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Abstract

Let F be a Schatten P operator and R,S posmve operators. We show that the
inequality |F' (R + 5)« \,,g FR \,)+ FSe \1) for the Schatten p-norm |- |, is true
forp > ¢ =1andforp > ¢ = 2, conjecture it to be true for p > ¢ € [1,2], give
counterexamples for the other cases, and present a numerical study for 2 x 2
matrices. Furthermore, we have a look at a generalisation of the inequality

which involves an additional factor o(c, p). A Minkowski-Type Inequality for
the Schatten Norm
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Let H and K be complex Hilbert spaces afd< p < oo. Following [1], we
denote by, (H, K) the space of Schatteroperators!’ : H — K, equipped
with the Schattep-norm or quasi-norm- | . Note that [] deals only with the
spaces;,(H) := ¢,(H, H). The generalisations,(H, K') can be found in text-
books like P’] and [3] (there written asB,,(H, K') andS,(H, K) respectively).

By L(H) we denote the space of bounded linear operatoré/pand by
L(H), the subset of positive operators. With| := (T*T)"? € L(H), for
T € L(H, K) we have fop < co

IT|? = tr|T|P forT € c,(H, K), and consequently
TP =tr TP forT € c,(H)y := c,(H) N L(H)4.

Applying [T'|, = |T™|, for T' € ¢,(H, K), this shows in case gf < oo

yFU% ::<HQFUFﬂ§>5:|FUP”@

2 L 2
— |vip
p p
for F' € ¢,(H, K) andU € L(H),. Because - |__ is the usual operator norm,

‘FU% — |FUF*|,
2

2
p

is also true fop = oo, with the common conventioff := oo.

Our question, which arose while studying the integration of Schatten opera-

tor valued functions in4], is: For what values op € (0, oc] andc € (0, c0) is
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the Minkowski-like inequality

c

< (FR%
p

1
c

(MS) ‘F@+S)

C+‘FS%
P

true forallF" € ¢,(H, K) andR, S € L(H).?

c
p
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LetH, K,p,c, F, R, S be as above.

Theorem 2.1. Inequality (M9) is true forp > ¢ = 1 and forp > ¢ = 2.

Proof. Forp > ¢ = 1, the triangle inequality fof - |p shows

[F(R+8)|, = |[FR+ FS|, < |FR|,+|FS| .

A Minkowski-Type Inequality for

Forp > ¢ = 2, the triangle inequality fof- |, shows o Sl N
2
2 2 2 Markus Sigg
1 1 1
[F(R+ )| = |F(R+8)F|, < |FRF"|,+|FSF’|, = |FR}| +|Fs?
p p p
O Title Page
) ) Contents
Theorem2.1 suggests the following conjecture.
44 44
Conjecture 1. Inequality (MS) is true forp > ¢ € [1, 2]. p 9
Forc € (1,2) we have at the present time no proof of this conjecture for F—
other than trivial situations, not even for the special case &f 2 matrices.
However, some justification will be given in Sectidn Close
Quit
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In this section we will demonstrate, by providing counterexamples, that inequal-
ity (MS) is not necessarily true for other values (ofp) than those stated in
Conjecturel. We will offer one example fof) < p < ¢ < oo, and one for
arbitraryp whenc < 1 or ¢ > 2, both examples using x 2 matrices. The
powerU® for ¢ > 0 of a non-negative matrik/ can be calculated easily with
help of the spectral decomposition 6f

Example 3.1.Inequality (VS is violated for0 < p < ¢ < oo by

e D) =G o= )

Proof. FromU" = U for U € {R, S, R+ S} andt € (0, 00) we get

FUE| = U], = (wU7)> = (1 0),
p
yielding
(FR% _1, ‘FS% _ 1, ‘F(R+S)% — 9
p p p
and using < c,
‘FR%C+‘FS%C=2<2§=‘F(R+S)%C
p p p
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The second example makes use of an inequality which is interesting in its

own right. Seeming simple, it is surprisingly fiddly to prove:

Lemma 3.1. For z € (0,1) U (2, 00) we have

<1+%) <3+2\/5)w+ (1—%> (3 _2\/5>x <1+3%

Proof. Settingr := V5, a; == 1+ 1, ay :=1— 1, andw := 2", we have to
show

oW +agw <1+ 3%

The caser € (2,00): Setf(z) == oy w®, g(x) := asw™, h(z) == 14 37
for € (0,00). Becausev, > 0 andw > 1, g is strictly decreasing, thus
f(x) +g(z) < f(z) + g(2) for x > 2. We will show f(z) + ¢g(2) < h(z) for
x > 2. Becausef(2) + g(2) = h(2), this is done if we prove’(z) < h'(x)
for > 2, which is equivalent tay, (5)* Inw < In3. This inequality is true
for x = 2. All factors of its left side are positive, and < 3, so the left side is
strictly decreasing fox > 2. Hence the inequality is true far > 2 as well.

The caser € (0,1): After substitutings := w® and settingy := {22, we
have to prove the equivalent inequality

1 1( 1> 5
s+—+-(s——-)<1l+s
5 T s

for s € (1,w), which can be done by building a sandwich with a suitable poly-
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nomial function inside: Set

©(s) —3—1—%4—%(5—%), p(s) =2 (1+z:11>,
(5= 1)(s—w)

for s > 0. The claim is

e(s) <p(s)+q(s) <1+

for s € (1,w). The left inequality is verified by the fact that (p(s) + q(s) —
©(s)) defines a polynomial of degreewith three zeroq1, w, 3}, wherel <
w < 3, and with positive leading coefficient:= 1(¢(3) — p(3))/(3 — w). To
prove the second inequality, we inspect

P(s) =1+ $° — p(s) — q(s)

for s > 0 and gety”(s) = §(§ — 1)s°~2 — 2)\. Becausd < ¢ < 2, ¢ has a

unique zero
(66 —1)\7
30.—( N ) , 1 < sy <w,

with " (s) > 0 for s € (0, s9) andy’’(s) < 0 for s € (sp,00). Now (1) =

Y'(1) > 0, andy’ (s ) > 0fors € (1,s9) showy(s) > 0fors € (1, s0], while
Y(so) > 0, ¥ (w) = 0,7 (w) < 0,andy”(s) < 0for s € (sg,w) showyp(s) > 0
for s € [sg, w). O
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Example 3.2. Inequality (MS) is violated for0 < p < oo andc < 1 as well as
c > 2by

P (§0). (30 5= (3 )

Proof. Evaluation of the matrix powers fare (0, c) gives

Hogw' + azw™)

t t L 1<w—t_wt)
R :R’ S" = 1/ —t t 1 t —t ’
HwTt =W S(apw'+ ayw™)

2

sy L 143 1-3
2 \1-3 143

with 7 := /5, ay ::1+%,a2 :zl—%,u}:: 32i ForU € {R,S,R+ S} we
getin case op < oo

RS

SN

with u, being the top left entry of/*. Using|FU*|>, = |FU*F*|_, the case
p = o yields the same result, thus for all

FUY| = (tr(FU’”F*)%)

‘FR% — 0, )FS% - \/_ (1 w2 + iy w2/°),
p p
1 1
(F(R +9)F| =4/5(1+3%e).
p
Substituting% by z, we have to provey; w” + a, w™* < 1+ 3% for z € (2, 00)
and forz € (0, 1), which is the statement of Lemngal. O
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To justify Conjecturel, we present the results of a numerical study performed

with 2 x 2 matrices.

From functional calculus it is known: For an operaioe> 0 on a complex
Hilbert space the powerg®, T” for a, 3 € (0,00) obey the rulel>T# =
T8 If T is invertible, theril can be defined for < 0 as well, andl™™ 77° =
T+ is true for allo, 3 € R.

Before turning to the matrix case, we note the following general lemma.

Lemma4.1l.LetH, K, F be as above and € (0, c0).

(@) LetT € L(H),. ThenFT* =0 ifand only if F'T = 0.

(b) LetR,S € L(H);. ThenF(R + S)* = 0if and only if FR* = 0 and
FS* =0.
Proof. (a) Supposé'T™ = 0. Then|FT*/2° = |FT*F*| = 0, hencel'T*/2 =
0. Repeated application yielgse (0, 1) with FT° = 0, thusFT = FT°T*~
= 0.

Now supposel’”T = 0. There is nothing to prove in the case @f= 1,
so assumer # 1. If T is invertible, thenFT® = FTT> ! = 0. If T is not
invertible, then we have € o(7'), the spectrum of’. Choose polynomialg, €
R[t] for n € N such thatf,,(x) — x* for n — oo uniformly forz € (7). Then
fo(T) — T*andF f,,(T) — FT* for n — oo, henceF f,(T) = f,(0)F — 0
forn — oo, thusFT* = 0.
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(b) Part (a) shows:

FR*=0 AN FS*=0 <= FR=0AFS=0

— F(R+S)=0

<~ F(R+95)*=0.

To prove the missing implication, suppos&R + S) = 0. Then FRF* +
FSF* = 0. Becausel’'RF* > 0 and FSF* > 0, we getFRF* = 0, thus
|FRY?|> = |[FRF*| = 0 and FRY? = 0. Applying (a) again gived'R = 0.
Symmetry showg'S = 0. O]

We will also use the following well-known property 8fx 2 matrices:

Lemma 4.2. A complex2 x 2 matrix M is positive semidefinite if and only if
there exist, b € [0, 00) andy € C with |y|* < ab such that

_ (a7
= (2 ]).
Lemma4.1(b) shows that, when checking Conjectir@ne may assume the

denominator to be non-zero, or settigg: 0, in

Cc

‘F(R+S)%

P

¢ep(F,R,S) == -
|FR:

+ ‘FS%
p

p
We are searching for the supremumgpf(F, R, S) over all complex2 x 2
matricesF, R, S with R, S > 0. Forr € [0,00) andx € C definer Az := z
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if |z| < randr Az := (r/|z|) x otherwise. Lemma&.2 shows that? has the

structure )
o a D] A

with o, € R and~y € C, and a corresponding representation is valid for
the matrixS. This means that we have to deal with six complex and four real
variables, resulting in a6-dimensional real optimisation problem: Far=
(A1,..., \ig) € R we set

A Minkowski-Type Inequality for
Fo— M+ Xt A3+ i the Schatten Norm
AT s dei A Agi )

Ry := P(Xg, A1, A11 + A121),

Markus Sigg

Sx 1= P(Mi3, Mg, Ais + Aig 1) Title Page
and are asking for Contents
44 44
0<C>p) .= sup QC,p(F)\a R)\a S}\)
AE€R16 < | 2
To attack this problem, GNU Octave][ version 2.1.57, was utilised. It Go Back

offers a function for determining the singular values of a matrix, which can

be employed for calculating the Schatten norms. For the optimisation task the Close
implementation{], version 2002/05/09, with standard parameters of the Down- Quit
hill Simplex Method of Nelder and Mead (], 10.4) was used. The results are Page 12 of 19

in perfect agreement with Conjectute For visualisation, approximations for
o(c,p) forc € {1.2,1.4,1.6,1.8,2.0} have been calculated and plotted With & | Toerore ana Ao et 603 At o7 2005
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Figure 1: Experimental approximationsafc, p).

2 I I I I
c=12——
c=14 7
c=16——
c= 18 ......
c=2.0——+
09 | | | |
1 1.2 14 1.6 1.8 2

P

The apparently smooth shapepi— o(c,p) for p < ¢, together with the
fact that for eaclp a new random starting pointwas used for the Nelder-Mead
algorihm, gives some confidence in the validity of the data.

A closer inspection of some of the calculated numerical values suggests

s =2 s (1) =0 (38 =2 (38 =r(=2)
i 1
(G =0 (3 =0 () =025 =2h o(61)=0(21) =20

which leads to the idea to look kg, o(c, p). It seems there is a linear depen-
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dency oflog, o(c, p) from ¢ if ¢ > p. This observation will be made precise in
the next section.
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MS

It is natural to generalisé(S) and to ask for the smallestc, p) € [0, co] for
¢ € (0,00) andp € (0, oo] such that
)

forall F € ¢,(H,K) andR, S € L(H), (and for all complex Hilbert spaces

1
c

‘F(R%—S)

< oten) (|rrt
p

‘4 ]FS%
V4

H and K). It is tempting to callo(c, p) the Schatten-Minkowski constafar A Minkmsl;i;ﬁr&i r']nsgl:ri"ty for
(¢, p). By choosingF' # 0 and settingR to be the identity and := 0 it can be
seen that'(¢,p) > 1. Now Conjecturel can be re-phrased usingc, p), and, Markus Sigg
motivated by the numerical results, we add another conjecture:
Conjecture 2. (a) For1 < ¢ < 2 andp > ¢ we haver(c,p) = 1. Title Page

(b) For0 < ¢ < 2andp < cwe haver(c,p) = 2+ . Contents

Again, the cases = 1 andc = 2 are not too difficult to prove: 4 dd

Theorem 5.1. < 4

1 forp>1 Go Back
(a) U(lap) = 1_q

2 forp<1 Close

1 forp > 2 Quit
(b)o(2,p) =19 .2, .

2» forp <2 Page 15 of 19
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o(e,p) > 2971 for 0 < p < ¢ < oo, yielding
o(lp) =2 forp<1  and  o(2,p) 22 'forp<2,

Now for the missing £’ inequalities. For the case= 1, recall the inequality
between the power means of degrees. 1 and1, see e.g. 4], 8.12, which
reads
(ap - ﬁp) v at 15}
<
2 2 A Minkowski-Type Inequality for
for o, B € [0, 00). Together with the quasi-norm inequality [of|, this gives ISt el

or equivalently o” + 3° < 277 (a + 3)P

[F(R+S)P <|FRP+|FS[, < 27 (|[FR], + |FS|,)" R
1_
and thug F'(R + S)|, < 27 ' (IFR[, +[FS]). Title Page
For the case = 2, start with the power means inequality for the degrees
Contents
p < 2and2,
1 1 44 44
D P\ p 2 2\ 2 P P
(a erﬁ ) < (a erﬁ ) or equivalently o + 8” < 2'7z (o® + 5°)2 p >
for o, 5 € [0, 00). Together with the quasi-norm inequality |of| , this gives Go Back
2
1|P 2 Close
|[F(R+ )3 = |F(R+ )P}
P ’ 2 Quit
§|FRF*|§+|FSF*|§ Page 16 of 19
1|P 1|P P 1|2 12
= ’FR5 + ‘FS5 < ol=3 (’FRQ + ‘FS5 ) J. Ineq. Pure and Appl. Math. 6(3) Art. 87, 2005
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and consequently

‘F(R+S)%

2 2_q 1
<9 ’FRZ

2 1
+ ‘FSE
p p

)
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Starting with Conjecturd, which we proved for the cases= 1 andc = 2
in Theorem2.1, a numerical study o2 x 2 matrices led to the generalised
Conjecture2, which we also proved fof = 1 andc = 2 in Theorem5. 1.

The given proofs make use of the (quasi-) triangle inequality of the Schatten
(quasi-) norm. Another ingredient to Theoréni is the power means inequal-
ity. Presumably, a combination of these inequalities shall also be central when
dealing with the case # 1,2. However, it is unclear how to apply the tri- A Minkowski-Type Inequality for
angle inequality in this situation, because there is no obvious way to get from the Schatten Norm
F(R+ S)'/to an expression whei® and.S can be separated.
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