) <1+
for s € (1,w). The left inequality is verified by the fact that (p(s) + ¢(s) — ¢(s)) defines a
polynomial of degre@ with three zerog1,w, 3}, wherel < w < 3, and with positive leading
coefficienth := 1 (¢(3) — p(3))/(3 — w). To prove the second inequality, we inspect

U(s) =145 —p(s) —q(s)
for s > 0 and get)”(s) = §(§ — 1)s°~2 — 2)\. Becausd < § < 2, " has a unique zero

_ 1)\ 7
So = (5<5 1>> , 1 <s)<uw,

2\

with ¢”(s) > 0 for s € (0,s) andy”(s) < 0for s € (sp,00). Now (1) = 0, ¥/(1) > 0,
andv’(s) > 0 for s € (1,5s9) show(s) > 0for s € (1, so], while ¢(sg) > 0, ¥(w) = 0,
Y (w) < 0,andy”(s) < 0for s € (sp,w) showi(s) > 0for s € [sg,w). O

Example 3.2. Inequality (M$) is violated fof) < p < oo andc < 1 as well as: > 2 by
0 0 0 0 2 -1
F o= (1 0), R .= (0 1), 5= (_1 1).
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Proof. Evaluation of the matrix powers fare (0, o) gives

R_p ot %(alwt—kagw*t) %(w*t—wt)
’ Hw™ —wh) S(pw' + g w™) ’
sy 143 1-3
C2\1—3t 143

withr := 5,01 =1+ 1, ap:=1—- 1, w:= 3 ForU € {R, S, R + S} we get in case of
p < o0
1
I T

with u, being the top left entry of/2. Using|FUt|io = |FU*F*|__, the case = o yields the
same result, thus for gtk

— 2/c —2/c

- a 1 )
\/1(aw/+a2w /)
p 2

1
=4/ = (14 3%¢).
p 2

Substituting? by z, we have to prove; w®+a,w™ < 1+37 for z € (2, 00) and forz € (0,1),
which is the statement of LemrhaB.1. O

‘FR%

—0, ]FS%
p

1
c

‘F(R+ S)

4. SOME NUMERICAL EVIDENCE

To justify Conjectur¢ 2]2, we present the results of a numerical study performed with
matrices.

From functional calculus it is known: For an operafoe> 0 on a complex Hilbert space the
powersT®, T? for o, 8 € (0, 00) obey the ruler'> T# = T8, If T is invertible, theril® can
be defined fory < 0 as well, andl’™™ 77 = T+ is true for alla, 3 € R.

Before turning to the matrix case, we note the following general lemma.

Lemma4.1l.LetH, K, F be as above and € (0, c0).

(@) LetT € L(H). ThenF'T* = 0 if and only if FT" = 0.

(b) LetR,S € L(H)+. ThenF'(R+ S)* = 0ifand only if FR* = 0 and F'S* = 0.
Proof. (a) Supposé"T® = 0. Then|FT*/2|* = |[FT*F*| = 0, henceFT*/> = (. Repeated
application yields? € (0, 1) with FT? = 0, thusF'T = FT°T'=# = 0.

Now suppose&T’ = 0. There is nothing to prove in the case®f= 1, so assumex # 1.
If T is invertible, thenF'T™ = FTT*' = 0. If T is not invertible, then we haw € o (T,
the spectrum of/. Choose polynomialg,, € R][t] for n € N such thatf,(x) — z® for
n — oo uniformly for z € o(T'). Thenf,(T) — T* andF f,,(T) — FT“ for n — oo, hence
Ff.(T) = f.(0)F — 0forn — oo, thusFT* = 0.

(b) Part (a) shows:
FR*=0 AN FS“=0 <= FR=0AFS=0
= F(R+S5)=0
< F(R+95)*=0.

To prove the missing implication, suppoBéR + S) = 0. ThenFRF* + FSF* = 0. Because
FRF*>0andFSF* > 0, we getFRF* = 0, thus| FR"?|? = |FRF*| = 0 and FR'? = 0.
Applying (a) again giveg'R = 0. Symmetry show$'S = 0. OJ
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We will also use the following well-known property 8fx 2 matrices:

Lemma 4.2. A complexX x 2 matrix M is positive semidefinite if and only if there exisb €
[0, 00) and~y e C with |y|* < ab such that

=)

Lemmg 4.1.(b) shows that, when checking Conjedturg 2.2, one may assume the denominator
to be non-zero, or setting:= 0, in

’F R+S)%

P

Gep(F, R, S) ==
(FRc

We are searching for the supremumygf(F, R, S) over all complex2 x 2 matricest’, R, S
with R,S > 0. Forr € [0,00) andx € C definer A x := xif |z| < randr Az = (r/|z|)z
otherwise. Lemma_4l.2 shows th@athas the structure

o af| Ay
= _ =: P(a, 3,
(‘a5| A ol 62 ( B 7)
with o, 3 € R andy € C, and a corresponding representation is valid for the matrix
This means that we have to deal with six complex and four real variables, resultingsin a

dimensional real optimisation problem: Foe= (A, ..., \j5) € R® we set

F o= )\1+/\2i )\34’)\42
T )\5+/\6’i >\7+)\82

Ry = P(\g, Ao, A\11 + A1),
Sy = P(Ai3, M4, A5 + Aig

and are asking for

o(c,p) == sup qep(Fi, Ry, Sy).
AER1G

To attack this problem, GNU Octavel [5], version 2.1.57, was utilised. It offers a function
for determining the singular values of a matrix, which can be employed for calculating the
Schatten norms. For the optimisation task the implementation [6], version 2002/05/09, with
standard parameters of the Downhill Simplex Method of Nelder and Mead ([7], 10.4) was used.
The results are in perfect agreement with Conjedture 2.2. For visualisation, approximations for
o(e,p) forc € {1.2,1.4,1.6,1.8,2.0} have been calculated and plotted with a step sizef
for p, see Figure 4]|1.

The apparently smooth shapepof- o(c, p) for p < ¢, together with the fact that for eagh
a new random starting pointwas used for the Nelder-Mead algorihm, gives some confidence
in the validity of the data.

A closer inspection of some of the calculated numerical values suggests

s21)=2 o(31) =0 (L8 =25 o(58)=0(21)=2}

5 _ 35 77\ _ 8\ _ ot 6 _ 9 3\ _ ot
o(31) =053 =0(53)=0(25) =21, o(51)=0(53) =25,
which leads to the idea to looklalg, o(c, p). It seems there is a linear dependencipgf o(c, p)
from c if ¢ > p. This observation will be made precise in the next section.
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Figure 4.1: Experimental approximations @fc, p).
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5. GENERALISATION OF (MS))
Itis natural to generalis¢ (MS) and to ask for the smaligstp) € [0, oo] for ¢ € (0, 00) and

p € (0, 00] such that
"< ole,p) (’FRi )
p p

forall F € ¢,(H,K) andR,S € L(H); (and for all complex Hilbert space8 and K). It

is tempting to calb (c, p) the Schatten-Minkowski constafdr (¢, p). By choosingF # 0 and
settingR to be the identity and := 0 it can be seen that(c, p) > 1. Now Conjectur¢ 2]2 can

be re-phrased using(c, p), and, motivated by the numerical results, we add another conjecture:

Q=

‘F(R+S)

‘4 ‘FS%
p

Conjecture 5.1. (a) For1 < ¢ < 2andp > ¢ we haver(c,p) = 1.
(b) For0 < ¢ < 2andp < ¢ we haver(c, p) = 2» .
Again, the cases = 1 andc = 2 are not too difficult to prove:

1 forp>1
251 forp<1

1 forp > 2

Theorem 5.2.(a) o(1,p) = { 971 forp <2’

(b)o(2,p) = {
Proof. o(1,p) < 1forp > 1 ando(2,p) < 1for p > 2 is the subject of Theorem 2.1, while
o(c,p) > 1is noted above. Example 3.1 tells us thdt,p) > 2?1 for 0 < p < ¢ < oo,
yielding

o(l,p) > 25! forp <1 and  o(2,p) > 25! forp < 2.
Now for the missing €’ inequalities. For the case = 1, recall the inequality between the
power means of degrees< 1 and1, see e.g.[]8], 8.12, which reads

p P %
(a ;rﬁ ) < # or equivalently o” + B2 < 217 (a4 B)P
for a, 3 € [0, 00). Together with the quasi-norm inequality [of|  this gives

|[F(R+9)) < [FR[+|FS|) < 217 (|FR[, + |FS],)"
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and thus F(R + S)|, < 22~ (|FR|, + |FS] ).
For the case = 2, start with the power means inequality for the degnees2 and2,

1 1
D P\ p 2 2\ 2
(a —gﬁ )p < (a —gﬁ ) or equivalently of + B? < 2'7% (o + §?)%

for a, 5 € [0, 00). Together with the quasi-norm inequality |of]% this gives

1|P P
‘F(RJr S):| =IF(R+ S)F"|3

p

< |FRF*|} + |FSF*|3
2 2

:’FR%

P
2\ 2
p)

p 1
n ‘FSE
p

p p 1
< ol% (’FR2
V4

2 1
+ ‘FSE
P

1)
.

Starting with Conjecture 2.2, which we proved for the casesl andc = 2 in Theoren 2.1,

a numerical study df x 2 matrices led to the generalised Conjecfuré 5.1, which we also proved
for c = 1 andc = 2 in Theoren{ 5.2.

The given proofs make use of the (quasi-) triangle inequality of the Schatten (quasi-) norm.
Another ingredient to Theoren %.2 is the power means inequality. Presumably, a combination
of these inequalities shall also be central when dealing with thecasé, 2. However, it is
unclear how to apply the triangle inequality in this situation, because there is no obvious way
to get fromF' (R + S)Y/¢ to an expression wher® andS can be separated.

and consequently
’F(R +5)2

2 24 1
< 2p ‘FR2

p

2 1
n ’FSE
P
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