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Abstract

In this paper, we prove Young's inequality in quaternion matrices: for any n x n
quaternion matrices A and B, any p,q € (1,00) with % + 5 = 1, there exists
n x 1 unitary quaternion matrix Usuch that U|AB*|U* < J| AP + .| B|1.

Furthermore, there exists unitary quaternion matrix U such that the equality
holds if and only if | B| = |A[P~*.
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The two most important classical inequalities probably are the triangle inequal-
ity and the arithmetic-geometric mean inequality.

The triangle inequality states that + 5| < |a| + |5] for any complex
numbersy, (.

Thompson T] extended the classical triangle inequalityriox n complex
matrices: for anyh x n complex matricesA and B, there aren x n unitary
complex matrice$/ andV such that

(1.1) |A+ B| < UJA|U* + V|B|V".

Thompson §] proved that, the equality in the matrix-valued triangle inequality
(1.1 holds if and only ifA and B have polar decompositions with a common
unitary factor.

Furthermore, Thompsoro] extended the complex matrix-valued triangle
inequality (L.1) to the quaternion matrices: for amyx n quaternion matrices
A andB, there arex x n unitary quaternion matricds andV” such that

|A+ B| <U|A|U* 4+ V|B|V*.
The arithmetic-geometric mean inequality is as follows: for any complex num-

bersa, 3, .
Vias] < 5(lal + 1))

or, 1
aB] < S(laf + 15,
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which is a special case of the classical Young’s inequality: for any complex
numbersy, 3, and anyp, ¢ € (1,00) with > + 2 =1,

1 1
| < =fal” + | 5]".
p q

Bhatia and KittanehZ], Ando [1] extended the classical arithmetic-geometric
mean inequality and Young’s inequalityto< n complex matrices, respectively.
This is Ando’s matrix-valued Young's inequality: for anyx n complex matri-
cesA andB, anyp, q € (1, 00) with 117 + % = 1, there is unitary complex matrix
U such that ) .

UlAB*|U* < 1—9|A|p + §|B|‘1.

Bhatia and Kittaneh's result is the casepof ¢ = 2, i.e., Young’s inequality
recovers Bhatia and Kittaneh'’s arithmetic-geometric-mean inequality, likewise,
Ando’s matrix version of Young'’s inequality captures the Bhatia-Kittaneh ma-
tricial arithmetic-geometric-mean inequality.

We mention that Erlijman, Farenick and the authdrgroved Young’s in-
equality for compact operators.

This paper extends the Young’s inequalityitoc n quaternion matrices and
examines the case where equality in the inequality holds.
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We useR, C, andH to denote the set of real numbers, the set of complex
numbers, and the set of quaternions, respectively.

For anyz € H, we have the unique representatios= al + bi + ¢j + dk,
where{1,1, j, k} is the basis oH. It is well-known that/ is the multiplicative
identity of H, and1? = i? = j2 = k? = —1, ij = k., ki = j,jk = i, and
ji = —k,ik = —j, kj = —i.

For each: = al + bi + ¢j + dk € H, define the conjugateof = by

zZ=al —bi —cj —dk.

Obviously we havez = 2z = a? +1? + 2+ d?. This implies thatz = 2z = 0
if and only if z = 0. Soz is invertible inH if z # 0.

We note that as subalgebrashthfthe meaning of conjugate R, or C is as
usual (for any: € R we havez = z).

We can consideR andC as real subalgebras &f : R={al : a € R}, and
C={al +bi:a,b e R}.

We define the real representatipof H, i.e.,p : H — M, (R) by

a —b —c —d
. . b —d
p(z) = plal +bitcj+dk)=| | 0 "0 5|
d —c b a

wherez = al + bi + ¢j + dk € H.
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Note thatp(Z) is the transpose of(z).
From the real representatignof H, we define a faithful representation by
pn » M, (H) — M,,(R) as follows:

p(A) = pn([Qst]Z,tzl) = ([P(Qst)]?,t:l)

for all matricesA = [q.|7,—; € M, (H).

We note that each, is an injective and homomorphism; and for dll €
M, (H),

pr(A7) = pn(A)".

For the setM,,(F) of n x n matrices with entries frorf, whereF is R, C, or
H, we useA* to denote the conjugate transposedof M, (F).

We considenV/,,(R) andM,,(H) as algebras ovék, but,,(C) as a complex
algebra.

Definition 2.1. The spectrura(A) of A € M, (F) is a subset of that consists
of all the roots of the minimal monic annihilating polynomjabf A. We note
thatif F = RorF = H, thenf € R[z|; butif F = H, thenf € Clxz]. If
F = RorF = C, then the spectrum(A) is the set of eigenvalues df But if
F = H, theno(A) is the set of eigenvalues pf(A). A is called Hermitian if
A = A*. Ais said to be nonnegative definitedfis Hermitian ands(A) are all
non-negative real numbersl is said to be unitary ifA*A = AA* = I, wherel
is the identity matrix inV/,, ().

If AandB are Hermitian, we defind < Bor B > Aif B — Ais nonnega-
tive definite.
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For any Hermitian matrixd, A\;(A) > X (A) > --- > A\, (A) are its eigen-

values, arranged in descending order; where the number of appearances of a

particular eigenvalug is equal to the dimension of the kernel4f- I and is
known as the geometric multiplicity of.

Lemma 2.1 ([1]). If A, B € M,(C), and ifp,q € (1, 00) with 11) + % = 1, then
there is a unitaryU € M,,(C) such that

1 1
UIAB*|U* < ~|A]" + ~|B",
p q

where| A| denotes the nonnegative definite Hermitian matrix

1

|A] = (A*A)z.

Lemma 2.2 ([3]). Let@ € M, (H), then@*Q is nonnegative definite. Further-
more, if A € M,(H) is nonnegative definite, then there are matri¢éd <
M, (H) such that

(i) U is unitary andD is diagonal matrix with nonnegative diagonal entries
dl’d27 s 7dn;
(i) U*AU = D;
(i) o(A) ={d1,da,...,d,},

(iv) If © € o(A)appearst, times on the diagonal ab , then the geometric
multiplicity of . as an eigenvalue ¢f,(A)is 4¢,,.

Lemma 2.3.Forany A, B € M, (H),
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() pn(1A]) = lpn(A)];
(i) pn(|AP) = |pn(A)Pfor any nonnegative definije

(i) pu([AB[) = [pn(A)pn(B)]-
The meaning ofA| is similar to that in Lemma&.1, i.e.,|A] = (4*A)z.

Proof. (i) Note thatp, : M,(H) — M4, (R) is a homomorphism, ifX €
M, (H) is nonnegative definite, then there i¥ac M,,(H) such thatX = YY*,
SO

Pn(X> = pn(Y*Y) = pn<Y*) ’ pn(Y) = pn(Y)* ) pn(y) = |pn(Y)|,2

which means thap, (X) is also nonnegative definite. Hence, for ally €
M, (H) we have (since, is a homomorphism),

(pul1XD2)" = pulIX1) = g (11 - 1X13) = (o0 (1X12))
S0p,(|X])2 = pu <\X\%) . Therefore

(A = (pa(A*A))2 = (pu(A")pal(A))Z = |pa(A)].

We get (i).
(i) For any nonnegative definite

pr([A7) = (pn(1AD)” = lpn(A)P,
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the first equality is because, : M, (H) — M,,(R) is a homomorphism, and
the second equality is from (i).
(i) Similar to (ii) we have

pu([AB]) = |pn(AB)| = |pn(A)pn(B)].
The proof is complete. ]

The following Theoren®.4is one of our main results.

Theorem 2.4.Forany A, B € M,(H), anyp, ¢ € (1, 00) with i +$ = 1, there
is a unitaryU € M, (H), such that

1 1
UIAB*|U* < =|AP + ~|BJ".
p q

Proof. By Lemma2.3 p,,(|AB*|) = |pn(A)pn(B)*| and

1 1 1 1
Pn (_|A|p + —|B|q) = =lpn(A)P + —[pn(B)|".
p g p q

Because reah x n matrices|p,(A)p,(B)*| and Z|p,(A)P + §|pn(B)|q are
nonnegative definite, from Linear Algebra there arex n unitary matrices
V,W € M,(C) such that

1 1
Vipu(A)pu(BY |V =C and W <5|pn<A>rp+5|pn<B>|q) W - D,

whereC andD are diagonal matrices i, (R).
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Thus from Lemm&.2(iv) one has
C=0C9C,&---®C, and D=D,&Dy,&---& D,

with C; = diag{cs, cs, ..., csy andDg = diag{ds, ds, ... ,ds}, wherec, andd;
are nonnegative real numbesss 1,2, ...,n. By Lemma2.2 (iii) we have

o(|AB*|) = {c1,¢2, ..., ¢5}
and
7 (SIon A 4 LB ) = (ot o)
Furthermore, Lemma.2implies that
C=0,0Co®---®C,<D=D®Dy®---®D,.
Hence the equation above and Leminayield that
diag{cy,ca, ..., cn} < diag{dy,ds,...,d,}.

Thus from Lemma2.2 (i) (ii) (iii) there are unitary matrice$/;, U € M,,(H)
such that

1 1
GAB; < 0 (P + 1) o,
then there is a unitary matrix € M,,(H) for which
1 1
UIAB*|U* < —|A|P + —|B|“.
p q

The proof is complete. O]

The Quaternion Matrix-Valued
Young'’s Inequality

Renying Zeng

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 10 of 14

J. Ineq. Pure and Appl. Math. 6(3) Art. 89, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:zeng@siast.sk.ca
http://jipam.vu.edu.au/

Hirzallah and Kittaneh4] proved a result as follows.

Lemma 3.1. Let A, B € M,,(C) be nonnegative definite. f ¢ € (1, 00) with
% + 5 = 1, and if there exists unitary/ € M,,(C) such that

1 1
U|AB|U* = AP 4+ — B9
P q

thenB = AP~ 1,
We have the following result.
Theorem 3.2.Forany A, B € M,(H), anyp, ¢ € (1, 00) with % +% =1, there
is a unitaryU € M,,(H) such that
1 1
(3.1) U|AB*|U* = ]—)|A|p + 5|B|q

if and only if | B| = |A[P~*.
Proof. The sufficiencylin fact, if | B| = | AP~ then

0a(B)| = pu(|B]) = pul(|AP~) = |pa(A) P~

Write X = p,,(A),Y = p,(B).
SupposeX = V|X|.Y = W|Y| are the polar decomposition &f, Y re-
spectively, wherd’, W aredn x 4n unitary complex matrices. Then fror.()

we have
| XY™ = W[ X||Y||W*=W|X[PW™.
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Simply computation yields

1 1

—[ X7+ —[Y[T = | X]P.

p q
So ] ]

WHXY*|W = -|X]P+—-|Y]|%
p q
SincelV is a unitary, using the notations in Theorém, this implies
C=0100C8---®dC,=D=D1®Dy®---® D,
Hence Lemma&.2yields that
diag{cy,cay ..., cn} = diag{dy,dy, ..., d,}.

Again, by Lemma2.2, there is a unitary/ € M, (H) such that
UIAB*|U* = -|A]P + —|BJ“.
P q

The necessityAssume there exists unitafy € M, (H) such that 8.1) holds,
i.e.
wire 1 1
UIAB*|U* = —|A|P + —|BJ".
p q
Then . .
plUIAB ) = o (Sl + L)
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Writing X = p,(A),Y = p,(B), andT" = p,(U), one gets
1 1
T|XY*|T* = =|X|P 4+ =|Y|".
D q
This and Lemm&.1imply that
Y] = (X)) = |X],

which means
pu(1Bl) = pu(|ADP = pu(JA]PH).
Therefore (note that, : M, (H) — M,,(R) is a faithful representation)

B = [AP~.

This completes the proof.
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