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ABSTRACT. A non-parametric symmetric measure of divergence which belongs to the family of
Csiszar'sf-divergences is proposed. Its properties are studied and bounds in terms of some well
known divergence measures obtained. An application to the mutual information is considered. A
parametric measure of information is also derived from the suggested non-parametric measure. A
numerical illustration to compare this measure with some known divergence measures is carried
out.
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1. INTRODUCTION

Several measures of information proposed in literature have various properties which lead
to their wide applications. A convenient classification to differentiate these measures is to
categorize them as: parametric, non-parametric and entropy-type measures of inforimation [9].
Parametric measures of information measure the amount of information about an unknown
parametef supplied by the data and are functiongofr he best known measure of this type is
Fisher’'s measure of information [10]. Non-parametric measures give the amount of information
supplied by the data for discriminating in favor of a probability distributfpragainst another
fa2, or for measuring the distance or affinity betwegrand f,. The Kullback-Leibler measure
is the best known in this class [12]. Measures of entropy express the amount of information
contained in a distribution, that is, the amount of uncertainty associated with the outcome of an
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2 PRANESHKUMAR AND ANDREW JOHNSON

experiment. The classical measures of this type are Shannon’s and Rényi's measures [15, 16].
Ferentimos and Papaioannu [9] have suggested methods for deriving parametric measures of
information from the non-parametric measures and have studied their properties.

In this paper, we present a non-parametric symmetric divergence measure which belongs to
the class of Csiszar'g-divergences ([2,13,14]) and information inequalities. In Sedtion 2, we
discuss the Csiszar’s-divergences and inequalities. A symmetric divergence measure and its
bounds are obtained in Sectiph 3. The parametric measure of information obtained from the
suggested non-parametric divergence measure is given in Selction 4. Application to the mutual
information is considered in Sectiph 5. The suggested measure is compared with other measures
in Sectior 6.

2. CsiISszAR’S f—DIVERGENCES AND INEQUALITIES

Let Q = {z1,29,...} be a set with at least two elements dhdhe set of all probability
distributions P = (p(z) : z € 2) on Q. For a convex functiorf : [0,00) — R, the f-
divergenceof the probability distributiong” and @ by Csiszar,[[4] and Ali & Silvey, [[1] is
defined as

(2.1) CHP.Q) =S ala)f (M) .

€ Q(:E)

Henceforth, for brevity we will denot€'s(P, Q), p(z), ¢(x) and Y by C(P,Q), p, ¢ and

€
>, respectively.

Osterreicher [13] has discussed basic general propertigsinergences including their ax-
iomatic properties and some important classes. During the recent past, there has been a con-
siderable amount of work providing different kinds of bounds on the distance, information and
divergence measures ([5] = [7],_118]). Taneja and Kumar [17] unified and generalized three
theorems studied by Dragomir [5] = [7] which provide bounds'gi®, )). The main result in
[17] is the following theorem:

Theorem 2.1.Letf : I ¢ R, — R be a mapping which is normalized, i.¢(1) = 0 and
suppose that

(i) f is twice differentiable orir, R), 0 < r <1 < R < oo, (f’ and f” denote the first
and second derivatives ¢,

(i) there exist real constants, M such thatn < M andm < 2>~ f"(x) < M, Vx €
(r,R), seR

If P,Q € P? are discrete probability distributions with < » < § < R < oo, then
(2.2) m &y (P, Q) < C(P,Q) < Moy (P,Q),
and

(23) m (ns(Pa Q)_(I)s(Pv Q)) S Cp(PaQ) - C<P7 Q) g M (ns(Pa Q)—CI)S(P, Q))v

where

2K'S(P, Q), s#0,1
(2.4) O,(P,Q) =< K(Q,P), s=0
K(PQ), s=1
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(2.5) K(P,Q) = [s(s— " [Ypd " —1], s#£0.1,
(2.6) K(P,Q) =Y phn (g) ,
2.7) C,(P.Q) =Cy (% P)-cpr=Sw-ar (1),
and
2.8) 0(P.Q) = Co (5 P) - Co(P.0)
fe-nrse-a(r)T s
) Z(p—q)ln(’g’), s=1

The following information inequalities which are interesting from hi®rmationtheoretic
point of view, are obtained from Theor¢m 2.1 and discussed.in [17]:

(i) The cases = 2 provides the information bounds in terms of the chi-square divergence

(P, Q):
29) THAP.Q) < C(P.Q) < TA(P.Q).
and
210) TNP.Q) < C(P.Q) - C(P.Q) £ 5C(P.Q)
where
(p—q)?
(2.12) V(PQ) =)
(i) For s = 1, the information bounds in terms of the Kullback-Leibler divergedcep?, Q):
(2.12) mK(P,Q) < C(P,Q) < MK(P,Q),
and
(2.13) mK(Q, P) < C,(P.Q) — C(P,Q) < MK(Q, P).
(iii) The cases = 3 provides the information bounds in terms of the Hellinger’s discrimina-
tion, h(P, Q):
(2.14) 4mh(P,Q) < C(P,Q) < AMh(P,Q),
and
2.15)  4m (}lm/g(}z Q) — h(P, Q)) < C,(P,Q) - C(P.Q)
<4M (inl/Q(Pv Q) - h(Pa Q)) ’
where
WPV
(2.16) h(P.Q)=>_ S
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4 PRANESHKUMAR AND ANDREW JOHNSON

(iv) Fors = 0, the information bounds in terms of the Kullback-Leibler artedivergences:
(2.17) mK(P,Q) < C(P,Q) < MK(P,Q),
and
(218)  m (\*(Q.P)~K(Q.P)) < C,)(P.Q) — C(P,Q) < M (x*(Q, P)~K(Q,P)).

3. A SYMMETRIC DIVERGENCE MEASURE OF THE CSISZAR’S f—DIVERGENCE
FAMILY

We consider the functioifi : (0, 00) — R given by

(u? —1)°
(3.1) flu) = o
and thus the divergence measure:
(r*—¢*)*

3.2 UM(P,Q) :=C¢P,Q)=)Y ——-.
(32) (P,Q):=Cs(P,Q) Zz(pq)g/z
Since

, (5u® + 3) (u* — 1)
(33) ') = =155
and
(3.4) () = 15u 4+ 2u? + 15

8,7/2 ?
it follows that f”(u) > 0 for all u > 0. Hencef (u) is convex for allu > 0 (Figure[3.1).

14 -

12

10 -

f(u)

S

0 0.5 1 15 2 25 3 35 4

Figure 3.1: Graph of the convex functiofi(u).

Furtherf(1) = 0. Thus we can say that the measuraasnegativendconvexin the pair of
probability distributiong P, Q) € €.
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Noticing that¥ M (P, Q) can be expressed as

(p+a)(p—q)
pq

(3.5) VM(P,Q) =)

) [

this measure is made up of tegmmetric chi-square, arithmet@mdgeometric meadivergence
measures.

Next we prove bounds fob M (P, @) in terms of the well known divergence measures in the
following propositions:

Proposition 3.1. Let WM (P, Q) be as in ) and the symmetnié-divergence

(3:6) V(P,Q) = *(P.Q) +(Q.P) =Y A q;f(f —a)”

Then inequality
(3.7) YM(P,Q) > ¥(P,Q),
holds and equality, ifP = Q.

Proof. From thearithmetic (AM) geometric (GMpandharmonic mean (HMnequality, that is,
HM < GM < AM, we have

HM < GM,

2
or, ﬂ < pq,

pP+q

2
p+q> pP+yq
3.8 or, > .
(3:8) (%/pq 2./Pq

Multiplying both sides of) bﬁ(f}T;)g and summing over alt € ), we prove). O
Next, we derive the information bounds in terms of the chi-square divergeiiéeQ).

Proposition 3.2. Letx*(P, Q) and WM (P, Q) be defined ag (2.11) and (B.2), respectively. For
P,QGIP’QandO<r§§§R<oo,wehave

15R*+2R? + 15 15r% + 2r2 + 15

(3.9) epE X (PQ) SUM(PQ) < ———7m——X"(P.Q),
and
15R*+2R?> + 15
157 +2r2 + 15 9
e X (PQ),
where

_ 2 2 2 2
(3.11) wM,(P,Q) = S (p q)(p4p5gq)3§§p +3¢%)

Proof. From the functionf(v) in (3.1), we have

(3.12) flw= =)0,
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6 PRANESHKUMAR AND ANDREW JOHNSON

and, thus
34 WP =Y -0 (2)
(p— @) (p* — ¢*) (5% + 3¢)
:Z — p4p5/gq3/2p ! :
Further,
4 2

{u7/2
Now if u € [a,b] C (0,0), then

15(0* + 1) + 2v* 15(a* + 1) + 2a?

(3.15) < f(u) <

8b7/2 8@7/2 ’
or, accordingly
15R* +2R* + 15 1571 +2r2 + 15
(3.16) FolE < ['(u) < STz
wherer and R are defined above. Thus, in view ¢f (2.9) apd (2.10), we get inequalitigs (3.9)
and [3.10), respectively. O

The information bounds in terms of the Kullback-Leibler divergehAde, () follow:

Proposition 3.3. Let K (P, Q), VM (P, Q) andW M, (P, Q) be defined a$ (2.6], (3.2) arjd (3.13),

respectively. If?, Q € P2 and0 < r < § < R < o0, then

15R* +2R?> + 15 15r* +2r2 + 15
and
15R* +2R?> + 15
(3.18) Foap K(Q,P) < UM,(P,Q) — YM(P,Q)
15r% + 2r2 + 15

< K@P).

Proof. From ),f”(u) = Lt " ) et the functiony : [r, R] — R be such that
" 15<U4 + 1) + 2u2
Then
. 15R* +2R?> + 15

(3.20) uél[}n,fR] g(u) = Yk
and

15r* +2r2 + 15
(3.21) sup g(u) = S5

The inequalities (3.17) anf (3]18) follow from (2]12), (2.13) usjng (3.20)[and|(3.21). O

The following proposition provides the information bounds in terms of the Hellinger’s dis-
criminationh (P, Q) andn, 2 (P, Q).
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Proposition 3.4. Letn;2(P, Q), h(P,Q), ¥M(P,Q) and WM,(P, Q) be defined as iff (2.7),

), ) and3), respectively. FBrQ € P> and0 < r < 2 < R < oo,

157 +2r2 +1 15R* +2R% + 15
e g) < wm(pg) < P2 Bp )

(3.22)

and

(3.23)

4 2
15r +272£ +15 Gﬁm(RQ) —MP,Q))
< VM, (P,Q) — YM(P,Q)

< 15R*+2R?> + 15 (1 >

>~ 2R2 1771/2<P7 Q) - h‘(P7 Q)

Proof. We havef”(u) = 2 tD2e from ). Let the function : [r, R] — R be such that

Su7/2

(3.24) o) = 62 () = 15(ut + 1) + 2u?
' Su? '
Then

1574 + 2r% + 15

3.25 inf =

(329 2t 90 = =g

and

15R* +2R?> + 15

(3.26) sup g(u) = o 121 :

u€lr,R] 81?2
Thus, the inequalitie$ (3.22) arjd (3.23) are established dsing (2.14), (2.15), (3.25) ahd (3.26).
(]

Next follows the information bounds in terms of the Kullback-Leibler aAelivergences.
Proposition 3.5. Let K(P,Q), x*(P,Q), YM(P,Q) and VM, (P, Q) be defined as if (25),

), ) and3), respectively.#fQ € P? and0 < r <2 < R < oo, then

157% + 2r2 + 15 15R*+2R?> + 15

(3.27) LER(PQ) < uM(P.Q) < PSR R(PQ)
and
(3.28) i 241520, P-K(Q. P)

8r3/2
S \IJMP<P7 Q) - \IJM(Pa Q)

15R*+2R* + 15
e (@ P)-K(@Q,P)).

Proof. From ),f”(u) = 15(“::# Let the functiory : [r, R] — R be such that
_15(ut 4+ 1) 4 202

<

2
Then
. 15r* +2r2 + 15
(3.30) uelﬂ‘,fR] g(u) = 53
and
15R* +2R? + 15
@3 =
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Thus, [3.2F) and (3.28) follow from (2.117), (2]18) usifg (3.30) and (3.31). O

4. PARAMETRIC MEASURE OF INFORMATION WA¢(P, Q)

The parametric measures of information are applicable to regular families of probability dis-
tributions, that is, to the families for which the following regularity conditions are assumed to
be satisfied. Let fo# = (6, .. . 0 ), the Fisher[[10] information matrix be

Ep [&log f(X, 0)}2, if 9 is univariate;
(4.1) 1,(0) =

if 0 is k-variate,
kxk

| B0 | 108 7 (X, 0) 5 Tog £(X, 6)]
where|| - ||xxx denotes & x k matrix.

The regularity conditions are:

R1) f(z,0) > 0forall z € Q andd € ©;

R2) 5 f(X,0) exists forallz € Qandd e © and alli = 1,.. ., k;

R3) & [, f(z,0)du = [, 7 f(z,0)duforany A € A (measurable spadeX, A) in respect

of a finite oro- finite measure:),all § € © and alli.

Ferentimos and Papaioannou [9] suggested the following method to construct the parametric
measure from the non-parametric measure:

Let k£(0) be a one-to-one transformation of the parameter sgaamto itself withk(6) # 6.
The quantity

(4.2) 110, k(0)] = L[ (2,0), f(x, k(0))],

can be considered as a parametric measure of information baséddion
This method is employed to construct the modified Csiszar's measure of information about
univariated contained inX and based oh(#

(4.3) I€00, k(0 /f z,0)¢ ( (9‘9)))) dpu.

Now we have the following proposition for prowdlng the parametric measure of information
from VM (P, Q):

Proposition 4.1. Let the convex functiop : (0,00) — R be

uw? —1)°
(@.9 o = A

and corresponding non-parametric divergence measure

e - LI

Then the parametric measuieM © (P, Q)

(4.5) UME(P,Q) = I°[0, k(0)] = Z%.

Proof. For discrete random variablés, the expression (5.3) can be written as

(4.6) 16, k(0)) = 3" ple)o (M) |

€N p(x)
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From (4.4), we have
a2\ (¢’
(4.7) ¢ (p(x)) - 2p5/2q3/2 ]
where we denotg(z) andg(x) by p andg, respectively.

Thus, ¥ MC(P, Q) in (4.5) follows from [4.6) and (4]7). O

Note that the parametric measube//“ (P, Q) is the same as the non-parametric measure
UM (P, Q). Further, since the properties gf\/ (P, ) do not require any regularity conditions,
UM (P, Q) is applicable to the broad families of probability distributions including the non-
regular ones.

5. APPLICATIONS TO THE MUTUAL |INFORMATION

Mutual information is the reduction in uncertainty of a random variable caused by the knowl-
edge about another. It is a measure of the amount of information one variable provides about
another. For two discrete random variablsand Y with a joint probability mass function
p(z,y) and marginal probability mass functiop&r), = € X andp(y), y € Y, mutual informa-
tion /(X;Y') for random variables( andY” is defined by

V) — o)y P& Y)
(5.1) HX?Y)_(I,%;MM ,y)1 e
that is,
(5.2) I(X;Y) =K (p(x,9),p(x)py)) ,

where K (-, -) denotes the Kullback-Leibler distance. Thu$X:;Y) is the relative entropy
between the joint distribution and the product of marginal distributions and is a measure of how
far a joint distribution is from independence.

The chain rule for mutual information is

(5.3) I(Xy,.. . X Y) =Y I(XsY[X0, ., Xio).
=1

The conditional mutual information is defined by

(5.4) I(XY | Z) = ((X3Y)|2) = H(X|Z) - H(XY, Z),

whereH (v|u), the conditional entropy of random variahlgivenw, is given by

(5.5) H(v|u)=> Y plu,v)np(v|u).
In what follows now, we will assume that
p(z,y)
p(z)p(y)

It follows from (5.8) thatt <1 < T.
Dragomir, Gliscevic and Pearcé [8] proved the following inequalities for the meaSu(e’, ()):

(5.6) t <

<T,forall (z,y) € X x Y.

Theorem 5.1.Let f : [0,00) — R be such thatf’ : [r, R] — R is absolutely continuous on
[r, Rl and f” € Ly[r, R]. Definef* : [r, R] — R by

(5.7) P =+ =g ().
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Suppose thal < r < § < R < 00. Then

IN

X (PNl
(B =11 =)l
(R = 7)1 "o

whereC's- (P, Q) is the Csiszér’s“-divergencel) withf taken asf* andx?(P, Q) is defined
in @17).

We define the mutual information:

‘Cf(P7 Q) - Cf*<P7Q)‘

VAN
N

(5.8)

IN
Sl =

2
(59) InX2'Sense:[X2(X;Y) — Z p (:Evy) 1

(5.10) InWM-sense: Iy (X;Y) =
(z,y)EXXY

Now we have the following proposition:

Proposition 5.2. Letp(z, y), p(x) andp(y) be such that < p’(’i’)”;@) < T, forall (z,y) € XxY

and the assumptions of Theorgm|5.1 hold good. Then

(511) [I(X;Y)— > [p.y) — p(z)a(y)]ln [p(:c,y)+p(x)q(y)”

(z,y)EXXY 2p($)Q(y)
L2(X:;Y) ATT/?
<= Ton (X:Y).
- 4t = (1574 + 272 + 15) o (X3Y)

Proof. Replacingp(z) by p(z,y) andg(z) by p(z)q(y) in (2.7), the measur€;(P,Q) =
I(X;Y). Similarly, for f(u) = wlnu, and

P =+ - (52,

2
we have
[*(X,Y) :Cf*(P>Q)
N oo [ (P@) + @)
= 3pte) —at@) i (P50 )
_ p(z,y) + p(x)q(y)

z€Q

Since||f"||sc = sup||f”(u)|| = %, the first part of inequality[ (5.11) follows fron (5.8) and
(G.12)

For the second part, consider Proposifior} 3.2. From inequility (3.9),

15T 4 272 + 15

(5.13) o

XA(P,Q) < YM(P,Q).
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Under the assumptions of Propositjon|5.2, inequdlity (5.13) yields

La2(X;Y) ATT/?
5.14 X < Ty (X3Y),
(-14) 4t T t(15T4 4 272 + 15) war (X Y)
and hence the desired inequaljty (3.11). O

6. NUMERICAL |LLUSTRATION

We consider two examples of symmetrical and asymmetrical probability distributions. We
calculate measures)M (P, Q), ¥ (P, Q), x*(P,Q), J(P,Q) and compare bounds. Her,P, Q)
is the Kullback-Leibler symmetric divergence:

q

Example 6.1 (Symmetrical) Let P be the binomial probability distribution for the random
variable X with parameter§n = 8, p = 0.5) and () its approximated normal probability
distribution. Then

Table 1. Binomial probability Distributiofin = 8, p = 0.5).

JP.Q) = K(PQ) + K(Q.P) = Y- o) (%),

x 0 1 2 3 1 5 6 7 8
p(2) 0.004 [ 0.031 [ 0.109 |0.219 | 0.274 | 0.219 | 0.109 | 0.031 | 0.004
q(z) 0.005 | 0.030 | 0.104 |0.220 | 0.282 | 0.220 | 0.104 | 0.030 | 0.005
p(z)/q(x) [ 0.774 | 1.042 [ 1.0503 | 0.997 | 0.968 | 0.997 | 1.0503 | 1.042 | 0.774

The measure¥ M (P, Q), ¥(P,Q), x*(P,Q) andJ(P, Q) are:

UM (P, Q) = 0.00306097, W¥(P,Q) = 0.00305063,
Y2(P,Q) = 0.00145837, J(P,Q) = 0.00151848.

It is noted that
r (= 0.774179933) < £ < R (= 1.050330018).
q

The lower and upper bounds fér\/ (P, Q) from (3.9):

15R*+ 2R+ 15
Lower Bound = e X (P, Q) = 0.002721899
157" + 2r2 + 15
8r7/2

and, thus,0.002721899 < VM (P,Q) = 0.003060972 < 0.004819452. The width of the
interval is0.002097553.

Upper Bound= (P, Q) = 0.004819452

Example 6.2(Asymmetrical) Let P be the binomial probability distribution for the random
variable X with parameterg§n = 8, p = 0.4) and () its approximated normal probability
distribution. Then

Table 2. Binomial probability Distributiofin = 8,p = 0.4).

x 0 1 2 3 4 5 6 7 8
() 0.017 | 0.090 | 0.209 | 0.279 | 0.232 | 0.124 | 0.041 | 0.008 | 0.001
q(z) 0.020 | 0.082 [ 0.198 [ 0.285 | 0.244 | 0.124 | 0.037 | 0.007 | 0.0007
p(x)/q(x) | 0.850 | 1.102 | 1.056 | 0.979 | 0.952 | 1.001 | 1.097 | 1.194 | 1.401
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From the above data, measured/ (P, Q), V(P,Q), x*(P, Q) andJ(P, Q) are calculated:
UM (P,Q) = 0.00658200, W(P,Q) = 0.00657063,
YA(P,Q) = 0.00333883, J(P,Q) = 0.00327778.

Note that
r (= 0.849782156) < £ < R (= 1.401219652),
q

and the lower and upper bounds fbi/ (P, Q) from (4.5):

4 2
Lower Bound = 2% 1+6 }2;;2 15 20p 0 = 0.004918045
1574 4+ 2r2 415
1677/2

Thus,0.004918045 < WM (P, Q) = 0.006582002 < 0.00895164. The width of the interval is
0.004033595.

It may be noted that the magnitude and width of the interval for meaBuféP, Q) increase
as the probability distribution deviates from symmetry.

Figure[6.1 shows the behavior®f\/ (P, Q)-[New], ¥ (P, Q)- [Sym-Chi-square] and (P, Q)-
[Sym-Kull-Leib]. We have considered= (a,1 — a) andg = (1 — a,a), a € [0,1]. Itis clear
from Figure 3.1 that measurds\/ (P, Q) and ¥ (P, Q) have a steeper slope thd(P, Q).

Upper Bound= Y*(P, Q) = 0.00895164.

‘ —-—--Sym-Chi-Square New - - - - Sym-Kullback-Leibler ‘

Figure 6.1: Newl' M (P, @), Sym-Chi-Squar@ (P, ), and Sym-Kullback-Leiblef (P, Q).
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