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ABSTRACT. In this paper, we prove that the best constant for the geometric inequality11
√

3
5R+12r+k(2r−R) ≤

1
a + 1

b + 1
c is a root of one polynomial by the method of mathematical analysis and linear algebra.
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1. I NTRODUCTION AND M AIN RESULTS

In 1993, Shi-Chang Shi strengthened the familiar geometric inequality (in triangle)

(1.1)
1

a
+

1

b
+

1

c
≤
√

3

2r
to

(1.2)
1

a
+

1

b
+

1

c
≤ 1√

3

(
1

r
+

1

R

)
in [1]. After several months, Ji Chen obtained the following beautiful and strong inequality
chain in [2].
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In the same year, Xi-Ling Huang posed the following interesting inequality problem in [3].

Problem 1. Determine the best constantk for which the inequality below holds

(1.4)
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.
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In 1996, Sheng-Li Chen solved Problem 1 completely in [4]. He obtained the following
theorem.

Theorem 1.1.The best constantk for the inequality(1.2) is 2(1 + 3
√

2 + 3
√

4).

In the same year, Xue-Zhi Yang [5] strengthened the inequality

(1.5)
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In this paper we will determine the best constant for the inequality

(1.7)
11
√

3

5R + 12r + k(2r −R)
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where0 < k < 5. We obtain the following theorem.

Theorem 1.2. The maximum value ofk for which the inequality(1.7) holds is the root on the
open interval

(
0, 1

15

)
of the following equation

405k5 + 6705k4 + 129586k3 + 1050976k2 + 2795373k − 62181 = 0.

Its approximation is0.02206078402.

In fact, let k = 5
243

≈ 0.020576131687 < 0.02206078402, we immediately find that the
inequality (1.7) is just the inequality (1.6).

2. L EMMAS

In order to prove Theorem 1.1, we require several lemmas. The second was obtained by
Sheng-Li Chen in [6] (see also [7]).

Lemma 2.1. If 0 < k < 5, then the inequality

(2.1)
11
√

3

5R + 12r + k(2r −R)
≤ 1√

3

(
5

4R
+

7

8r

)
holds if and only if0 < k ≤ 5

12
.

Proof. Since0 < k < 5, it is obvious that5R + 12r + k(2r − R) > 0. Therefore, (2.1) is
equivalent to

(2.2) 7(5− k)R2 + (4k − 130)Rr + (20k + 120)r2 ≥ 0.

Setting R
2r

= x, then with Euler’s InequalityR ≥ 2r, we havex ≥ 1. Inequality (2.2) is
equivalent to

28(5− k)x2 + 2(4k − 130)x + 20k + 120 ≥ 0,

that is,

(2.3) 4(x− 1)[(35− 7k)x− 5k − 30] ≥ 0.

Considering thatx ≥ 1, (2.3) holds if and only if(35− 7k)x− 5k − 30 ≥ 0(x ≥ 1). Namely,
k ≤ 5(7x−6)

7x+5
or k ≤ min 5(7x−6)

7x+5
(x ≥ 1).

Define the function

f(x) =
5(7x− 6)

7x + 5
(x ≥ 1).
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Calculating the derivative forf(x), we get

f ′(x) = −35(7x− 6)

(7x + 5)2
+

35

7x + 5
=

385

(7x + 5)2
> 0,

and thus the functionf(x) is strictly monotone increasing on the interval[1, +∞). Thenf(x) ≥
f(1) = 5

12
. That ismin f(x) = 1 for x ≥ 1. Sok ≤ 5

12
, combining0 < k < 5, we immediately

obtain0 < k ≤ 5
12

. Thus, Lemma 2.1 is proved. �

Lemma 2.2. [6] The homogeneous inequalityF (R, r, s) ≥ (>)0 in triangle which form is
equivalent top ≥ (>)f(R, r) holds if and only if it holds by settingR = 2, r = 1 − x2,
p =

√
(1− x)(3 + x)3, where0 ≤ x < 1. And the form which is equivalent top ≤ (<)f(R, r)

holds if and only if it holds by setting the same substitution, where−1 < x ≤ 0.

Proof. It is well known that the following two inequalities

(2.4) p2 ≥ 2R2 + 10Rr − r2 − 2(R− 2r)
√

r(R− 2r)

and

(2.5) p2 ≤ 2R2 + 10Rr − r2 + 2(R− 2r)
√

r(R− 2r)

hold in any triangleABC.
Now we prove the inequality (2.4) with equality holding if and only if∆ABC is an isosceles
triangle whose top-angle is greater than or equal to60◦, and the inequality (2.5) with equality
holding if and only if∆ABC is an isosceles triangle whose top-angle is less than or equal to
60◦.
Let A be the top- angle of isosceles triangleABC, and let

t = sin
A

2
(= cos B = cos C) ∈ (0, 1),

then

sin
B

2
= sin

C

2
=

√
1− t

2
.

With known identities

r = 4R sin
A

2
sin

B

2
sin

C

2
, p = R(sin A + sin B + sin C).

in triangle, we easily obtain

(2.6) r = 2Rt(1− t), p = 2R(1 + t)
√

1− t2.

We put the identities (2.6) into the inequality (2.4) and (2.5), with simple calculations, we can
find the inequality (2.4) with equality holding if and only ift ∈

[
1
2
, 1
)

orA ≥ 60◦; the inequality
(2.5) with equality holding if and only ift ∈

(
0, 1

2

]
or A ≤ 60◦.

Then we prove the following two propositions.

Proposition 2.3. For every triangleABC, there are isosceles triangleA1B1C1 with top angle
A1 ≥ 60◦ and isosceles triangleA2B2C2 with top angleA1 ≤ 60◦ make

R1 = R2 = R, r1 = r2 = r; p1 ≤ p ≤ p2,

with p = p1 holding if and only if∆ABC is an isosceles triangle with top angleA ≥ 60◦,
p = p2 holding if and only if∆ABC is an isosceles triangle with top angleA ≤ 60◦.
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Proof. Denote
⊙

O as the circumcircle of∆ABC, then there are inscribed isosceles triangles
A1B1C1 andA2B2C2 of

⊙
O which satisfy the next two identities:

A1

2
= arcsin

1

2

(
1 +

√
1− 2r

R

)
,

A2

2
= arcsin

1

2

(
1−

√
1− 2r

R

)
.

ThenA1 ≥ 60◦, A2 ≤ 60◦ and

(2.7) sin
A1

2

(
1− sin

A1

2

)
=

r

2R
,

(2.8) sin
A2

2

(
1− sin

A2

2

)
=

r

2R
.

For isosceles trianglesA1B1C1 where the top-angle isA1 andA2B2C2 where the top-angle is
A2, we have

(2.9) sin
A1

2

(
1− sin

A1

2

)
=

r1

2R1

,

(2.10) sin
A2

2

(
1− sin

A2

2

)
=

r2

2R2

.

From (2.7) to (2.10), we getr
R

= r1

R1
= r2

R2
, and it is easy to see thatR = R1 = R2, so

r1 = r2 = r. Denoteϕ(R, r) to be the right of (2.4), thenp2 ≥ ϕ(R, r) = ϕ(R1, r1) = p2
1, so

p ≥ p1. In the same manner, we can prove thatp ≤ p2. �

Proposition 2.4.
(i) If the inequalityp ≥ (>)f1(R, r) holds for any isosceles triangle whose top-angle is

greater than or equal to60◦, then the inequalityp ≥ (>)f1(R, r) holds for any triangle.
(ii) If the inequalityp ≤ (<)f1(R, r) holds for any isosceles triangle whose top-angle is

less than or equal to60◦, then the inequalityp ≤ (<)f1(R, r) holds for any triangle.

Proof. For any∆A′B′C ′, with Proposition 2.3, we know there is an isosceles triangleA1B1C1

which make
R1 = R′, r1 = r′, p1 ≤ p′.

Because the inequalityp ≥ (>)f1(R, r) holds for isosceles triangleA1B1C1, we have

p′ ≥ p1 ≥ (>)f1(R1, r1) = f1(R
′, r′).

Thus, the inequalityp ≥ (>)f1(R, r) holds for ∆A′B′C ′. In the same way we can prove
(ii). �

From Proposition 2.4, the homogeneous inequality in triangle whose form is equivalent to
p ≥ (>)f(R, r) holds if and only if it holds by settingR = 2, r = 4t(1 − t), p = 4(1 +

t)
√

1− t2. Takingt = x+1
2

, we immediately getr = 1−x2, p =
√

(1− x)(3 + x)3, where0 ≤
x < 1. For the homogeneous inequality in triangle whose form is equivalent top ≤ (<)f(R, r),
we only need to change the range ofx. Namely, we change0 ≤ x < 1 to be−1 < x ≤ 0.
Thus, the proof of Lemma 2.2 is completed. (The proof was given by Sheng-Li Chen in [6].)�
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Lemma 2.5. [8] Denote

f(x) = a0x
n + a1x

n−1 + · · ·+ an,

g(x) = b0x
m + b1x

m−1 + · · ·+ bm.

If a0 6= 0 or b0 6= 0, then the polynomialsf(x) andg(x) have a common root if and only if

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 · · · an 0 · · · 0
0 a0 a1 · · · an−1 an · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · a0 · · · · · · · · · an

b0 b1 b2 · · · · · · · · · · · · 0
0 b0 b1 · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · b0 b1 · · · bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

whereR(f, g) is Sylvester’s Resultant off(x) andg(x).

3. PROOF OF THEOREM 1.1

Proof. With known identitiesabc = 4Rrp andab + bc + ca = p2 + 4Rr + r2 in triangle, we
easily know the inequality (1.7) is equivalent to

(3.1)
11
√

3

5R + 12r + k(2r −R)
≤ p2 + 4Rr + r2

4Rrp
.

The inequality (3.1) is equivalent to the following inequality

(3.2) [5R + 12r + k(2r −R)]p2 − 44
√

3Rrp + [5R + 12r + k(2r −R)](4Rr + r2) ≥ 0.

(i) If

∆(R, r) = (44
√

3Rr)2 − 4[5R + 12r + k(2r −R)]2(4Rr + r2) < 0,

it is obvious that the inequality (3.2) holds.
(ii) If

∆(R, r) = (44
√

3Rr)2 − 4[5R + 12r + k(2r −R)]2(4Rr + r2) ≥ 0,

then the inequality (3.2) is equivalent to

(3.3) p ≥
44
√

3Rr +
√

∆(R, r)

2[5R + 12r + k(2r −R)]

or

(3.4) p ≤
44
√

3Rr −
√

∆(R, r)

2[5R + 12r + k(2r −R)]
.

In fact, the inequality (3.4) does not hold. From (1.3) and (1.7), we have

(3.5)
11
√

3

5R + 12r + k(2r −R)
≤ 1√

3

(
5

4R
+

7

8r

)
.
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By Lemma 2.1, we know that0 < k ≤ 5
12

. It is easy to see that the following inequalities
hold

44
√

3Rr −
√

∆(R, r)

2[5R + 12r + k(2r −R)]
≤ 44

√
3Rr

2[5R + 12r + k(2r −R)]
(3.6)

≤ 22
√

3Rr[
5R + 12r + 5

12
(2r −R)

] .
Now we prove the next inequality

(3.7) p ≥ 22
√

3Rr[
5R + 12r + 5

12
(2r −R)

] .
The inequality (3.7) is equivalent to

(3.8) p2 ≥ 1452R2r2[
5R + 12r + 5

12
(2r −R)

]2 .

With Gerretsen’s Inequalityp2 ≥ 16Rr − 5r2, in order to prove the inequality (3.8), we only
need to prove the following inequality.

(3.9) 16Rr − 5r2 ≥ 1452R2r2[
5R + 12r + 5

12
(2r −R)

]2 .

The inequality (3.9) is equivalent to

(3.10) r(400R3 + 387R2 + 2436Rr − 980r3) ≥ 0.

With Euler’s inequalityR ≥ 2r, we easily see that the inequality (3.10) holds. So, the inequality
(3.7) holds. Then the inequality (3.4) does not hold. Therefore, the inequality (3.2) is equivalent
to the inequality (3.3). From Lemma 2.2, the inequality (3.2) holds if and only if the following
inequality holds.

8(1− x)(3 + x)
[
(2x + 3)(11− 6x2 − kx2)− 11

√
3(x + 1)

√
(1− x)(3 + x)

]
≥ 0(3.11)

(0 ≤ x < 1).

The inequality (3.11) holds whenx = 0. When0 < x < 1, the inequality (3.11) is equivalent
to

(3.12) k ≤
(2x + 3)(11− 6x2)− 11

√
3(x + 1)

√
(1− x)(3 + x)

x2(2x + 3)
.

Define the function

g(x) =
(2x + 3)(11− 6x2)− 11

√
3(x + 1)

√
(1− x)(3 + x)

x2(2x + 3)
,(3.13)

(0 < x < 1).

Calculating the derivative forg(x), we get

(3.14) g′(x) =
−22

[√
3(x4 + 5x3 + 2x2 − 9x− 9) + (2x + 3)2

√
(1− x)(3 + x)

]
x3(2x + 3)2

√
(1− x)(3 + x)

.

Let g′(x) = 0, we get

(3.15) 3x5 + 30x4 + 103x3 + 134x2 + 48x− 18 = 0, (0 < x < 1).
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It is easy to see that the equation (3.15) has the only one positive root on the open interval(0, 1).
Denotex0 to be the root of the equation (3.15). Then

g(x)min = g(x0) =
(2x0 + 3)(11− 6x2

0)− 11
√

3(x0 + 1)
√

(1− x0)(3 + x0)

x2
0(2x0 + 3)

.

Therefore, the maximum ofk is g(x0). Now we proveg(x0) is the root of the equation

405k5 + 6705k4 + 129586k3 + 1050976k2 + 2795373k − 62181 = 0.

It is easy to find thatg(x0) is a root of the following equation.

x2
0(2x0 + 3)2t2 − 2(2x0 + 3)2(11− 6x2

0)t + 144x4
0 + 432x3

0 + 159x2
0 − 132x0 + 22 = 0.

We know that
3x5

0 + 30x4
0 + 103x3

0 + 134x2
0 + 48x0 − 18 = 0.

Considering the simultaneous equations

(3.16)


x2

0(2x0 + 3)2t2 − 2(2x0 + 3)2(11− 6x2
0)t + 144x4

0

+432x3
0 + 159x2

0 − 132x0 + 22 = 0

3x5
0 + 30x4

0 + 103x3
0 + 134x2

0 + 48x0 − 18 = 0

The simultaneous equations (3.16) can be changed to the simultaneous equations as follows.

(3.17)


4(t + 6)2x4

0 + 12(t + 6)2x3
0 + (9t2 + 20t + 159)x2

0

−132(2t + 1)x0 − 198t + 22 = 0

3x5
0 + 30x4

0 + 103x3
0 + 134x2

0 + 48x0 − 18 = 0

Then,

Rx0(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4(t + 6)2 12(t + 6)2 · · · 22− 198t 0 · · · 0
0 4(t + 6)2 · · · · · · 22− 198t · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 4(t + 6)2 · · · · · · 22− 198t
3 30 · · · −18 0 0 0
0 3 30 · · · −18 0 0
0 0 3 30 · · · −18 0
0 0 0 3 30 · · · −18

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 100(405t5 + 6705t4 + 129586t3 + 1050976t2 + 2795373t− 62181)

× (405t5 − 178425t4 − 1656374t3 − 13317290t2 − 100675599t− 330639021).

The solution of the equationRx0(f, g) = 0 is the union of the solution of the equation

(3.18) 405t5 + 6705t4 + 129586t3 + 1050976t2 + 2795373t− 62181 = 0,

and the equation

(3.19) 405t5 − 178425t4 − 1656374t3 − 13317290t2 − 100675599t− 330639021 = 0.

With differential calculus, it is easy to see that the equation (3.19) has no root on the interval
[0, 1]. We can getg(x0) < 1, with Lemma 2.5, we can conclude thatg(x0) is the real root of the
equation (3.18). Define the function

(3.20) f(t) = 405t5 + 6705t4 + 129586t3 + 1050976t2 + 2795373t− 62181.
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Thenf( 1
15

) = 2174963624
16875

> 0. Therefore, the real root of the equation (3.18) is on the interval
(0, 1

15
).

Thus, the proof of Theorem 1.2 is completed. �
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