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Abstract:

Making use of a linear operator, which is defined here by means of the
Hadamard product (or convolution), we introduce a cl@séa, c; h) of
analytic and multivalent functions in the open unit disk. An inclusion re-
lation and a convolution property for the cla@g(a, c; h) are presented.
Some integral-preserving properties are also given.
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1. Introduction and Preliminaries

Let the functions

f(z) = iakz”k and g(z) = ibkz”k” (peN={1,2,3,...})

k=0 k=0

be analytic in the open unit didk = {z : |z| < 1}. Then the Hadamard product (or

convolution)(f x g)(z) of f(z) andg(z) is defined by

o0

(1.1) (f*9)(z) = Y abpz"™ = (g% f)(2).

k=0

Let A, denote the class of functiorf§z) normalized by

1.2 Fe) =243 ™ (pe),
k=1

which are analytic irU. A function f(z) € A, is said to be in the clas$; () if it
satisfies

2f'(2)
/()
for somea(a < 1). When0 < a < 1, Sj(«) is the class ofp-valently starlike

functions of ordery in U. Also we writeA; = A andS;(a) = S*(«). A function
f(z) € Ais said to be prestarlike of ordefa < 1) in U if

(1.3) Re

>pa (z€U)

(1.4) m « f(2) € S*(a).
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We denote this class b§(«) (see P]). Itis clear that a functiorf(z) € Aisin the
classR(0) if and only if f(z) is convex univalent i/ and

(-

We now define the functiop,(a, ¢; z) by

(1.5) opla,c;z) =27 + g (@) ~kptk (4 € U),
(€)k
o=

where
cg{0,—-1,—-2,...} and (z)y=z(z+1)---(z+k—-1) (ke€N).

Corresponding to the functiop, (a, ¢; z), Saitoh [L0] introduced and studied a linear
operatorL,(a, c) on A, by the following Hadamard product (or convolution):

(1.6) Ly(a,c)f(z) = ppla,c;2) = f(2) (f(z) € Ay).

Forp = 1, Li(a,c) on A was first defined by Carlson and Shaffé}.[We remark
in passing that a much more general convolution operator than the opkgé&ioe)
was introduced by Dziok and Srivastav. |

It is known [10] that

(1.7) z(Ly(a,e)f(2)) = aLly(a+1,¢)f(2) — (a —p)Ly(a,c) f(2) (f(z) € 4p).
Settinga = n + p > 0 andc = 1in (1.6), we have

Zp

(1.8)  Ly(n+p,1)f(z) = A=

« f(2) = D"Pf(2) (f(2) € Ay).
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The operatorD™?~! whenp = 1 was first introduced by Ruschewey8],[ and
D™P~twas introduced by Goel and SoBj] Thus we namé™ P! as the Ruscheweyh
derivative of(n + p — 1)th order.

For functionsf(z) andg(z) analytic inU, we say thaff (z) is subordinate tg(z)
in U, and writef(z) < g(z), if there exists an analytic function(z) in U such that

jw(z)] <|z] and f(z) = g(w(z)) (z€U).
Furthermore, if the functiop(z) is univalent inU, then
f(z) < g(2) & f(0) = g(0) and f(U) C g(U).

Let P be the class of analytic functiorigz) with h(0) = p, which are convex
univalent inU and for which

Reh(z) >0 (ze€U).
In this paper we introduce and investigate the following subclass, of
Definition 1.1. A functionf(z) € A, is said to be in the clasg,(a, ¢; h) if it satisfies

Lp(a+1,0)f(2) P, h(z)
&) Lwaf) Tt
where
(1.10) a#0, c¢¢{0,—-1,-2,...} and h(z) € P.

Itis easy to see that, if(2) € Q,(a,c; h), thenLy(a,c)f(z) € S;(0).
Fora =n+p(n> —p),c=1and

(A— B)z

1.11
( ) 1+ Bz

h(z)=p+ (-1<B< AL,
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Yang [12] introduced and studied the class
Qp(n+p,1;h) = 5,,(A, B).
For h(z) given by (L.17), the class

(1.12) @Qpla,c;h) = Hyep(A, B)
has been considered by Liu and Ov@ [ Anatlay;ffnzzdb“yﬂt:trzgf gpp;;g.rzns
Forp=1,A=1-2a (0 <a<1)andB = —1, Kim and Srivastava4] have Ding-Gong Yang, N-eng Xu

shown some properties of the clags, i (1 — 2o, —1). and Shigeyoshi Owa

In the present paper, we shall establish an inclusion relation and a convolution
property for the clasg),(a, c; h). Integral transforms of functions in this class are

vol. 9, iss. 2, art. 50, 2008
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If (=) is analytic inU with ¢(0) = h(0), then the subordination
2q'(2)
"% Gy 47 )
implies thatg(z) < h(z).
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2. Main Results

Theorem 2.1.Leth(z) € P and

(2.1) Reh(z) > 8 (2 €U;0<B<p).
If

(2.2) 0<a; <ay and as >2(p— ),
then

Qplaz, c;h) C Qplar, c; h).
Proof. Define

[oe)
:Z+Z kk“ (z€U;0 < ay < ay).

k=1

Then

2.3) Pol01022) _ iy e g,

zp—1

whereg,(ay, as; 2) is defined as ini(.5), and

(2.4) ] xg(z) = (

(1 — 2) 1—z)m

From (2.4) we have

{a —Zz)aa wgle)e s (1-5) es(1-3)
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for 0 < a; < as, which implies that

(2.5) g(z) €R (1 . %) .
Since
(2.6) Lyp(a1, €)f(2) = @plar, az; 2) * Lp(az, ) f(2)  (f(2) € 4p),
we deduce from1(.7) and ¢.6) that
arLy(ar +1,¢)f(z)

=z (Ly(ar,0) f(2) + (a1 = p)Ly(a1,0)f(2)
= ¢plar, a; 2) x (2(Ly(az, ©) f(2)) + (a1 — p)Lyp(az, 0) f(2))

(2.7) = ppla, ag; z) * (aeLy(az + 1,¢) f(2) + (a1 — az2)Ly(ag, ¢) f(2)).

By using ¢.9), (2.6) and ¢.7), we find that
Lp(a1 +1,¢) f(2)
Ly(ar,c) f(z)

(7 g(2)) * (2 Ly + 1O S(2) + (1= 2) Lyfaa, ) f(2)

(2#1g(2)) * Ly(az, ¢) f(2)
g(z) <Z—TM n (1 _ Z‘f) Ly(az0)f (2 ))

g(z) % Lp(ii’f)lf(z)
~9(2) * (¢(2)F(2)) s
@8 =T UBea)
where I
o) = Lol 9IC)
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and
~aaLly(ag+1,¢)f(2) L a
P& = Lamai) T a

Let f(z) € Q,(aa,c; h). Then

F(Z)<%(1—£+M)+1—@

(2.9) —1- 2 M ) ay)

whereh, (z) is convex univalent i/, and, by (..7),
2q'(2) _ z2(Lp(az, c) f(2))

) L@»()**‘
)

<a2+ 1,0)f(2)
= 1
T L2, 0f () ”
(2.10) <1—p+h(z).
By using ¢.1), (2.2) and ¢.10), we get
2q'(2) sy
Re >1—p+pB>1——= (z€U),
e p+0 5 )
that is,
* a2
(2.11) q(z) € S (1 . 3) .
Consequently, in view ofA5), (2.9), (2.9 and ¢.11), an application of Lemma.2
yields
Ly(a1 +1,0)f(2)
< hi(2).
Laaiz) ¥
Thusf(z) € Q,(a1, c; h) and the proof of Theorera.1is completed. O
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By carefully selecting the functioh(z) involved in Theoren?.1, we can obtain
a number of useful consequences.

Corollary 2.2. Let

1+ Az\"
(2.12) h(z)=p 1+<1+Bz) (z€eU; 0<y<1l; -1<B< A<
If LAV
0<a1<a2 and ClgEQ(l-(m)),
then

Qp(a27 G, h) - Qp(ala G, h)
Proof. The analytic functiom(z) defined by £.12) is convex univalent ir/ (cf.

[11]), ~(0) = p, andh(U) is symmetric with respect to the real axis. Tts) € P
and

Reh(z) >pB=h(-1)=p—1+ (ﬁ)vz() (ze€U).

Hence the desired result follows from Theorén at once. O]
If we let~y = 1, then Corollary?.2 yields the following.

Corollary 2.3. Leth(z) be givenby{.11). If a, AandB(—1 < B < A < 1) satisfy
either

()a>1-2(=) >0
or

(i) a>0>1-2(1),
then
Qpla+1,¢h) C Qpla,c;h).
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Using Jack’s Lemma, Liu and Ow&,[Theorem 1] proved that, if > A then
Hui1ep(A, B) C Hyep(A, B).

Since

A-B 1—A
>1-92(—= 1< <
1_3_;2(1_B> (-1<B<A<1)

and the equality occurs only wheh = 1, we see that Corollary.3 is better than
the result of §].

Corollary 2.4. Let

(2.13) }:( )Mk (zeU;0<86<1;7>0).
k=

- TH1Y o
0<a; <ay and ay > 2 —1’““(—)6,
kz_;( ) v+ k

then
Qp(a'27 G, h) C Qp(a'la G, h)

Proof. The functionh(z) defined by £.13 is in the classP” (cf. [8]) and satisfies
h(Z) = h(z). Thus

v+1 ks
h h(— —5> .
Reh(z) > = p+§ (’y+k>5 d>0 (z€U)
Therefore we have the corollary by using Theor&m O
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Corollary 2.5. Let

(2.14) h(z):p—k% (log (1+—\/%>) (zeU;0<y<1).

1— /72
If
16 )
0<a <ay and ay > — (arctan /)",
T
then

Qplaz, c;h) C Qplar, c; h).
Proof. The functionh(z) defined by £.14) belongs to the clas® (cf. [7]) and

satisfiesh(z) = h(z). Thus

Reh(z) > B =h(-1)=p s (arctanﬁ)22p—%>0 (z€U).

w2

Hence an application of Theoreml yields the desired result. O
Fory =1, Corollary2.5leads to

Corollary 2.6. Let

h(2) zp—i—% <1og Gfé)f (z € D).

Then, fora > 0,
Qpla+1,¢h) C Qpla,c;h).
Theorem 2.7.Leth(z) € P and

(2.15) Reh(z) >p—1+a (ze€U;a<1).
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If f(2) € Qpla,c;h),

(2.16) g(z) € A, and % € Rla) (a<l),

1

then
(f *9)(2) € Qpla, c; h).
Proof. Let f(z) € Q,(a, ¢c; h) and suppose that

Ly(a,0)f(z)

(2.17) q(z) = g
Then

_ Lyla+1,0)f(2) p h(z)
@19 FO = waie et e
q(z) € Aand

z2q'(2)

(2.19) ) <1—=p+h(z)
(see £.10 used in the proof of Theorem 1). By (2.15 and .19, we see that
(2.20) q(z) € S*(a).

Forg(z) € A,, it follows from (2.17) and .19 that

Ly(a+1,¢)(f*g)(2)  g(z)* Ly(a+1,¢)f(2)
Ly(a,c)(f * g)(2) 9(2) * Lyp(a, c) f(2)

(2.21) _ # L)

prs q(z)

(z€U).
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Now, by using £.16), (2.19, (2.20 and @.21), an application of Lemma.Z2 leads

to
Ly(a+1,¢)(f*g)(2) p , h(z)

L@oU+a a4

) € Qp(a,c;h).

This shows thatf * g)(z
Foro = 0 andw = 3, Theorem2.7 reduces to

Corollary 2.8. Leth(z) € P andg(z) € A, satisfy either
(i) %2 is convex univalent it/ and

Reh(z) >p—1 (z€U)
or
(i) 42 € s*(1)and
Reh(z) > p— % (z ).
If f(2) € Qy(a,c;h),then

(f x9)(2) € Qpla, c; h).

Theorem 2.9.Leth(z) € P and

(2.22) Reh(z) > —ReX (z €U),
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where) is a complex number such thBe A > —p. If f(2) € Q,(a,c; h), then the

function

(2.23) g(z) = 2P /O PLE () de

Z)‘
is also in the clas$),(a, c; h).

Proof. For f(z) € A, andRe A > —p, it follows from (1.7) and @.23 thatg(z) €
A, and

(A+p)Lyp(a,c)f(z) = /\Lp(a c)g(2) + 2(Ly(a,c)g(z))’
(2.24) aLy,(a+1,¢)g(2) + (A +p —a)Ly(a,c)g(z).

If we let

(2.25) q(z) =

then ¢.24) and ¢.25 lead to
Ly(a, 0)f(2)
Ly(a,c)g(z)

Differentiating both sides ofA(26) logarithmically and usingl(7) and ¢.25, we
obtain

(2.26) aq(2) + A +p—a=(A+p)

2q'(2) _ 1
ag(z) +X+p—a a
L

( 2(Lp(a, 0)f(2)) Z(Lp(a,C)g(Z))’)
Ly(a,c)f(2) Ly(a, c)g(2)

plat+1,0)f(2)

Ly(a,c)f(2)

(2.27) —q(z).
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Let f(2) € Qp(a, c; h). Then it follows from ¢.27) that

2q (2) P h(z)
(2.28) q(z)+aq<z>+>\+p_a<1—a+ .

Also, in view of (2.22), we have

(2.29) Re{a(l—g—l—@)#—)\—l—p—a}:Reh(z)+Re/\>0 (2 € ).

Therefore, it follows fromZ.29), (2.29 and Lemmal.3that

q(2)<1—§+@.

This proves thay(z) € Q,(a,c; h). O
From Theoren?.9we have the following corollaries.
Corollary 2.10. Leth(z) be defined as in Corollary.2. If f(z) € @,(a,c; h) and
ReA>1—-p— (%)7 0<y<1;-1<B< AL,
then the functiory(z) given by £.23) is also in the class),(a, c; h).

In the special case when= 1, Corollary2.10was obtained by Liu and Ow&,
Theorem 2] using Jack’s Lemma.

Corollary 2.11. Leth(z) be defined as in Corollary.4. If f(z) € Q,(a,c; h) and

> 1
Re \ > Z(—NH (%) F—p (0<6<1;72>0),
k=1

then the functiory(z) given by £.23) is also in the class),(a, c; h).
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Corollary 2.12. Leth(z) be defined as in Corollarg.5. If f(z) € Q,(a,c; h) and

8
Re\ > ﬁ(arctan V) —p (0<y <),

then the functiory(z) given by £.23) is also in the class$),(a, c; h).
Theorem 2.13.Leth(z) € P and
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(230) Re h(z) > — R% (z - U)7 Ding-Gong Yang, N-eng Xu

and Shigeyoshi Owa

where 3 > 0 and X is a complex number such th&e A\ > —pg. If f(2) € vol. 9.1ss. 2, art. 80, 2008

Qy(a, c; h), then the functiory(z) € A, defined by

Title Page

A ? B
@3 glacne) = (25 [ @ orw) ) e
<44 44

is also in the clas$),(a, c; h).

Proof. Let f(z) € Q,(a, c; h). From the definition of;(z) we have N 4

2 Page 19 of 22
(232)  (Ly(a,0g(2)’ = (A + ) / P (L (0, 0) f(8) .

Go Back
Differentiating both sides ofA(32) logarithmically and usingl( 7), we get Full Screen
Ly(a,c)f(z A Close
@3 A+ rp-a =0 (RO
Ly(a,c)g(=) : : "
journal of inequalities
where in pure and applied
mathematics
(2.34) q(z) = Lyla+1, c)g(z). issn: 1443-575k
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Also, differentiating both sides o2(33 logarithmically and usingl(7), we arrive
at

2q'(2) Ly(a+1,¢)f(z) p  h(z)
(2.35) q(z)+ = <1-=4 ==
Dt B A+ 80-a L) " a
Noting that ¢.30) andg > 0, we see that
Analytic and Multivalent Functions
p | h(z) P Ding.Gong vang, N-eng Xu
(2.36)  Re {aﬂ (1 - —) + A+ B~ a)} and Sgeyoshi v
_ ﬁRe h(z) + Re )\ >0 (Z c U) vol. 9, iss. 2, art. 50, 2008
Now, in view of (2.34), (2.35 and .36, an application of Lemma.3yields Title Page
Ly(a+1,c)g(2) 1— p i h(z) Contents
Ly(a,c)g(2) a a ——
thatis,g(z) € Q,(a,c; h). O < S
Corollary 2.14. Leth(z) be defined as in Corollarg.2. If f(z) € Q,(a,c; h) and Page 20 of 22
1—-A\" Go Back
ReA>p3(1—p— 1B 0<y<1;-1<B<A<L1;6>0),
- Full Screen
then the functiory(z) € A, defined by%.31) is also in the clasg),(a, c; h). Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

References

[1] B.C. CARLSONAND D.B. SHAFFER, Starlike and prestarlike hypergeomet-
ric functions,SIAM J. Math. Anal 15(1984), 737-745.

[2] J. DZIOK AND H.M. SRIVASTAVA, Classes of analytic functions associ-

ated with the generalized hypergeometric functidppl. Math. Comput 103
(1999), 1-13.

[3] R.M. GOEL AND N.S. SOHI, A new criterion fop-valent functions,Proc.
Amer. Math. So¢78(1980), 353—-357.

[4] Y.C.KIM AND H.M. SRIVASTAVA, Fractional integral and other linear opera-
tors associated with the Gaussian hypergeometric fundflomplex Variables
Theory Appl, 34 (1997), 293-312.

[5] JIN-LIN LIU AND S. OWA, On a class of multivalent functions involving cer-
tain linear operatoindian J. Pure Appl. Math 33 (2002), 1713-1722.

[6] S.S. MILLERAND P.T. MOCANU, On some classes of first order differential
subordinationsMichigan Math. J, 32 (1985), 185-195.

[7] F. RONNING, Uniformly convex functions and a corresponding class of star-
like functions,Proc. Amer. Math. Soc118(1993), 189-196.

[8] S. RUSCHEWEYH, New criteria for univalent functionBroc. Amer. Math.
Soc, 49(1975), 109-115.

[9] S. RUSCHEWEYH Convolutions in Geometric Function Theptyes Presses
de 1'Université de Montréal, Montréal, 1982.

[10] H. SAITOH, A linear operator and its applications of first order differential
subordinationsMath. Japon, 44 (1996), 31-38.

Analytic and Multivalent Functions

Defined by Linear Operators
Ding-Gong Yang, N-eng Xu

and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents
<44 44
< 14
Page 21 of 22
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

[11] N-ENG XU AND DING-GONG YANG, An application of differential subor-

dinations and some criteria for starlikenessjian J. Pure Appl. Math 36
(2005), 541-556.

[12] DING-GONG YANG, Onp-valent starlike functionsNortheast. Math. J.5
(1989), 263-271.

Analytic and Multivalent Functions

Defined by Linear Operators
Ding-Gong Yang, N-eng Xu

and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents
<44 4 4
< >
Page 22 of 22
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

	Introduction and Preliminaries
	Main Results

