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Abstract

We discuss a refinement of an inequality from Information Theory using other
well known inequalities. Then we consider relationships between the logarith-
mic mean and inequalities of the geometric-arithmetic means.
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The following inequality is well known in Information Theory]| see also4].

Proposition 1.1. Letp;,g; > 0, wherel < i < nand) " pi = > ., ¢
Then0 < > | p; In(p;/g;) with equality iffp; = g¢;, for all 4.

The following improves this inequality. Indeed, the lower bound is sharp-
ened, an upper bound is provided, and the equality condition is built right in.

Proposition 1.2. Letp;,g; > 0, wherel < i < nand) " pi = > ., ¢.

A Refinement of an Inequality

Then the foIIowing estimates hold.

n

9i9i — Pi 9i(9i — pi)?
; (9:)% + (max gi, pi)) sz In ( ) = Z (9:)? -

+ (min(gs,po)?

Proof. We begin with the inequalityd]

1 ln( ) 1
1.1 < < —, for
(1.1) Pal o =gy ore=t
Thus ) ,
- —1 e —
<1 < for <1
2 n(x)_IQ—Fl O<zsl,
and ) )
- —1 e —
x2+1§1n(w)§ forl <uz.
Equalities occur only for: = 1. We rewrite these as
(x —1)? r(r — 1)
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and

—1)2 _1)2
M<ln(1’)<x—1—u forl <.

1. -1
(1.3) v 24+1 — - 2x

Now, substitutingy; /p; for z in (1.2) and (L.3), and then summing we obtain

9i\gi — Di gi
So-Xr- X it < T (2)

)

9i<pi 9i<p; 9:<pi g<pi
9i(9i — pi>2
< Z 9i — Z bi — Z 2 T3
gi<pi 9i<pi 9i<pi (gz) + (pz)
and
Gi gz pl) Ji
oY Y A 5 (5)
gi>pi 9i>Pi Gi>Pi (9:)* + (i) P Di
gi gz pi)2
Sl Y iy
9i>Pi 9i>Di 95 >Ds 9i gi

respectively.
Taking these together and usihg’ | p; =
O

> | g: we have our proposition.
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Remark 2.1. WithG = \/zy, L = (z — y)/(In(z) — In(y)), and A = (z +
y)/2, being the Geometric, Logarithmic, and Arithmetic Meansaf > 0
respectively, the inequality < L < Ais well known {], [2]. This can be
proved by observing (c.f5]) that

1
L:/ iyl =t dt,
0

and then applying the following:

Theorem 2.1 (Hadamard'’s Inequality). If f is a convex function ofa, b], then

(b—a)f (Hb) /f par < 1O * f<>(b—a)

with the inequalities being strict whefhis not constant.

The inequality in {.1) now can be obtained by letting=1/zin G < L <
A. Thus any refinement ¢f < L < A would lead to an improved version of
(1.1) and, in principle, to an improvenemt of Propositibr?. For example, it is
also known thati < G545 < L < 2G'+ 1A < A[3],[€],[2]. The latter can
be proved simply by observing that the left side of Hadamard’s Inequality is the
midpoint approximation\/ to L and the right side is the trapezoid approxima-
tion 7. Now%M + %T is Simpson’s rule and looking at the error term there
(e.9. [ yieldsL < 2G + ;A < A.
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Remark 2.2. UsingG < G545 < L < 2G'+ 1A < A, withy = z + 1 we get

2 4+ 1\
Vel T < (Ve s ) (25
1 2 122 +1 2z +1
< - <z D+ .
"1+ 1) 3 et 3—H—s—

Therefore
1/3

14 =
T

1\ 2Velern+y 2 1\ (Voo (252)
( ) <e< (1 + —)
T

(c.f. [4]). For exampler = 100 gives2.71828182842204 < e < 2.71828182846830.
Nowe = 2.71828182845905. . ., so the left and right hand sides are both cor-
rect to 10 decimal places. We point out also thatloes not need to be an

integer.

Remark 2.3. UsingG < G5 A3 < L < 2G + 1A < A, and replacingz with
e” and lettingy = e~ 7, we have
2 1

inh
1 < (cosh(z))? < sinh(z) < 3 + — cosh(z) < cosh(x).
x

w
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