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ABSTRACT. In this paper, we introduce two subclassesΩ∗
p(α) andΛ∗

p(α) of meromorphicp-
valent functions in the punctured diskD = {z : 0 < |z| < 1}. Coefficient inequalities, distortion
theorems, the radii of starlikeness and convexity, closure theorems and Hadamard product ( or
convolution) of functions belonging to these classes are obtained.
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1. I NTRODUCTION AND DEFINITIONS

Let Σp denote the class of functions of the form:

(1.1) f(z) =
1

zp
+

∞∑
n=1

ap+n−1z
p+n−1 (p ∈ N),

which are analytic andp-valent in the punctured unit diskD = {z : 0 < |z| < 1}. A function
f ∈ Σp is said to be in the classΩp(α) of meromorphicp-valently starlike functions of orderα
in D if and only if

(1.2) Re

{
−zf ′(z)

f(z)

}
> α (z ∈ D; 0 ≤ α < p; p ∈ N).
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2 B.A. FRASIN AND G. MURUGUSUNDARAMOORTHY

Furthermore, a functionf ∈ Σp is said to be in the classΛp(α) of meromorphicp-valently
convex functions of orderα in D if and only if

(1.3) Re

{
−1− zf ′′(z)

f ′(z)

}
> α (z ∈ D; 0 ≤ α < p; p ∈ N).

The classesΩp(α), Λp(α) and various other subclasses ofΣp have been studied rather exten-
sively by Aoufet.al. [1] – [3], Joshi and Srivastava [4], Kulkarniet. al. [5], Mogra [6], Owaet.
al. [7], Srivastava and Owa [8], Uralegaddi and Somantha [9], and Yang [10].

In the next section we derive sufficient conditions forf(z) to be in the classesΩp(α) and
Λp(α), which are obtained by using coefficient inequalities.

2. COEFFICIENT I NEQUALITIES

Theorem 2.1.Letσn(p, k, α) = (p+n+ k− 1)+ |p + n + 2α− k − 1|. If f(z) ∈ Σp satisfies

(2.1)
∞∑

n=1

σn(p, k, α) |ap+n−1| < 2(p− α)

for someα (0 ≤ α < p) and somek (k ≥ p), thenf(z) ∈ Ωp(α).

Proof. Suppose that (2.1) holds true forα (0 ≤ α < p) andk (k ≥ p). For f(z) ∈ Σp, it
suffices to show that ∣∣∣∣∣

zf ′(z)
f(z)

+ k

zf ′(z)
f(z)

+ (2α− k)

∣∣∣∣∣ < 1 (z ∈ D).

We note that∣∣∣∣∣
zf ′(z)
f(z)

+ k

zf ′(z)
f(z)

+ (2α− k)

∣∣∣∣∣ =

∣∣∣∣ k − p +
∑∞

n=1(p + n + k − 1)ap+n−1z
2p+n−1

2α− k − p +
∑∞

n=1(p + n + 2α− k − 1)ap+n−1z2p+n−1

∣∣∣∣
≤ k − p +

∑∞
n=1(p + n + k − 1) |ap+n−1| |z|2p+n−1

p + k − 2α−
∑∞

n=1 |p + n + 2α− k − 1| |ap+n−1| |z|2p+n−1

<
k − p +

∑∞
n=1(p + n + k − 1) |ap+n−1|

p + k − 2α−
∑∞

n=1 |p + n + 2α− k − 1| |ap+n−1|
.

The last expression is bounded above by 1 if

k − p +
∞∑

n=1

(p + n + k − 1) |ap+n−1| < p + k − 2α−
∞∑

n=1

|p + n + 2α− k − 1| |ap+n−1|

which is equivalent to our condition (2.1) of the theorem. �

Example 2.1.The functionf(z) given by

(2.2) f(z) =
1

zp
+

∞∑
n=1

4(p− α)

n(n + 1)σn(p, k, α)
zp+n−1 (p ∈ N)

belongs to the classΩp(α).

Sincef(z) ∈ Ωp(α) if and only if zf ′(z) ∈ Λp(α), we can prove:

Theorem 2.2. If f(z) ∈ Σp satisfies

(2.3)
∞∑

n=1

(p + n− 1)σn(p, k, α) |ap+n−1| < 2(p− α)

for someα(0 ≤ α < p) and somek(k ≥ p), thenf(z) ∈ Λp(α).
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NEW SUBCLASSES OFMEROMORPHICp−VALENT FUNCTIONS 3

Example 2.2.The functionf(z) given by

(2.4) f(z) =
1

zp
+

∞∑
n=1

4(p− α)

n(n + 1)(p + n− 1)σn(p, k, α)
zp+n−1

belongs to the classΛp(α).

In view of Theorem 2.1 and Theorem 2.2, we now define the subclasses:

Ω∗p(α) ⊂ Ωp(α) andΛ∗p(α) ⊂ Λp(α),

which consist of functionsf(z) ∈ Σp satisfying the conditions (2.1) and (2.3), respectively.
Lettingp = 1, 1 ≤ k ≤ n + 2α, where0 ≤ α < 1 in Theorem 2.1 and Theorem 2.2, we have

the following corollaries:

Corollary 2.3. If f(z) ∈ Σ1 satisfies
∞∑

n=1

(n + α) |an| < 1− α

thenf(z) ∈ Ω1(α) = Σ∗(α) the class of meromorphically starlike functions of orderα in D.

Corollary 2.4. If f(z) ∈ Σ1 satisfies
∞∑

n=1

n(n + α) |an| < 1− α

thenf(z) ∈ Λ1(α) = Σ∗K(α) the class of meromorphically convex functions of orderα in D.

3. DISTORTION THEOREMS

A distortion property for functions in the classΩ∗p(α) is contained in

Theorem 3.1. If the functionf(z) defined by (1.1) is in the classΩ∗p(α), then for0 < |z| = r <
1,we have

1

rp
− 2(p− α)

p + k + |p + 2α− k|
rp ≤ |f(z)|(3.1)

≤ 1

rp
+

2(p− α)

p + k + |p + 2α− k|
rp,

and
p

rp+1
− 2p(p− α)

p + k + |p + 2α− k|
rp−1 ≤ |f ′(z)|(3.2)

≤ p

rp+1
+

2p(p− α)

p + k + |p + 2α− k|
rp−1.

The bounds in (3.1) and (3.2) are attained for the functionsf(z) given by

(3.3) f(z) =
1

zp
+

2(p− α)

p + k + |p + 2α− k|
zp (p ∈ N; z ∈ D).

Proof. Sincef ∈ Ω∗p(α), from the inequality (2.1), we have

(3.4)
∞∑

n=1

|ap+n−1| ≤
2(p− α)

p + k + |p + 2α− k|
.
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4 B.A. FRASIN AND G. MURUGUSUNDARAMOORTHY

Thus, for0 < |z| = r < 1, and making use of (3.4) we have

|f(z)| ≤
∣∣∣∣ 1

zp

∣∣∣∣+ ∞∑
n=1

|ap+n−1| |z|p+n−1(3.5)

≤ 1

rp
+ rp

∞∑
n=1

|ap+n−1|

≤ 1

rp
+

2(p− α)

p + k + |p + 2α− k|
rp

and

|f(z)| ≥
∣∣∣∣ 1

zp

∣∣∣∣− ∞∑
n=1

|ap+n−1| |z|p+n−1(3.6)

≥ 1

rp
− rp

∞∑
n=1

|ap+n−1|

≥ 1

rp
− 2(p− α)

p + k + |p + 2α− k|
rp.

We also observe that

(3.7)
p + k + |p + 2α− k|

p

∞∑
n=1

(p + n− 1) |ap+n−1| ≤ 2(p− α)

which readily yields the following distortion inequalities:

|f ′(z)| ≤ p

|z|p+1 +
∞∑

n=1

(p + n− 1) |ap+n−1| |z|p+n−2(3.8)

≤ p

rp+1
+ rp−1

∞∑
n=1

(p + n− 1) |ap+n−1|

≤ p

rp+1
+

2p(p− α)

p + k + |p + 2α− k|
rp−1

and

|f ′(z)| ≥ p

|z|p+1 −
∞∑

n=1

(p + n− 1) |ap+n−1| |z|p+n−2(3.9)

≥ p

rp+1
− rp−1

∞∑
n=1

(p + n− 1) |ap+n−1|

≥ p

rp+1
− 2p(p− α)

p + k + |p + 2α− k|
rp−1.

This completes the proof of Theorem 3.1. �

Similarly, for functionf(z) ∈ Λ∗p(α), and making use of (2.3), we can prove

J. Inequal. Pure and Appl. Math., 6(3) Art. 68, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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Theorem 3.2. If the functionf(z) defined by (1.1) is in the classΛ∗p(α), then for0 < |z| = r <
1, we have

1

rp
− 2(p− α)

p[p + k + |p + 2α− k|]
rp ≤ |f(z)|(3.10)

≤ 1

rp
+

2(p− α)

p[p + k + |p + 2α− k|]
rp,

and
p

rp+1
− 2(p− α)

p + k + |p + 2α− k|
rp−1 ≤ |f ′(z)|(3.11)

≤ p

rp+1
+

2(p− α)

p + k + |p + 2α− k|
rp−1.

The bounds in (3.10) and (3.11) are attained for the functionsf(z) given by

(3.12) g(z) =
1

zp
+

2(p− α)

p[p + k − 1 + |p + 2α− k|]
zp (p ∈ N; z ∈ D).

4. RADII OF STARLIKENESS AND CONVEXITY

The radii of starlikeness and convexity for the classesΩ∗p(α) is given by

Theorem 4.1. If the functionf(z) be defined by (1.1) is in the classΩ∗p(α), thenf(z) is mero-
morphicallyp-valently starlike of orderδ(0 ≤ δ < p) in |z| < r1, where

(4.1) r1 = inf
n≥1

{
(p− δ)σn(p, k, α)

2(3p + n + 1− δ)(p− α)

} 1
2p+n−1

(p ∈ N).

Furthermore,f(z) is meromorphicallyp-valently convex of orderδ(0 ≤ δ < p) in |z| < r2,
where

(4.2) r2 = inf
n≥1

{
p(p− δ)σn(p, k, α)

2[(p + n− 1)[3p + n− 1− δ](p− α)

} 1
2p+n−1

(p ∈ N).

The results (4.1) and (4.2) are sharp for the functionf(z) given by

(4.3) f(z) =
1

zp
+

2(p− α)

σn(p, k, α)
zp+n−1 (p ∈ N; z ∈ D).

Proof. It suffices to prove that

(4.4)

∣∣∣∣zf ′(z)

f(z)
+ p

∣∣∣∣ ≤ p− δ,

for |z| ≤ r1. We have∣∣∣∣zf ′(z)

f(z)
+ p

∣∣∣∣ =

∣∣∣∣∑∞
n=1(2p + n− 1)ap+n−1z

p+n−1

1
zp +

∑∞
n=1 ap+n−1zp+n−1

∣∣∣∣(4.5)

≤
∑∞

n=1(2p + n− 1) |ap+n−1| |z|2p+n−1

1−
∑∞

n=1 |ap+n−1| |z|2p+n−1 .

Hence (4.5) holds true if

(4.6)
∞∑

n=1

(2p + n− 1) |ap+n−1| |z|2p+n−1 ≤ (p− δ)

(
1−

∞∑
n=1

|ap+n−1| |z|2p+n−1

)
,
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or

(4.7)
∞∑

n=1

3p + n− 1− δ

(p− δ)
|ap+n−1| |z|2p+n−1 ≤ 1,

with the aid of (2.1), (4.7) is true if

(4.8)
3p + n− 1− δ

(p− δ)
|z|2p+n−1 ≤ σn(p, k, α)

2(p− α)
(n ≥ 1).

Solving (4.8) for|z|, we obtain

(4.9) |z| <
{

(p− δ)σn(p, k, α)

2(3p + n + 1− δ)(p− α)

} 1
2p+n−1

(n ≥ 1).

In precisely the same manner, we can find the radius of convexity asserted by (4.2), by requiring
that

(4.10)

∣∣∣∣zf ′′(z)

f ′(z)
+ p + 1

∣∣∣∣ ≤ p− δ,

in view of (2.1). This completes the proof of Theorem 4.1. �

Similarly, we can get the radii of starlikeness and convexity for functions in the classΛ∗p(α).

Theorem 4.2. If the functionf(z) be defined by (1.1) is in the classΛ∗p(α), thenf(z) is mero-
morphicallyp-valently starlike of orderδ(0 ≤ δ < p) in |z| < r3, where

(4.11) r3 = inf
n≥1

{
(p− δ)(p + n− 1)σn(p, k, α)

2(3p + n + 1− δ)(p− α)

} 1
2p+n−1

(p ∈ N).

Furthermore,f(z) is meromorphicallyp-valently convex of orderδ(0 ≤ δ < p) in |z| < r4,
where

(4.12) r4 = inf
n≥1

{
p(p− δ)(p + n− 1)σn(p, k, α)

2[(p + n− 1)[3p + n− 1− δ](p− α)

} 1
2p+n−1

(p ∈ N).

The results (4.11) and (4.12) are sharp for the functiong(z) given by

(4.13) g(z) =
1

zp
+

2(p− α)

(p + n− 1)σn(p, k, α)
zp+n−1 (p ∈ N; z ∈ D).

5. CLOSURE THEOREMS

Let the functionsfj(z) be defined, forj ∈ {1, 2, . . . ,m},by

(5.1) fj(z) =
1

zp
+

∞∑
n=1

ap+n−1,jz
p+n−1, (z ∈ D).

Now, we shall prove the following results for the closure of functions in the classesΩ∗p(α) and
Λ∗p(α).

Theorem 5.1.Let the functionsfj(z), j ∈ {1, 2, . . . ,m}, defined by (5.1) be in the classΩ∗p(α).
Then the functionh(z) ∈ Ω∗p(α) where

(5.2) h(z) =
m∑

j=1

bj fj(z), bj ≥ 0 and
m∑

j=1

bj = 1).
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Proof. From (5.2), we can writeh(z) as

(5.3) h(z) =
1

zp
+

∞∑
n=1

cp+n−1 zp+n−1,

where

(5.4) cp+n−1 =
m∑

j=1

bjap+n−1,j, j ∈ {1, 2, . . . ,m}.

Since fj(z) ∈ Ω∗p(α), ( j ∈ {1, 2, . . . ,m}), from (2.1) , we have

∞∑
n=1

[
σn(p, k, α)

2(p− α)

]( m∑
j=1

bj |ap+n−1,j|

)

=
m∑

j=1

bj

(
∞∑

n=1

σn(p, k, α)

2(p− α)
|ap+n−1,j|

)

≤
m∑

j=1

bj = 1,

which shows thath(z) ∈ Ω∗p(α). This completes the proof of Theorem 5.1. �

Using the same technique as in the proof of Theorem 5.1, we have

Theorem 5.2.Let the functionsfj(z), j ∈ {1, 2, . . . ,m}, defined by (5.1) be in the classΛ∗p(α).
Then the functionh(z) ∈ Λ∗p(α), whereh(z) defined by (5.2).

Theorem 5.3.Let

(5.5) fp−1(z) =
1

zp
(z ∈ D)

and

(5.6) fp+n−1(z) =
1

zp
+

2(p− α)

σn(p, k, α)
zp+n−1,

wheren ∈ N0 = N ∪ {0}; z ∈ D. Thenf(z) ∈ Ω∗p(α) if and only if it can be expressed in the
form

(5.7) f(z) =
∞∑

n=0

λp+n−1fp+n−1(z)

whereλp+n−1 ≥ 0, (n ∈ N0) and
∑∞

n=0 λp+n−1 = 1.

Proof. From (5.5), (5.6) and (5.7), it is easily seen that

f(z) =
∞∑

n=0

λp+n−1fn+p−1(z)(5.8)

=
1

zp
+

2(p− α)

σn(p, k, α)
λp+n−1z

p+n−1.

Since
∞∑

n=1

σn(p, k, α)

2(p− α)
.

2(p− α)

σn(p, k, α)
λp+n−1 =

∞∑
n=1

λp+n−1 = 1− λp−1 ≤ 1,

it follows from Theorem 2.1 that the functionf(z) given by (5.6) is in the classΩ∗p(α).

J. Inequal. Pure and Appl. Math., 6(3) Art. 68, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


8 B.A. FRASIN AND G. MURUGUSUNDARAMOORTHY

Conversely, let us suppose thatf(z) ∈ Ω∗p(α). Since

|ap+n−1| ≤
2(p− α)

σn(p, k, α)
(n ≥ 1),

setting

λp+n−1 =
σn(p, k, α)

2(p− α)
|ap+n−1| , (n ≥ 1)

and

λp−1 = 1−
∞∑

n=1

λp+n−1,

it follows that

f(z) =
∞∑

n=0

λp+n−1fp+n−1(z).

This completes the proof of the theorem. �

Similarly, we can prove the same result for the classΛ∗p(α).

Theorem 5.4.Let

(5.9) gp−1(z) =
1

zp
(z ∈ D)

and

(5.10) gp+n−1(z) =
1

zp
+

2(p− α)

(p + n− 1)σn(p, k, α)
zp+n−1

wheren ∈ N0 andz ∈ D. Theng(z) ∈ Λ∗p(α) if and only if it can be expressed in the form

(5.11) g(z) =
∞∑

n=0

λp+n−1gp+n−1(z)

whereλp+n−1 ≥ 0, (n ∈ N0) and
∑∞

n=0 λp+n−1 = 1.

Next, we state a theorem which exhibits the fact that the classesΩ∗(α) and Λ∗p(α) are closed
under convex linear combinations. The proof is fairly straightforward so we omit it.

Theorem 5.5. Suppose thatf(z) and g(z) are in the classΩ∗(α) (or in Λ∗p(α) ). Then the
functionh(z) defined by

(5.12) h(z) = tf(z) + (1− t)g(z), (0 ≤ t ≤ 1)

is also in the classΩ∗(α) (or in Λ∗p(α)).

6. CONVOLUTION PROPERTIES

For functions

(6.1) fj(z) =
1

zp
+

∞∑
n=1

ap+n−1,jz
p+n−1, (j = 1, 2)

belonging to the classΣp, we denote by(f1 ∗ f2)(z) the Hadamard product (or convolution) of
the functionsf1(z) andf2(z), that is,

(6.2) (f1 ∗ f2)(z) =
1

zp
+

∞∑
n=1

ap+n−1,1ap+n−1,2z
p+n−1.

Finally, we prove the following.
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NEW SUBCLASSES OFMEROMORPHICp−VALENT FUNCTIONS 9

Theorem 6.1.Let each of the functionsfj(z) ( j = 1, 2) defined by (6.1) be in the classΩ∗(α).
Then(f1 ∗ f2)(z) ∈ Ω∗(η), where

(6.3)
1

2
(k + 1− p− n) ≤ η =

p ([p + k + |p + 2α− k|]2 − 4(p− α)2)

4(p− α)2 + [p + k + |p + 2α− k|]2
, (k ≥ p; p, n ∈ N).

The result is sharp.

Proof. Forfj(z) ∈ Ω∗(α) (j = 1, 2), we need to find the largestη such that

(6.4)
∞∑

n=1

σn(p, k, η)

2(p− η)
|ap+n−1,1| |ap+n−1,2| ≤ 1.

From (2.1), we have

(6.5)
∞∑

n=1

σn(p, k, α)

2(p− α)
|ap+n−1,1| ≤ 1

and

(6.6)
∞∑

n=1

σn(p, k, α)

2(p− α)
|ap+n−1,2| ≤ 1.

Therefore, by the Cauchy-Schwarz inequality, we have

(6.7)
∞∑

n=1

σn(p, k, α)

2(p− α)

√
|ap+n−1,1| |ap+n−1,2| ≤ 1.

Thus it is sufficient to show that

(6.8)
σn(p, k, η)

2(p− η)
|ap+n−1,1| |ap+n−1,2| ≤

σn(p, k, α)

2(p− α)

√
|ap+n−1,1| |ap+n−1,2|, (n ≥ 1)

that is, that

(6.9)
√
|ap+n−1,1| |ap+n−1,2| ≤

(p− η)σn(p, k, α)

(p− α)σn(p, k, η)
, (n ≥ 1).

From (6.7), we have √
|ap+n−1,1| |ap+n−1,2| ≤

2(p− α)

σn(p, k, α)
.

Consequently, we need only to prove that

(6.10)
2(p− α)

σn(p, k, α)
≤ (p− η)σn(p, k, α)

(p− α)σn(p, k, η)
, (n ≥ 1).

Let η ≥ 1
2

(k + 1− p− n), wherek ≥ p andp, n ∈ N. It follows from (6.10) that

(6.11) η ≤ p[σn(p, k, α)]2 − 4(p− α)2(p + n− 1)

4(p− α)2 + [σn(p, k, α)]2
= Ψ(n).

SinceΨ(k) is an increasing function ofn (n ≥ 1), lettingn = 1 in (6.11), we obtain

(6.12) η ≤ Ψ(1) =
p ([p + k + |p + 2α− k|]2 − 4(p− α)2)

4(p− α)2 + [p + k + |p + 2α− k|]2
,

which proves the main assertion of Theorem 6.1.
Finally, by taking the functions

(6.13) fj(z) =
1

zp
+

2(p− α)

σn(p, k, α)
zp+n−1, (j = 1, 2)
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we can see the result is sharp. �

Similarly, and as the above proof, we can prove the following.

Theorem 6.2.Let each of the functionsfj(z) (j = 1, 2) defined by (6.1) be in the classΛ∗p(α).
Then(f1 ∗ f2)(z) ∈ Λ∗p(ξ), where

(6.14)
1

2
(k+1−p−n) ≤ ξ =

p (p[p + k + |p + 2α− k|]2 − 4(p− α)2)

4(p− α)2 + p[p + k + |p + 2α− k|]2
, (k ≥ p; p, n ∈ N).

The result is sharp for the functions

(6.15) fj(z) =
1

zp
+

2(p− α)

(p + n− 1)σn(p, k, α)
zp+n−1, (j = 1, 2).
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