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ABSTRACT. Making use of a linear operator, which is defined here by means of the Hadamard
product (or convolution), we introduce a cla@s(a, c; k) of analytic and multivalent functions

in the open unit disk. An inclusion relation and a convolution property for the €}a$és, c; h)

are presented. Some integral-preserving properties are also given.
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1. INTRODUCTION AND PRELIMINARIES
Let the functions

F(2) = @z and g(z) =Y bttt (pe N={1,2,3,...})
k=0 k=0

be analytic in the open unit digdk = {z : |z| < 1}. Then the Hadamard product (or convolu-
tion) (f * g)(2) of f(z) andg(z) is defined by

o0

(1.1) (f*9)(2) =) axbpz"™ = (g% f)(2).

k=0
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Let A, denote the class of functiorf§z) normalized by

(1.2) fz)=2"+) a2 (peN),
k=1
which are analytic i/. A function f(z) € A, is said to be in the clas$;(«) if it satisfies
2f'(2)
1.3 Re >pa (z€U
(1.3) ) P ( )

for somea(a < 1). When0 < a < 1, S;(«a) is the class op-valently starlike functions of
ordera in U. Also we write A; = A andS;(a) = S*(«). A function f(z) € A is said to be
prestarlike of ordetv(a < 1) in U if

Z %

We denote this class b («) (see[9]). Itis clear that a functiofi(z) € A is in the clasgz(0)
if and only if f(z) is convex univalent i/ and

() ()

We now define the functiop,(a, ¢; z) by

(1.4)

— p a k p+k
(1.5) opla,c;z) =z kz ) (ze€U),
where
c¢{0,-1,-2,...} and (2)y=z(z+1)---(z+k—-1) (keN).
Corresponding to the functiop,(a, ¢; z), Saitoh [10] introduced and studied a linear operator
L,(a,c) on A, by the following Hadamard product (or convolution):

(1.6) Ly(a,c)f(z) = ppla,c;2) * f(2) (f(2) € 4,).

Forp =1, L(a, c) on A was first defined by Carlson and Shaffer [1]. We remark in passing that
a much more general convolution operator than the opefafar, ¢c) was introduced by Dziok
and Srivastava [2].

It is known [10] that

a.7) 2(Lp(a,e)f(2)) =aLly(a+1,¢)f(z) — (a —p)Ly(a,c) f(z) (f(z) € Ap).
Settinga = n + p > 0 andc = 1 in (1.6), we have
A8 L+ p D) = Gy S = D) () € 4y)

The operatotD™P~! whenp = 1 was first introduced by Ruscheweyh [8], ahd+?~! was
introduced by Goel and SoHil[3]. Thus we naé&™?~! as the Ruscheweyh derivative of
(n 4+ p — 1)th order.

For functionsf(z) andg(z) analytic inU, we say thaf(z) is subordinate tg(z) in U, and
write f(z) < g(z), if there exists an analytic functian(z) in U such that

[w(z)] < 2| and f(z) = g(w(z)) (2 €U).
Furthermore, if the functiop(z) is univalent inU, then

f(z) <g9(z) & f(0) = ¢(0) and f(U) Cg(U).
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Let P be the class of analytic functiorhgz) with 2(0) = p, which are convex univalent it
and for which

Reh(z) >0 (z€U).
In this paper we introduce and investigate the following subclass, of
Definition 1.1. A function f(z) € A, is said to be in the clas3,(a, c; h) if it satisfies

Llat+1,0f() . p  h(z)

(1.9) Lwofz) et e
where
(1.10) a#0, c¢c¢{0,—-1,-2,...} and h(z) € P.

Itis easy to see that, f(z) € Q,(a, c; h), thenLy(a,c)f(z) € S;(0).
Fora=n+p(n> —p),c=1and
(A— B)z

. =pd+ I (1< <
(1.11) We)=p+ 5 (F1<B<A<I),

Yang [12] introduced and studied the class
Qp(n+p,1;h) = S,,(A, B).

For h(z) given by [1.11), the class
(1.12) Qpla,c;h) = Hyep(A, B)

has been considered by Liu and Owa [5].

Forp=1,A=1-2a (0 <a<1)andB = —1, Kim and Srivastavé [4] have shown some
properties of the clasH,, .1 (1 — 2o, —1).

In the present paper, we shall establish an inclusion relation and a convolution property for the
class@,(a, c; h). Integral transforms of functions in this class are also discussed. We observe
that the proof of each of the results in [5] is much akin to that of the corresponding assertion
made by Yang[[12] in the case of= n + p andc = 1. However, the methods used in [5,/12]
do not work for the general function clags(a, c; h).

We need the following lemmas in order to derive our main results for the Qassc; h).

Lemma 1.1 (Ruscheweyh [9]) Leta < 1, f(2) € S*(«) and g(z) € R(«a). Then, for any
analytic functionF'(z) in U,

g+ ([F)
gxf
whereco(F'(U)) denotes the closed convex hullfofU).

(U) cTo(F(U)),

Lemma 1.2 (Miller and Mocanul[6]) Let3 (5 # 0) and~ be complex nhumbers and letz)
be analytic and convex univalentihwith

Re(Bh(z) +~v) >0 (z€U).
If ¢(z) is analytic inU with ¢(0) = h(0), then the subordination
¢ (2)
St RRZERNY A
ﬂ@+ﬁﬂ@+v< )
implies thatg(z) < h(z).
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2. MAIN RESULTS
Theorem 2.1.Leth(z) € P and

(2.1) Reh(z) >0 (€ U;0< 5 <p).
If

(2.2) 0<a; <ay and ay >2(p— ),
then

QP(CLQ? (6 h) C Qp(alv G h)'
Proof. Define

o
:z—i—z kk“ (z€U;0 < ay < ay).

k=1
Then
@p(ahaz;z) .
(2.3) = 9(z) € 4,
whereg, (a1, az; ) is defined as i (1]5), and
4 z
(24) (1 . Z>a2 * g(Z) - (1 . Z)al

From (2.4) we have
zZ

(1_Z)a2*g(z)65*<1—%> cs*<1—%>

for 0 < a; < ag, which implies that

(2.5) g(z) €ER (1 — %) .
Since
(2.6) Ly(ay,0)f(2) = ¢plar, as; 2) * Ly(az, ¢) f(z) (f(z) € Ap),

we deduce fron{(1]7) anfi (2.6) that
arLy(ar +1,0)f(2) = 2 (Lp(ar, 0)f(2))" + (a1 — p) Ly(as, ) f(2)

(
= pplar, as; 2) * (2(Ly(az, ©)f(2)) + (a1 — p) Lp(az, ) f(2))
2.7) = pplar; az; 2) * (asly(az +1,¢) f(2) + (a1 = az) Ly(as, ) f(2))-

By using [2.3),[(2.6) and (2.7), we find that
Ly(ar +1,0)f(2) (2P71g(2)) * (Z—pr(ag +1,0)f(2) + (1 - Z—f) L,(as, c)f(z))

Ly(a1,c)f(z) (271g(2)) * Ly(az, ) f(2)
(o) o (2ot (1 ) syt

B g(2) * Lp(az,c)f(2)

Zp—1

9 92 * WFE) (e a)

where
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and
asLy(ax+1,¢)f(2) as

arLy(az, ¢) f(2) Car

F(z) =
Let f(2) € Qp(az, c;h). Then

F(Z><%(1—£+M>+1—@

(05} (05} aq
29) 1= 2 M) (say)
aq aq

whereh, (z) is convex univalent ii/, and, by [(1.7),
24'(2) _ 2(Lplas, ) f(2))

2)
) £ (a3 1) o
Lt Ldfe)
S o)
(2.10) 1 he).

By using [2.1),[(2.R) and (2.10), we get

2q'(2) as
Re >1—p+pB>1——= (z€U),
q(z) 2 )

that is,

(2.11) q(z) € §* (1 . %) .

Consequently, in view of (2/5)], (2.8), (2.9) and (2.11), an application of Leimma 1.1 yields
Lp(al + 17 C)f(Z)
< hi(2).
L afz) )
Thusf(z) € Qy,(a1, ¢; h) and the proof of Theorefn 2.1 is completed. O

By carefully selecting the functioh(z) involved in Theorer 2]1, we can obtain a number of
useful consequences.

Corollary 2.2. Let

-
(2.12) h(z):p—l—l—(iigz) (zeU; 0<y<1; -1<B<A<I).
If
0<a; <ap and a2>2<1—<ﬂ)7)
> ) ;
then

Qpag, c;h) C Qplar, c; h).

Proof. The analytic functiorh(z) defined by|(2.12) is convex univalentin (cf. [11]), ~(0) =
p, andh(U) is symmetric with respect to the real axis. Thiys) € P and

1—A\"
Reh(z)>6:h(—1):p—1+(ﬁ> >0 (ZEU)
Hence the desired result follows from Theorem 2.1 at once. O

If we lety = 1, then Corollary 2P yields the following.
Corollary 2.3. Leth(z) be given by[(1.11). ¥, AandB(—1 < B < A < 1) satisfy either
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()a>1-2(2) >0
or
(i) a>0>1-2(),
then
Qpla+1,¢h) C Qpla,c;h).
Using Jack’s Lemma, Liu and Owal [5, Theorem 1] proved that 3 4=£, then
Hov10p(A,B) C Hoe (A, B).
Since

A-B 1-A

> 1 — R —1 < <
— > 1 2(1_3) (-1<B<A<1)
and the equality occurs only wheh= 1, we see that Corollafy 2.3 is better than the result of

[5].
Corollary 2.4. Let

- 1
(2.13) Z(V—i_ )5kzk (zeU;0<0<1;7>0).
k=

If

> 1
0<a; <ay and ay > 22:(—1)’“+1 (i) 5*
— v+ k

then
Qp(ag, c;h) C Qplar, c; h).

Proof. The functionh(z) defined by|(2.13) is in the clag3 (cf. [8]) and satisfied(z) = h(z).
Thus

y+1 ks
h h(— ) -6 > :

Reh(z) > 3 = p+z (wk) >0 (z€U)
Therefore we have the corollary by using Theofen 2.1. O
Corollary 2.5. Let

2 1+ 72\ \’
: = — — ; <1).
(2.14) h(z) p+ﬂ2 (log(l_\/%>) (zeU;0<y <)
If

1
0<a; <ay and ay > —2 (arctan ﬁ)g,

™

then
Qp(a27 G h) C Qp(alv G h)
Proof. The functioni(z) defined by|(2.14) belongs to the claB<cf. [7]) and satisfied(z) =
h(z). Thus
1
Reh(z) > B =h(—-1)=p— % (arctan /7)* > p — 5> 0 (zeU).
™
Hence an application of Theor¢m P.1 yields the desired result. O
Fory =1, Corollary[2.% leads to
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Corollary 2.6. Let

h(2) :p—l-% <log<1j£))2 (- € D).

Qpla+1,¢h) C Qpla,c;h).
Theorem 2.7.Leth(z) € P and

Then, fora > 0,

(2.15) Reh(z)>p—1+a (zelU;a<]l).
If f(2) € Qpla, c; h),

(2.16) g(z) € A, and % € Rla) (a<1l),
then

(f % 9)(2) € Qpla, c; h).
Proof. Let f(z) € Q,(a, c; h) and suppose that
Ly(a, C)f(z>

(2.17) q(z) = oo
Then
_ Lya+1,0)f(2) p Wz
(2.18) F(z) = L i) L=+ ==,
q(z) € Aand
(2.19) Z;’;S) <1—p+h(z)
(see[(2.1D) used in the proof of Theorem 2.1). By (R.15) pnd|(2.19), we see that
(2.20) q(z) € S* (o).

Forg(z) € A,, it follows from (2.17) and[(2.18) that
Ly(a+1,0)(f*g)(z) _ g(2)* Ly(a+1,¢)f(z)

Ly(a,c)(f * 9)(2) g(2) * Ly(a, c) f(2)
960 % (q(2)F(2))

(2.21) -, e (zeU).
Now, by using[(2.16)/(2.18)] (2.20) ar@.Zl)Z, an application of Lefnma 1.1 leads to
La+1Lo(fx9)(z) . p h)
Lm0 al o

This shows thatf * g)(z) € Q,(a,c; h).
T

heore reduces to

Corollary 2.8. Leth(z) € P andg(z) € A, satisfy either
(1) ng(—f)l is convex univalent i/ and
Reh(z) >p—1 (z€U)

Fora =0 anda = 3,

or
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(i) 42 € 5%(1)and
Reh(z) >p— % (ze€U).
If f(2) € @Qy(a,c;h), then
(f x9)(2) € @pla,c; h).

Theorem 2.9.Leth(z) € P and

(2.22) Reh(z) > —ReX (z€U),
where\ is a complex number such that A > —p. If f(z) € Q,(a, ¢; h), then the function
(2.23) g(z) = “;p/ P F () dt

z 0

is also in the clas$),(a, c; h).

Proof. For f(z) € A, andRe A > —p, it follows from (1.7) and[(2.23) thaf(z) € A, and
(A +p)Ly(a, 0) f(2) = ALy(a, c)g(z) + 2(Lp(a, )g(2))

(2.24) =al,(a+1,¢)g(2) + (A +p—a)L,(a,c)g(2).

If we let

Ly(a+1,¢)9(z)

o 1= "L (o)
then [2.24) and (2.25) lead to
(2.26) aq(z) +A+p—a= ()\ +p) Lp<avc>f(z)

Lp(a7 C)g(Z) .
Differentiating both sides of (2.26) logarithmically and using(1.7) and {2.25), we obtain

2q'(2) _ 1 (Z(Lp(a,ff) (=)' Z(Lp(a,C)g(Z))’>

S
ag(z) +A+p—a  a\ Ly(a,c)f(2) Ly(a,c)g(2)
_ Lyla+1,0f(2) )
T Leoi T
Let f(z) € Q,(a,c; h). Then it follows from [(2.2]7) that

(2.27)

¢ (2) P h(z)
(2.28) Q(Z)+aq(z)+)\+p—a<1_a+7'

Also, in view of (2.22), we have
(2.29) Re{a (1——+%Z)) +)\+p—a} =Reh(z) + ReA >0 (z€U).

Therefore, it follows from[(2.28)[ (2.29) and Lemima]1.2 that
h(z)

q(z)—<1—£+—.
a a

This proves thay(z) € Q,(a,c; h). O

From Theorem 2]9 we have the following corollaries.
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Corollary 2.10. Leth(z) be defined as in Corollafy 2.2. ff(z) € Q,(a,¢; h) and

1—-A\"

then the functiory(z) given by|(2.2B) is also in the clagg,(a, ¢; h).

In the special case when= 1, Corollary[2.1) was obtained by Liu and Owa [5, Theorem 2]
using Jack’s Lemma.

Corollary 2.11. Leth(z) be defined as in Corollafy 2.4. f(z) € Q,(a, ¢; h) and

v+ k
then the functiory(z) given by|(2.2B) is also in the clagg,(a, ¢; h).
Corollary 2.12. Leth(z) be defined as in Corollafy 2.5. ff(z) € Q,(a, ¢; h) and

- 1
Red > Y (—1)k+! (i) F—p (0<5<1;9>0),
k=1

8
Re\ > F(arctan V) —p (0<y <),

then the functiory(z) given by|(2.28) is also in the clagy,(a, ¢; h).

Theorem 2.13.Leth(z) € P and

A
(2.30) Reh(z) > —R% (z € U),
where > 0 and X is a complex number such that A > —pg. If f(z) € Q,(a, c; h), then the
functiong(z) € A, defined by

A+ pf 3

2A

(2.31) Lyfa.clg(z) = (

is also in the class),(a, c; h).

[ P wwar) )

Proof. Let f(z) € Q,(a, c; h). From the definition of;(z) we have

(2.32) ALyl o) = O+8) [ O Lyla ) F0)

Differentiating both sides of (2.82) logarithmically and using(1.7), we get

a, Cc z h
233 A Baate) o= a) = ) (DTS
where
(2.34) a(z) = L”L(“ (Z ;;)(Z gz)‘
Also, differentiating both sides df (2.B3) logarithmically and using|(1.7), we arrive at
2q'(2) _ Ly(a+1,0)f(2) _p, h(2)
@3 e B -0 Lol at o

Noting that [2.3D) and > 0, we see that

(2.36) Re{aﬁ (1 —§+ @) —i-)\—i-ﬁ(p—a)} = BReh(z) + ReA > 0 (z € U).
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Now, in view of {2.34),[(2.35) and (2.B6), an application of Lenima 1.2 yields

L,(a+1,c)g(2) DR @’
Ly(a,c)g(2) a a
thatis,g(z) € Q,(a,c; h). O
Corollary 2.14. Leth(z) be defined as in Corollafy 4.2. f(z) € Q,(a,c; h) and
- ¥
Re)\zﬂ(l—p— (%) ) 0<y<1;-1<B<A<L1;65>0),

then the functiomy(z) € A, defined by[(2.31) is also in the cla®s(a, ¢; h).
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