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Abstract

A non-parametric symmetric measure of divergence which belongs to the family
of Csiszár’s f -divergences is proposed. Its properties are studied and bounds
in terms of some well known divergence measures obtained. An application to
the mutual information is considered. A parametric measure of information is
also derived from the suggested non-parametric measure. A numerical illustra-
tion to compare this measure with some known divergence measures is carried
out.
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1. Introduction
Several measures of information proposed in literature have various properties
which lead to their wide applications. A convenient classification to differen-
tiate these measures is to categorize them as: parametric, non-parametric and
entropy-type measures of information [9]. Parametric measures of information
measure the amount of information about an unknown parameterθ supplied by
the data and are functions ofθ. The best known measure of this type is Fisher’s
measure of information [10]. Non-parametric measures give the amount of in-
formation supplied by the data for discriminating in favor of a probability distri-
butionf1 against anotherf2, or for measuring the distance or affinity betweenf1

andf2. The Kullback-Leibler measure is the best known in this class [12]. Mea-
sures of entropy express the amount of information contained in a distribution,
that is, the amount of uncertainty associated with the outcome of an experi-
ment. The classical measures of this type are Shannon’s and Rényi’s measures
[15, 16]. Ferentimos and Papaioannou [9] have suggested methods for deriv-
ing parametric measures of information from the non-parametric measures and
have studied their properties.

In this paper, we present a non-parametric symmetric divergence measure
which belongs to the class of Csiszár’sf -divergences ([2, 3, 4]) and information
inequalities. In Section2, we discuss the Csiszár’sf -divergences and inequal-
ities. A symmetric divergence measure and its bounds are obtained in Section
3. The parametric measure of information obtained from the suggested non-
parametric divergence measure is given in Section4. Application to the mutual
information is considered in Section5. The suggested measure is compared
with other measures in Section6.
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2. Csiszár’sf−Divergences and Inequalities
Let Ω = {x1, x2, . . . } be a set with at least two elements andP the set of all
probability distributionsP = (p(x) : x ∈ Ω) on Ω. For a convex function
f : [0,∞) → R, thef -divergenceof the probability distributionsP andQ by
Csiszár, [4] and Ali & Silvey, [1] is defined as

(2.1) Cf (P, Q) =
∑
x∈Ω

q(x)f

(
p(x)

q(x)

)
.

Henceforth, for brevity we will denoteCf (P, Q), p(x), q(x) and
∑
x∈Ω

by

C(P, Q), p, q and
∑

, respectively.
Österreicher [13] has discussed basic general properties off -divergences

including their axiomatic properties and some important classes. During the
recent past, there has been a considerable amount of work providing different
kinds of bounds on the distance, information and divergence measures ([5] – [7],
[18]). Taneja and Kumar [17] unified and generalized three theorems studied by
Dragomir [5] – [7] which provide bounds onC(P, Q). The main result in [17]
is the following theorem:

Theorem 2.1. Let f : I ⊂ R+ → R be a mapping which is normalized, i.e.,
f(1) = 0 and suppose that

(i) f is twice differentiable on(r, R), 0 ≤ r ≤ 1 ≤ R < ∞ , (f ′ and f ′′

denote the first and second derivatives off ),

(ii) there exist real constantsm, M such thatm < M andm ≤ x2−sf ′′(x) ≤
M, ∀x ∈ (r, R), s ∈ R.
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If P, Q ∈ P2 are discrete probability distributions with0 < r ≤ p
q
≤ R < ∞,

then

(2.2) m Φs(P, Q) ≤ C(P, Q) ≤ M Φs(P, Q),

and

m (ηs(P, Q)−Φs(P, Q)) ≤ Cρ(P, Q)− C(P, Q)(2.3)

≤ M (ηs(P, Q)−Φs(P, Q)) ,

where

(2.4) Φs(P, Q) =


2Ks(P, Q), s 6= 0, 1

K(Q,P ), s = 0

K(P, Q), s = 1

2Ks(P, Q) = [s(s− 1)]−1
[∑

psq1−s − 1
]
, s 6= 0, 1,(2.5)

K(P, Q) =
∑

p ln

(
p

q

)
,(2.6)

Cρ(P, Q) = Cf
′

(
P 2

Q
, P

)
− Cf

′ (P, Q) =
∑

(p− q)f ′
(

p

q

)
,(2.7)
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and

ηs(P, Q) = Cφ′
s

(
P 2

Q
, P

)
− Cφ′

s
(P, Q)(2.8)

=


(s− 1)−1

∑
(p− q)

(
p
q

)s−1

, s 6= 1∑
(p− q) ln

(
p
q

)
, s = 1

.

The following information inequalities which are interesting from theinfor-
mation-theoreticpoint of view, are obtained from Theorem2.1and discussed in
[17]:

(i) The cases = 2 provides the information bounds in terms of the chi-square
divergenceχ2(P, Q):

(2.9)
m

2
χ2(P, Q) ≤ C(P, Q) ≤ M

2
χ2(P, Q),

and

(2.10)
m

2
χ2(P, Q) ≤ Cρ(P, Q)− C(P, Q) ≤ M

2
χ2(P, Q),

where

(2.11) χ2(P, Q) =
∑ (p− q)2

q
.
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(ii) For s = 1, the information bounds in terms of the Kullback-Leibler diver-
gence,K(P, Q):

(2.12) mK(P, Q) ≤ C(P, Q) ≤ MK(P, Q),

and

(2.13) mK(Q,P ) ≤ Cρ(P, Q)− C(P, Q) ≤ MK(Q,P ).

(iii) The cases = 1
2

provides the information bounds in terms of the Hellinger’s
discrimination,h(P, Q):

(2.14) 4mh(P, Q) ≤ C(P, Q) ≤ 4Mh(P, Q),

and

4 m

(
1

4
η1/2(P, Q)− h(P, Q)

)
(2.15)

≤ Cρ(P, Q)− C(P, Q)

≤ 4M

(
1

4
η1/2(P, Q)− h(P, Q)

)
,

where

(2.16) h(P, Q) =
∑ (√

p−√q
)2

2
.
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(iv) For s = 0, the information bounds in terms of the Kullback-Leibler and
χ2-divergences:

(2.17) mK(P, Q) ≤ C(P, Q) ≤ MK(P, Q),

and

m
(
χ2(Q,P )−K(Q,P )

)
≤ Cρ(P, Q)− C(P, Q)(2.18)

≤ M
(
χ2(Q, P )−K(Q,P )

)
.
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3. A Symmetric Divergence Measure of the Csiszár’s
f−Divergence Family

We consider the functionf : (0,∞) → R given by

(3.1) f(u) =
(u2 − 1)

2

2u3/2
,

and thus the divergence measure:

(3.2) ΨM(P, Q) := Cf (P, Q) =
∑(p2−q2)2

2 (pq)3/2
.

Since

(3.3) f ′(u) =
(5u2 + 3) (u2 − 1)

4u5/2

and

(3.4) f ′′(u) =
15u4 + 2u2 + 15

8u7/2
,

it follows that f ′′(u) > 0 for all u > 0. Hencef(u) is convex for allu > 0
(Figure1).

Furtherf(1) = 0. Thus we can say that the measure isnonnegativeand
convexin the pair of probability distributions(P, Q) ∈ Ω.

Noticing thatΨM(P, Q) can be expressed as

(3.5) ΨM(P, Q) =
∑ [

(p + q)(p− q)2

pq

] [
(p + q)

2

] [
1
√

pq

]
,
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Figure 1. Graph of the Convex Function fu.

,

Figure 1: Graph of the convex functionf(u).

this measure is made up of thesymmetric chi-square, arithmeticandgeometric
meandivergence measures.

Next we prove bounds forΨM(P, Q) in terms of the well known divergence
measures in the following propositions:

Proposition 3.1.LetΨM(P, Q) be as in (3.2) and the symmetricχ2-divergence

(3.6) Ψ(P, Q) = χ2(P, Q) + χ2(Q,P ) =
∑ (p + q)(p− q)2

pq
.
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Then inequality

(3.7) ΨM(P, Q) ≥ Ψ(P, Q),

holds and equality, iffP = Q.

Proof. From thearithmetic (AM), geometric (GM)andharmonic mean (HM)
inequality, that is,HM ≤ GM ≤ AM , we have

HM ≤ GM,

or,
2pq

p + q
≤ √

pq,

or,

(
p + q

2
√

pq

)2

≥ p + q

2
√

pq
.(3.8)

Multiplying both sides of (3.8) by 2(p−q)2√
pq

and summing over allx ∈ Ω, we
prove (3.7).

Next, we derive the information bounds in terms of the chi-square divergence
χ2(P, Q).

Proposition 3.2. Let χ2(P, Q) andΨM(P, Q) be defined as (2.11) and (3.2),
respectively. ForP, Q ∈ P2 and0 < r ≤ p

q
≤ R < ∞, we have

15R4 + 2R2 + 15

16R7/2
χ2(P, Q) ≤ ΨM(P, Q)(3.9)

≤ 15r4 + 2r2 + 15

16r7/2
χ2(P, Q),
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and

15R4 + 2R2 + 15

16R7/2
χ2(P, Q) ≤ ΨMρ(P, Q)−ΨM(P, Q)(3.10)

≤ 15r4 + 2r2 + 15

16r7/2
χ2(P, Q),

where

(3.11) ΨMρ(P, Q) =
∑ (p− q)(p2 − q2)(5p2 + 3q2)

4p5/2q3/2
.

Proof. From the functionf(u) in (3.1), we have

(3.12) f
′
(u) =

(u2 − 1)(3 + 5u2)

4u5/2
,

and, thus

ΨMρ(P, Q) =
∑

(p− q)f ′
(

p

q

)
(3.13)

=
∑ (p− q)(p2 − q2)(5p2 + 3q2)

4p5/2q3/2
.

Further,

(3.14) f ′′(u) =
15(u4 + 1) + 2u2

8u7/2
.
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Now if u ∈ [a, b] ⊂ (0,∞), then

(3.15)
15(b4 + 1) + 2b2

8b7/2
≤ f ′′(u) ≤ 15(a4 + 1) + 2a2

8a7/2
,

or, accordingly

(3.16)
15R4 + 2R2 + 15

8R7/2
≤ f ′′(u) ≤ 15r4 + 2r2 + 15

8r7/2
,

wherer andR are defined above. Thus, in view of (2.9) and (2.10), we get
inequalities (3.9) and (3.10), respectively.

The information bounds in terms of the Kullback-Leibler divergenceK(P, Q)
follow:

Proposition 3.3. LetK(P, Q), ΨM(P, Q) andΨMρ(P, Q) be defined as (2.6),
(3.2) and (3.13), respectively. IfP, Q ∈ P2 and0 < r ≤ p

q
≤ R < ∞, then

15R4 + 2R2 + 15

8R5/2
K(P, Q) ≤ ΨM(P, Q)(3.17)

≤ 15r4 + 2r2 + 15

8r5/2
K(P, Q),

and

15R4 + 2R2 + 15

8R5/2
K(Q,P ) ≤ ΨMρ(P, Q)−ΨM(P, Q)(3.18)

≤ 15r4 + 2r2 + 15

8r5/2
K(Q,P ).

http://jipam.vu.edu.au/
mailto:
mailto:kumarp@unbc.ca
mailto:
mailto:
mailto:johnsona@unbc.ca
http://jipam.vu.edu.au/


On A Symmetric Divergence
Measure and Information

Inequalities

Pranesh Kumar and
Andrew Johnson

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 14 of 30

J. Ineq. Pure and Appl. Math. 6(3) Art. 65, 2005

http://jipam.vu.edu.au

Proof. From (3.4), f ′′(u) = 15(u4+1)+2u2

8u7/2 . Let the functiong : [r, R] → R be
such that

(3.19) g(u) = uf
′′
(u) =

15(u4 + 1) + 2u2

8u5/2
.

Then

(3.20) inf
u∈[r,R]

g(u) =
15R4 + 2R2 + 15

8R5/2

and

(3.21) sup
u∈[r,R]

g(u) =
15r4 + 2r2 + 15

8r5/2
.

The inequalities (3.17) and (3.18) follow from (2.12), (2.13) using (3.20) and
(3.21).

The following proposition provides the information bounds in terms of the
Hellinger’s discriminationh(P, Q) andη1/2(P, Q).

Proposition 3.4. Let η1/2(P, Q), h(P, Q), ΨM(P, Q) and ΨMρ(P, Q) be de-
fined as in (2.7), (2.15), (3.2) and (3.13), respectively. ForP, Q ∈ P2 and
0 < r ≤ p

q
≤ R < ∞,

(3.22)
15r4 + 2r2 + 15

2r2
h(P, Q) ≤ ΨM(P, Q) ≤ 15R4 + 2R2 + 15

2R2
h(P, Q),
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and

15r4 + 2r2 + 15

2r2

(
1

4
η1/2(P, Q)− h(P, Q)

)
(3.23)

≤ ΨMρ(P, Q)−ΨM(P, Q)

≤ 15R4 + 2R2 + 15

2R2

(
1

4
η1/2(P, Q)− h(P, Q)

)
.

Proof. We havef ′′(u) = 15(u4+1)+2u2

8u7/2 from (3.4). Let the functiong : [r, R] →
R be such that

(3.24) g(u) = u3/2f ′′(u) =
15(u4 + 1) + 2u2

8u2
.

Then

(3.25) inf
u∈[r,R]

g(u) =
15r4 + 2r2 + 15

8r2

and

(3.26) sup
u∈[r,R]

g(u) =
15R4 + 2R2 + 15

8R2
.

Thus, the inequalities (3.22) and (3.23) are established using (2.14), (2.15),
(3.25) and (3.26).

Next follows the information bounds in terms of the Kullback-Leibler and
χ2-divergences.
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Proposition 3.5. Let K(P, Q), χ2(P, Q), ΨM(P, Q) and ΨMρ(P, Q) be de-
fined as in (2.5), (2.10), (3.2) and (3.13), respectively. IfP, Q ∈ P2 and
0 < r ≤ p

q
≤ R < ∞, then

15r4 + 2r2 + 15

8r3/2
K(P, Q) ≤ ΨM(P, Q)(3.27)

≤ 15R4 + 2R2 + 15

8R3/2
K(P, Q),

and
15r4 + 2r2 + 15

8r3/2
(χ2(Q, P )−K(Q,P )(3.28)

≤ ΨMρ(P, Q)−ΨM(P, Q)

≤ 15R4 + 2R2 + 15

8R3/2

(
χ2(Q,P )−K(Q,P )

)
.

Proof. From (3.4), f ′′(u) = 15(u4+1)+2u2

8u7/2 . Let the functiong : [r, R] → R be
such that

(3.29) g(u) = u2f ′′(u) =
15(u4 + 1) + 2u2

8u3/2
.

Then

(3.30) inf
u∈[r,R]

g(u) =
15r4 + 2r2 + 15

8r3/2

and

(3.31) sup
u∈[r,R]

g(u) =
15R4 + 2R2 + 15

8R3/2
.

Thus, (3.27) and (3.28) follow from (2.17), (2.18) using (3.30) and (3.31).
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4. Parametric Measure of Information ΨM c(P, Q)

The parametric measures of information are applicable to regular families of
probability distributions, that is, to the families for which the following regular-
ity conditions are assumed to be satisfied. Let forθ = (θ1, . . . θk), the Fisher
[10] information matrix be

(4.1) Ix(θ)

=


Eθ

[
∂
∂θ

log f(X, θ)
]2

, if θ is univariate;∥∥∥Eθ

[
∂

∂θi
log f(X, θ) ∂

∂θj
log f(X, θ)

]∥∥∥
k×k

if θ is k-variate,

where|| · ||k×k denotes ak × k matrix.
The regularity conditions are:

R1) f(x, θ) > 0 for all x ∈ Ω andθ ∈ Θ;

R2) ∂
∂θi

f(X, θ) exists for allx ∈ Ω andθ ∈ Θ and alli = 1, . . . , k;

R3) d
dθi

∫
A

f(x, θ)dµ =
∫

A
d

dθi
f(x, θ)dµ for any A ∈ A (measurable space

(X, A) in respect of a finite orσ- finite measureµ),all θ ∈ Θ and alli.

Ferentimos and Papaioannou [9] suggested the following method to con-
struct the parametric measure from the non-parametric measure:

Letk(θ) be a one-to-one transformation of the parameter spaceΘ onto itself
with k(θ) 6= θ. The quantity

(4.2) Ix[θ, k(θ)] = Ix[f(x, θ), f(x, k(θ))],
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can be considered as a parametric measure of information based onk(θ).
This method is employed to construct the modified Csiszár’s measure of

information about univariateθ contained inX and based onk(θ) as

(4.3) IC
x [θ, k(θ)] =

∫
f(x, θ)φ

(
f(x, k(θ))

f(x, θ)

)
dµ.

Now we have the following proposition for providing the parametric measure
of information from ΨM(P, Q):

Proposition 4.1. Let the convex functionφ : (0,∞) → R be

(4.4) φ(u) =
(u2 − 1)

2

2u3/2
,

and corresponding non-parametric divergence measure

ΨM(P, Q) =
∑(p2−q2)2

2 (pq)3/2
.

Then the parametric measureΨMC(P, Q)

(4.5) ΨMC(P, Q) := IC
x [θ, k(θ)] =

∑(p2−q2)2

2 (pq)3/2
.

Proof. For discrete random variablesX, the expression (5.3) can be written as

(4.6) IC
x [θ, k(θ)] =

∑
x∈Ω

p(x)φ

(
q(x)

p(x)

)
.
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From (4.4), we have

(4.7) φ

(
q(x)

p(x)

)
=

(p2 − q2)
2

2p5/2q3/2
,

where we denotep(x) andq(x) by p andq, respectively.
Thus,ΨMC(P, Q) in (4.5) follows from (4.6) and (4.7).

Note that the parametric measureΨMC(P, Q) is the same as the non-parametric
measureΨM(P, Q). Further, since the properties ofΨM(P, Q) do not require
any regularity conditions,ΨM(P, Q) is applicable to the broad families of prob-
ability distributions including the non-regular ones.
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5. Applications to the Mutual Information
Mutual information is the reduction in uncertainty of a random variable caused
by the knowledge about another. It is a measure of the amount of information
one variable provides about another. For two discrete random variablesX and
Y with a joint probability mass functionp(x, y) and marginal probability mass
functionsp(x), x ∈ X andp(y), y ∈ Y, mutual informationI(X; Y ) for random
variablesX andY is defined by

(5.1) I(X; Y ) =
∑

(x,y)∈X×Y

p(x, y) ln
p(x, y)

p(x)p(y)
,

that is,

(5.2) I(X; Y ) = K (p(x, y), p(x)p(y)) ,

whereK(·, ·) denotes the Kullback-Leibler distance. Thus,I(X; Y ) is the rela-
tive entropy between the joint distribution and the product of marginal distribu-
tions and is a measure of how far a joint distribution is from independence.

The chain rule for mutual information is

(5.3) I(X1, . . . , Xn; Y ) =
n∑

i=1

I(Xi; Y |X1, . . . , Xi−1).

The conditional mutual information is defined by

(5.4) I(X; Y | Z) = ((X; Y ) |Z) = H(X|Z)−H(X|Y, Z),
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whereH(v|u), the conditional entropy of random variablev givenu, is given
by

(5.5) H(v | u) =
∑ ∑

p(u, v) ln p(v|u).

In what follows now, we will assume that

(5.6) t ≤ p(x, y)

p(x)p(y)
≤ T , for all (x, y) ∈ X× Y.

It follows from (5.6) thatt ≤ 1 ≤ T .
Dragomir, Glŭsc̆evíc and Pearce [8] proved the following inequalities for the

measureCf (P, Q):

Theorem 5.1. Let f : [0,∞) → R be such thatf ′ : [r, R] → R is absolutely
continuous on[r, R] andf ′′ ∈ L∞[r, R]. Definef ∗ : [r, R] → R by

(5.7) f ∗(u) = f(1) + (u− 1)f ′
(

1 + u

2

)
.

Suppose that0 < r ≤ p
q
≤ R < ∞. Then

|Cf (P, Q)− Cf∗(P, Q)| ≤ 1

4
χ2(P, Q)||f ′′||∞

≤ 1

4
(R− 1)(1− r)||f ′′||∞

≤ 1

16
(R− r)2||f ′′||∞,(5.8)

whereCf∗(P, Q) is the Csiszár’sf -divergence (2.1) with f taken asf ∗ and
χ2(P, Q) is defined in (2.11).
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We define the mutual information:

(5.9) Inχ2-sense:Iχ2(X; Y ) =
∑

(x,y)∈X×Y

p2(x, y)

p(x)q(y)
− 1.

(5.10) InΨM -sense:IΨM(X; Y ) =
∑

(x,y)∈X×Y

[p2(x, y)− p2(x)q2(y)]

2[p(x)q(y)]3/2
.

Now we have the following proposition:

Proposition 5.2. Let p(x, y), p(x) andp(y) be such thatt ≤ p(x,y)
p(x)p(y)

≤ T , for
all (x, y) ∈ X× Y and the assumptions of Theorem5.1hold good. Then

(5.11)

∣∣∣∣∣∣I(X; Y )−
∑

(x,y)∈X×Y

[p(x, y)− p(x)q(y)] ln

[
p(x, y) + p(x)q(y)

2p(x)q(y)

]∣∣∣∣∣∣
≤

Iχ2(X; Y )

4t
≤ 4T 7/2

t(15T 4 + 2T 2 + 15)
IΨM(X; Y ).

Proof. Replacingp(x) by p(x, y) andq(x) by p(x)q(y) in (2.1), the measure
Cf (P, Q) ≡ I(X; Y ). Similarly, forf(u) = u ln u, and

f ∗(u) = f(1) + (u− 1)f ′
(

1 + u

2

)
,
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we have

I∗(X; Y ) := Cf∗(P, Q)

=
∑
x∈Ω

[p(x)− q(x)]

[
ln

(
p(x) + q(x)

2q(x)

)]
=

∑
x∈Ω

[p(x, y)− p(x)q(y)]

[
ln

(
p(x, y) + p(x)q(y)

2p(x)q(y)

)]
.(5.12)

Since||f ′′||∞ = sup ||f ′′(u)|| = 1
t
, the first part of inequality (5.11) follows

from (5.8) and (5.12).
For the second part, consider Proposition3.2. From inequality (3.9),

(5.13)
15T 4 + 2T 2 + 15

16T 7/2
χ2(P, Q) ≤ ΨM(P, Q).

Under the assumptions of Proposition5.2, inequality (5.13) yields

(5.14)
Iχ2(X; Y )

4t
≤ 4T 7/2

t(15T 4 + 2T 2 + 15)
IΨM(X; Y ),

and hence the desired inequality (5.11).
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6. Numerical Illustration
We consider two examples of symmetrical and asymmetrical probability distri-
butions. We calculate measuresΨM(P, Q), Ψ(P, Q), χ2(P, Q), J(P, Q) and
compare bounds. Here,J(P, Q) is the Kullback-Leibler symmetric divergence:

J(P, Q) = K(P, Q) + K(Q,P ) =
∑

(p− q) ln

(
p

q

)
.

Example 6.1 (Symmetrical).LetP be the binomial probability distribution for
the random variableX with parameters(n = 8, p = 0.5) andQ its approxi-
mated normal probability distribution. Then

Table 1. Binomial probability Distribution(n = 8, p = 0.5).
x 0 1 2 3 4 5 6 7 8
p(x) 0.004 0.031 0.109 0.219 0.274 0.219 0.109 0.031 0.004
q(x) 0.005 0.030 0.104 0.220 0.282 0.220 0.104 0.030 0.005
p(x)/q(x) 0.774 1.042 1.0503 0.997 0.968 0.997 1.0503 1.042 0.774

The measuresΨM(P, Q), Ψ(P, Q), χ2(P, Q) andJ(P, Q) are:

ΨM(P, Q) = 0.00306097, Ψ(P, Q) = 0.00305063,

χ2(P, Q) = 0.00145837, J(P, Q) = 0.00151848.

It is noted that

r (= 0.774179933) ≤ p

q
≤ R (= 1.050330018).
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The lower and upper bounds forΨM(P, Q) from (3.9):

Lower Bound=
15R4 + 2R2 + 15

16R7/2
χ2(P, Q) = 0.002721899

Upper Bound=
15r4 + 2r2 + 15

8r7/2
χ2(P, Q) = 0.004819452

and, thus,0.002721899 < ΨM(P, Q) = 0.003060972 < 0.004819452. The
width of the interval is0.002097553.

Example 6.2 (Asymmetrical). Let P be the binomial probability distribution
for the random variableX with parameters(n = 8, p = 0.4) andQ its approx-
imated normal probability distribution. Then

Table 2. Binomial probability Distribution(n = 8, p = 0.4).
x 0 1 2 3 4 5 6 7 8
p(x) 0.017 0.090 0.209 0.279 0.232 0.124 0.041 0.008 0.001
q(x) 0.020 0.082 0.198 0.285 0.244 0.124 0.037 0.007 0.0007
p(x)/q(x) 0.850 1.102 1.056 0.979 0.952 1.001 1.097 1.194 1.401

From the above data, measuresΨM(P, Q), Ψ(P, Q), χ2(P, Q) andJ(P, Q)
are calculated:

ΨM(P, Q) = 0.00658200, Ψ(P, Q) = 0.00657063,

χ2(P, Q) = 0.00333883, J(P, Q) = 0.00327778.

Note that
r (= 0.849782156) ≤ p

q
≤ R (= 1.401219652),

http://jipam.vu.edu.au/
mailto:
mailto:kumarp@unbc.ca
mailto:
mailto:
mailto:johnsona@unbc.ca
http://jipam.vu.edu.au/


On A Symmetric Divergence
Measure and Information

Inequalities

Pranesh Kumar and
Andrew Johnson

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 26 of 30

J. Ineq. Pure and Appl. Math. 6(3) Art. 65, 2005

http://jipam.vu.edu.au

and the lower and upper bounds forΨM(P, Q) from (4.5):

Lower Bound=
15R4 + 2R2 + 15

16R7/2
χ2(P, Q) = 0.004918045

Upper Bound=
15r4 + 2r2 + 15

16r7/2
χ2(P, Q) = 0.00895164.

Thus,0.004918045 < ΨM(P, Q) = 0.006582002 < 0.00895164. The width of
the interval is0.004033595.

It may be noted that the magnitude and width of the interval for measure
ΨM(P, Q) increase as the probability distribution deviates from symmetry.

Figure2shows the behavior ofΨM(P, Q)-[New], Ψ(P, Q)- [Sym-Chi-square]
and J(P, Q)-[Sym-Kull-Leib]. We have consideredp = (a, 1 − a) and q =
(1 − a, a), a ∈ [0, 1]. It is clear from Figure1 that measuresΨM(P, Q) and
Ψ(P, Q) have a steeper slope thanJ(P, Q).
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Sym-Chi-Square New Sym-Kullback-Leibler

Figure 2. New MP,Q, Sym-Chi-Square P,Q and Sym-Kullback-Leibler JP,Q.

,

Figure 2: NewΨM(P, Q), Sym-Chi-SquareΨ(P, Q), and Sym-Kullback-
LeiblerJ(P, Q).
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