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ABSTRACT. Inthis paper, we prove that the best constant for the geometric ine i ﬂr\/k%%_m <

% + % + % is a root of one polynomial by the method of mathematical analysis and linear algebra.

Key words and phrasesBest Constant, Geometric Inequality, Euler’s Inequality, Gerretsen’s Inequality, Sylvester’s Resultant.

2000Mathematics Subject Classificat/oRrimary 52A40. Secondary 52C05.

1. INTRODUCTION AND MAIN RESULTS
In 1993, Shi-Chang Shi strengthened the familiar geometric inequality (in triangle)

1 1 1 3
(1.1) —+—+—§£
a b ¢ 2r
to
1 1 1 1 /1 1
1.2 e
(1.2 a+b+c_\/§<7’+R)

in [1]. After several months, Ji Chen obtained the following beautiful and strong inequality
chain in [2].

5R+12r_5+b c_ﬁ E—i_&“
In the same year, Xi-Ling Huang posed the following interesting inequality problem in [3].

(1.3) 113 PR 1<1(5 7>'

Problem 1. Determine the best constantor which the inequality below holds
1 1 1 1 |1 1 1/2 1

1.4 ST I (i

(1.4) a+b+c_\/§[R+r+k(R r)]
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2 Y.-D. Wu

In 1996, Sheng-Li Chen solved Probl¢in 1 completely in [4]. He obtained the following
theorem.

Theorem 1.1. The best constarit for the inequality(T.2)is 2(1 4 /2 + v/4).
In the same year, Xue-Zhi Yangl [5] strengthened the inequality
113 _l 1

1. S
(1.5) S5R+12r —a b
to

243+/3 1 1 1
(1.6) —f<_+_+—.

11I0R+266r —a b ¢
In this paper we will determine the best constant for the inequality
11v/3 1 1 1
\/_ S -+ -+ )
SR+12r+k(2r—R) “a b ¢
where( < k£ < 5. We obtain the following theorem.

(1.7)

Theorem 1.2. The maximum value d@f for which the inequality{L.7) holds is the root on the
open interval(0, ;=) of the following equation
405k + 6705k" 4+ 129586k> + 1050976k + 2795373k — 62181 = 0.
Its approximation i€).02206078402.
In fact, letk = 22—3 ~ 0.020576131687 < 0.02206078402, we immediately find that the
inequality [1.7) is just the inequality (1.6).

2. LEMMAS

In order to prove Theorein 1.1, we require several lemmas. The second was obtained by
Sheng-Li Chen in[6] (see alsol[7]).

Lemma 2.1.1f 0 < k& < 5, then the inequality

2.1) 113 < 1 /(5 7
SR+ 12r+k(2r—R) — /3
holds if and only i) < k& < 2.

Proof. Since0 < k < 5, it is obvious thatbR + 12r + k(2r — R) > 0. Therefore,[(2]1) is
equivalent to

(2.2) 7(5 — k)R?* + (4k — 130) Rr + (20k + 120)r* > 0.

Setting% = z, then with Euler’s Inequality? > 2r, we havezr > 1. Inequality [2.2) is
equivalent to

4R+87“

28(5 — k)a? 4 2(4k — 130)z 4 20k + 120 > 0,
that is,
(2.3) 4(z — 1)[(35 — Tk)z — 5k — 30] > 0.

Considering that: > 1, (2.3) holds if and only i35 — 7k)x — 5k — 30 > 0(z > 1). Namely,

5(7x—6) . 5(7Tz—6)
k S e ork S min 7515 (l’ Z 1)

Define the function

5(7x — 6)

flo) = Tx+5

(x >1).
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Calculating the derivative fof (x), we get

(=) 35 _ 385
(Tx+5)2  T7x+5 (Tx+5)2 ’

and thus the functioyfi(x) is strictly monotone increasing on the interfial4-oco). Thenf(x) >

f(1) = 3. Thatismin f(z) = 1 for z > 1. Sok < 3, combining0 < k < 5, we immediately

obtain0 < k < 5. Thus, Lemma 2|1 is proved. O

f'(x) =

Lemma 2.2. [6] The homogeneous inequality(R,r,s) > (>)0 in triangle which form is
equivalent top > (>)f(R,r) holds if and only if it holds by setting = 2, r = 1 — 22,
p=+/(1—2)(3+ )3, whered <z < 1. And the form which is equivalent to< (<) f(R,r)
holds if and only if it holds by setting the same substitution, whdre< = < 0.

Proof. It is well known that the following two inequalities

(2.4) p> > 2R* 4+ 10Rr —r* — 2(R — 2r)\/r(R — 2r)
and
(2.5) p® <2R* + 10Rr — r* + 2(R — 2r)\/r(R — 2r)

hold in any triangleA BC'.

Now we prove the inequality (2.4) with equality holding if and onlyNfA BC' is an isosceles
triangle whose top-angle is greater than or equalOfg and the inequality| (2]5) with equality
holding if and only if AABC'is an isosceles triangle whose top-angle is less than or equal to
60°.

Let A be the top- angle of isosceles triangl&C', and let

A
t = sin 5(: cos B =cos(C) € (0,1),

then
. B . C 1—t
SN — = 81N — = —_—.
2 2 2
With known identities
A B  C
r:4Rsin5sin§sin5, p= R(sin A +sin B +sinC).

in triangle, we easily obtain
(2.6) r=2Rt(1 —1t), p=2R(1+t)Vv1—1t2

We put the identitied (2]6) into the inequalify (2.4) ahd](2.5), with simple calculations, we can
find the inequality[(2]4) with equality holding if and onlytiE [%, 1) or A > 60°; the inequality

(2.3) with equality holding if and only if € (0,1] or 4 < 60°.

Then we prove the following two propositions.

Proposition 2.3. For every triangleABC, there are isosceles trianglé, B, C; with top angle
A1 > 60° and isosceles triangld, B,C5 with top angleAd; < 60° make

Ri=Ry=R, m1=ra=1r; p <p<po,

with p = p; holding if and only ifAABC'is an isosceles triangle with top anglé > 60°,
p = po holding if and only ifAABC' is an isosceles triangle with top angle < 60°.

J. Inequal. Pure and Appl. Math6(4) Art. 111, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 Y.-D. Wu

Proof. Denote(®) O as the circumcircle oA ABC, then there are inscribed isosceles triangles
A, B,Cy and A, BoC5, of (O O which satisfy the next two identities:

Al . 1 1+ 1 2r
—— = arcsin — - —
5 arcs 5 R |

Ay 1 ] ] 2r
—= = arcsin — — - — .
5 arcs 5 7

ThenA; > 60°, A, < 60° and

A A

(2.7) sin 71 (1 — sin 71) = %‘?’
A A

(2.8) sin 72 (1 — sin 72) = %—?

For isosceles triangled; B;C; where the top-angle id; and A, B,C5 where the top-angle is
As, we have

A A _n
(29) SIHT (1 — S 7) = 2—R1,

Ay Ay _ T
(210) SIHT (1 — S1n 7) = 2_R2

From (2.7) to [(2.10), we gef = - = 7o, and it is easy to see th&t = R; = R, sO
ry = ro = r. Denotep(R,r) to be the right of[(Z}4), thep? > ©(R,r) = p(Ry,m1) = p?, SO
p > p1. In the same manner, we can prove that p,. O

Proposition 2.4.

(i) If the inequalityp > (>)f1(R,r) holds for any isosceles triangle whose top-angle is
greater than or equal t60°, then the inequality > (>) f1(R, ) holds for any triangle.

(i) If the inequalityp < (<)fi(R,r) holds for any isosceles triangle whose top-angle is
less than or equal t60°, then the inequality < (<) f1(R, ) holds for any triangle.

Proof. For anyA A’B’'C", with Propositior 2.3, we know there is an isosceles trianglg; C,
which make
Ri=R, rm=r, p<p.
Because the inequality> (>) f1(R, ) holds for isosceles trianglé, B, C}, we have
P >p1> () AR, ) = AR ).
Thus, the inequality > (>)fi(R,r) holds for AA’B'C’. In the same way we can prove
(17). O
From Propositioni 2]4, the homogeneous inequality in triangle whose form is equivalent to
p > (>)f(R,r) holds if and only if it holds by setting? = 2, r = 4¢(1 —t), p = 4(1 +
t)V1 — 2. Takingt = “f*, we immediately get = 1 — 2%, p = /(1 — 2)(3 + z)3, where0 <
x < 1. For the homogeneous inequality in triangle whose form is equivalenttd<) f (R, r),

we only need to change the rangerofNamely, we change < x < 1tobe—1 <z < 0.
Thus, the proof of Lemnja 2.2 is completed. (The proof was given by Sheng-Li Chen in [8].)
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Lemma 2.5. [8] Denote

f(x) = apx” + a1z + -+ + an,
g(x) = box™ + bya™ 4+ -+ by

If ap # 0 or by # 0, then the polynomialg(x) andg(x) have a common root if and only if

ao al a2 an O “ee 0
0 a a - ap_1 ay
- 0 0 ag an, o
R(f.9) = bo by by - e eee oo 0 =0,
0 b b 0
0 0 0 b() bl bm

whereR(f, g) is Sylvester’s Resultant ¢f ) andg(z).

3. PROOF OF THEOREM [1.1

Proof. With known identitiesabc = 4Rrp andab + be + ca = p? + 4Rr + r? in triangle, we
easily know the inequality (1.7) is equivalent to

11v3 < p? + 4Rr + 12

3.1
3.1 SR+ 12r+k(2r — R) — 4Rrp

The inequality[(3.]1) is equivalent to the following inequality
(3.2) [5RA+12r + k(2r — R)]p* — 44V3Rrp + [5R 4+ 12r + k(2r — R)](4Rr 4+ 1%) > 0.
(i) If
A(R,7) = (44V3Rr)? — A[5R 4 12r + k(2r — R)]*(4Rr + r?) < 0,

it is obvious that the inequality (3.2) holds.
(i) If
A(R,7) = (44V3Rr)? — 4[5R + 12r + k(2r — R)]*(4Rr 4+ 1) > 0,

then the inequality (3]2) is equivalent to

44V3Rr + /AR, 1)
(3.3) PZ OBR + 12r + k(2r — R)]

or
44v/3Rr — \/A(R, T
(3.4) p < (7, 7) .
2[5R + 12r + k(2r — R)]
In fact, the inequality] (314) does not hold. Frdm {1.3) gnd|(1.7), we have
(35) 11y < L(24l)
S5R+12r+k(2r—R) — /3 \4R 8r
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By Lemmd 2.1, we know that < k < 3. Itis easy to see that the following inequalities

hold
(3.6) 44~/3Rr — A(R,r) < 44~/3Rr
2[bR+ 12r + k(2r — R)] — 2[BR+ 12r + k(2r — R)]
22v/3Rr

< :
= [BR+12r 4+ 35(2r — R)]
Now we prove the next inequality

22v/3Rr
5R+12r + 2(2r — R)]
The inequality[(3.7) is equivalent to

(3.7) p> [

1452 R?r?
(3.8) p? > o2t .
[5R+12r + 3(2r — R)]
With Gerretsen’s Inequality? > 16Rr — 5r?, in order to prove the inequality (3.8), we only
need to prove the following inequality.
1452 R?%r?

(3.9) 16Rr — 512 >
[5R+12r + 3(2r — R)]

R

The inequality[(3.P) is equivalent to
(3.10) r(400R3 + 387R? + 2436 Rr — 980r3) > 0.

With Euler’s inequalityR > 2r, we easily see that the inequaliy (3.10) holds. So, the inequality
(3.7) holds. Then the inequality (3.4) does not hold. Therefore, the inequality (3.2) is equivalent
to the inequality[(3.3). From Lemnja 2.2, the inequality(3.2) holds if and only if the following
inequality holds.

(3.11) 8(1—)(3 + ) [(Q:E +3)(11 — 622 — ka?) — 11V3(z + VA - 2)3 + 35)] >0
(0<z<1).

The inequality[(3.1]1) holds when= 0. When0 < z < 1, the inequality[(3.1]1) is equivalent
to

(27 +3)(11 — 62%) — 11V/3(x + 1)1/(1 — 2)(3 + )
222z + 3)

(3.12) k<

Define the function

(3.13) g() =

(22 + 3)(11 — 622) — 11/3(z + 1)/(1 — 2)(3 + 2)
22z + 3) ’
(0<z<1).

Calculating the derivative faj(z), we get

—22 [\/3(a! + 5a® + 222 — 92 — 9) + (22 + 3)2 /(1 — 2)(3 + x)]
2322 + 3)2/(1 — 2)(3 + ) .

(314) ()=

Let¢'(z) = 0, we get
(3.15) 37° 4+ 302" +1032° + 1342 + 482 — 18 =0, (0 <z < 1).
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It is easy to see that the equatidn (3.15) has the only one positive root on the open [tdryval
Denotex to be the root of the equation (3]15). Then

(220 + 3)(11 — 622) — 11v/3 (w0 + 1)1/(1 — 20) (3 + o)
x3(2x0 + 3)
Therefore, the maximum dfis g(x,). Now we provey(z,) is the root of the equation
405k° + 6705k* 4+ 129586k + 1050976k + 2795373k — 62181 = 0.
It is easy to find thag(z) is a root of the following equation.
z5(2x0 + 3)°t* — 2(2x0 + 3)*(11 — 620)t + 14day + 43227 + 15925 — 13220 + 22 = 0.
We know that

9(2)min = g(wo) =

32§ + 30z + 103z) 4 13422 + 48z — 18 = 0.
Considering the simultaneous equations
23(2z0 + 3)%t% — 2(2z0 + 3)%(11 — 623)t + 144x]

(3.16) +43223 + 15923 — 13239 +22 =0

3z + 30xy + 10323 + 13422 + 4879 — 18 = 0
The simultaneous equations (3.16) can be changed to the simultaneous equations as follows.

4(t + 6)%xg + 12(¢ + 6)%z3 + (9t2 + 20t + 159)
—132(2t + 1)xg — 198t + 22 = 0

(3.17)
3z + 302y + 10323 + 13422 + 4825 — 18 = 0
Then,
4(t+6)* 12(t+6)* --- 22—198¢ 0 e 0
0 At 46)2 - e 22198 .- 0
B 0 0 4(t+6)? cee 22198t
Ball) =1 3 30 .- —18 0 0 0
0 3 30 .- —18 0 0
0 0 3 30 S =18 0
0 0 0 3 30 o =18

= 100(405t° + 6705t* + 129586t> 4 1050976t + 2795373t — 62181)
x (405t° — 178425t* — 1656374¢> — 13317290t* — 100675599t — 330639021).
The solution of the equatioR,,(f, g) = 0 is the union of the solution of the equation
(3.18) 405t° 4 6705t* + 129586t + 1050976t + 2795373t — 62181 = 0,
and the equation
(3.19) 405> — 178425t — 1656374t> — 13317290t* — 100675599t — 330639021 = 0.

With differential calculus, it is easy to see that the equafion [3.19) has no root on the interval
[0, 1]. We can gey(zo) < 1, with Lemmd 2.5, we can conclude thdt) is the real root of the
equation[(3.18). Define the function

(3.20) f(t) = 405t + 6705t* + 129586t + 1050976t* + 2795373t — 62181.
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Then f(55) = 25855022 > . Therefore, the real root of the equati¢n (3.18) is on the interval
0. 1).
Thus, the proof of Theorem 1.2 is completed. O
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