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1. INTRODUCTION

One of the most famous inequalities in analysis is the Hermite—Hadamard inequality

a+b 1 b f(a) + f(b)
1.1 H(“57) =52 [ s < T

which holds for a convex functioifi : [a,b] — R. Using this inequality and some properties

of delta—convex functions (cf. an exhaustive study of this class of functions given by Vesely
and Zajcek [8]; cf. alsol[2], where, independently 6f [8], the authors introduced the concept
of convex—dominated functions which coincides with the notion of delta—convex functions)
Dragomir, Pearce and Paric proved recently the following result.

Theorem 1.1. [3, Remark 1]Let f be twice differentiable oifu, b] and suppose that/ :=
sup |f”(z)| < oc. Then

x€|a,b]
b
'f(““’)—bia/ f(x)de g%(b—a)Q and
fla +f M
e /f < 20— ay
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By multiplying both sides of these inequalities by a the simplest cases of the inequalities
estimating the accuracy of the Midpoint and Trapezoidal Rules of an approximate integration
can be recognized.

In this paper we give some results related to Thegrein 1.1. Some new inequalities are obtained
and some known inequalities are reproved. To obtain these results we make use of an important
extension of convex functions, i.e. convex functions of higher orders (studied among others by
Popoviciu [6]). Let us recall this notion. It is not difficult to notice that a functfon/ — R
(wherel C R is an interval) is convex if and only if

1 1 1
(1.2) x Yy z | >0

f@) fly) f(2)

for anyz,y,z € I such thatr < y < z. Following this observation we define the function
f : I — R to ben—convex(n € N) if and only if

1 1 . 1
T € e T+l
Dn+1(x07$1>"'7xn+1;f) = >0
xh P . Ty,
f(xo) flz1) oo flznt)
foranyzg, zy,..., 2,41 € I suchthatyy < z; < --- < x,,1. Obviouslyl—convex functions

are convex in the classical sense. For more information about the definition and the properties
of convex functions of higher orders the reader is referred/tol[5],[[6], [7].

The following theorem (due to Popoviciul [6]) characterizesonvexity ofn + 1 times dif-
ferentiable functions (cf. alsol[5],][1, Theorem A]).

Theorem 1.2. Assume thaf : (a,b) — R is ann + 1 times differentiable function. Thehis
n—convex if and only if ") (z) > 0, z € (a,b).

The result similar to the if part of Theorgm [1.2 is true for [a,b] — R. The expression
“f :[a,b] — Ris continuous” means, as usual, thfas continuous orta, b), continuous on the
right ata and continuous on the left at

Theorem 1.3. Assume thaf : [a, b] — Risn + 1 times differentiable ofa, b) and continuous
on|a,b]. If f™*V(z) >0,z € (a,b), thenf is n—convex.

Proof. The result follows by Theoreifn 1.2 and by the fact that the functibps (-, z1, .. .,
Tpt1; f)and D,y (x, . .., z,, 5 f) @re continuous on the right atand on the left ab, respec-
tively. O

In [1] Bessenyei and Péles recently obtained some extensions of Hadamard’s inelquality (1.1)
for convex functions of higher orders ([1, Theorems 6 and 7]). Since the notations of these
results will be used very often in the present paper, we quote these theorems in extenso. Let us
remark that in[[1] the name—monotone functions used for(n — 1)—convex functions. For
reader’s convenience we consequently use this last name.

Theorem 1.4.[1, Theorem 6] et, forn > 0,

1 1
1 2 nt1
1 1
z 3 n+2
pala):=| . 0T
n _1_ .., _1_
z n+2 2n+1
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thenp,, hasn pairwise distinct roots if{0, 1). Denote these roots by, ..., \,, and

1 /1 )
Qp = p(x)dx,
*T RO Jy P

_ i ! ZL’pn(ZL‘)
Ak Joo (@ = Ak)ph(Ar)

de (k=1,...,n).

(077

Then the following inequalities hold for aly.—convex functiorf : [a, b] — R:

n b

(1.3) apf(a) + ; af (1= Xe)a+ Ab) < ﬁ/a f(x)dx and
1 b "

(1.4) m/a flz)dz < kz:;akf()\ka + (1= Ae)b) + ao f (D).

Theorem 1.5.[1, Theorem 7] et, forn > 1,

1

1
1 % 23 n(n+1)
1 1 1 1
o3 ntl v 34 D) (nr2)
pn(x) = ) Qn(x) = )
n 1 1 n—1 1 1
s S x mtDmt2) (@n-D2n
thenp,, hasn, andg,, hasn—1 pairwise distinct roots iff0, 1). Denote these roots by, ..., A,
andyuy, ..., u,—1, respectively. Let
1
Pn(T)
ay = de (k=1,...,n) and
= | e )
1 1
foi= s [ (1= D) (e)da,
q-(0) Jo )
1 Vel = 2)q,
O = / il :B)q, (I)d:c (k=1,...,n—1),
(L= p)pe Jo (@ — pe)ar, ()
1 oy
B = —/ xq;(x)dz.
(1) Jo

Then the following inequalities hold for ari§n — 1)—convex functiorf : [a, b] — R:
(1.5) ;akf((l — Ap)a+ )\kb) < m/@ f(z)dz and

b n—1
(1.6) ﬁ/ f(x)dz < By f(a) + Zﬁkf((l — pe)a + pb) + B f(b).
a k=1
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Remark 1.6. (cf. [1, Corollary 1]) Forn = 1 we obtain by Theorein 1.5 the classical Hadamard
inequality. Indeed, it is easy to compute

D[ =

1
ﬁoz/o (1—m)dm:%,

! 1
61:/0 xdxza.

Then using[(1]5) andl (1.6) for a 1-convex (i.e. convex) funcfiora, b — R we get [T.1).

Now let us recall the notion of delta—convexity. Let I — R be a convex function. It is
well known (cf. e.g.[[4],[[8]) thatf : I — R is delta—convex with a control functian(briefly
g—delta—convex) if and only if the functions+ f andg — f are convex. Combining this fact
with (1.2) we obtain that the functiofiis g—delta—convex if and only if

foranyz,y, z € I such thatr < y < z.

In the paper!]4], Ger proposed to consider delta—convex functions of higher orders. For
a definition and a discussion of this notion the reader is referred to [4]. In this paper we use the
following definition. Letg : I — R be ann—convex function. The functiofi : I — R is said
to ben—delta—convex with a control functian(n—g—delta—convex for short) if and only if the
inequality

‘Dn-l-l(x(]vxl) cee axn-l—l;f)‘ § Dn—&-l(mOaxla s >$n+l;g)

holds for anyzxg, x1,...,2x,.1 € I such thatyy < z; < --- < z,,1. Obviously1—g—delta—
convex functions arg—delta—convex.
Using the properties of determinants we obtain the following theorem (cf. [4, Proposition 1]).

Theorem 1.7.Letg : I — R be ann—convex function. The functigh: I — R is n—g—delta—
convex if and only if the functions+ f andg — f are n—convex.

The next result follows immediately from Theorejms| 1.7 1.3.

Theorem 1.8.Assume that the functiorfsg : [a,b] — R aren+1 times differentiable ofu, b)
and continuous ofu, b]. If the inequality| f"*V) (z)| < ¢ (z) holds for anyz € (a, b), then
f is n—g—delta—convex.

2. MAIN RESULTS

Theorem 2.1.Let, forn > 0, g : [a,b] — R be a2n—convex function and let : [a,b] — R
be a2n—g—delta—convex. Then, under the notations of Theprem 1.4, the following inequalities

J. Inequal. Pure and Appl. Math6(2) Art. 47, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

SOME INEQUALITIES CONNECTED WITH AN APPROXIMATE INTEGRATION 5

hold:
@HCM@+ZkMW—MMJ@—;$LfWW
< L /bg(x)dx apg(a Zag ((1 = Ap)a + Ab)
< — Qo k — Ak k
b—a /, —
and
(2.2) ;@kf()\k&‘i‘(l—)\k))‘i‘@of b—a/ flx

n

< Zakg()\ka + (1= Xp)b) + aog(b) — ! / g(x)dz.

b—a
k=1 a

Proof. Sincef is 2n—g—delta—convex, the functiogs- f andg — f are2n—convex. Using (113)
for g + f we obtain

aog(a) + aof(a +Zak9 (1 —Xp)a+ Apb +Zakf (1= Ap)a+ Axb)

k=1 k=1
I 1
— [ stint 7 [ sy

(2.3) af(a +Zakf (1= An)a+ Apb) /f

k=1

Then

1
Sb /a g(x)dx — apg(a) Zakg (1= Ap)a + Apb).

—a

Using (1.3) forg — f we get

apg(a) — apf(a +Zakg (1= Ap)a+ A\b —Zakf((l—)\k)a+)\kb)

k=1 k=1
b—a/ dx_b—a/f
Then
(2.4) aof(a +Zakf (1= M)a+ \b) /f

b
> — (ﬁ/ ( )dl’-&og Zakg 1_>\k)a+)\kb)>

k=1
and the inequality (2]1) follows by (2.3) arid (2.4).
The proof of [2.2) is analogous: it is enough to yse|(1.4pferconvex functiong + f and

g—f. O
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Theorem 2.2. Let, forn > 1, g : [a,b] — R be a(2n — 1)—convex function and lef :
la,b] — R be(2n—1)—g—delta—convex. Then, under the notations of Theprem 1.5, the following
inequalities hold:

I -
(2.5) m/ﬂ f(:v)da:—;akf((l—)\k)a—i-)\kb)
< L /bg(a:)daj ia g((1 = Xe)a + Apb)
< - k — g k
b—a /, —
and
(2.6) |Gof(a +Zﬁkf (1= px)a + pb) + Buf(
n—1 1 b
< Bog(a +;ﬁkg (1 — pw)a + pxb) + Bug(b) — b—a/a g(x)dz.

Proof. Our argument is similar to the one in the proof of Theofer 2.1. Sjnisg2n — 1)-g—
delta—convex, the functions+ f andg — f are(2n — 1)—convex. Using[(1]5) foy + f and

g — f we obtain[(2.p). Usind (1]6) far + f andg — f we get[2.6). O

3. APPLICATIONS

By an appropriate specification of the control functipin Theorems 2]1 and 2.2 we can
obtain some inequalities which estimate the accuracy of some formulae of an approximate in-
tegration. Both classical and new inequalities can be derived. Let us start with the following
remark.

Remark 3.1. Let f bek times differentiable offu, b] and assume that

M(f) = sup |f ¥ (2)] < oo.

x€|a,b]

Then forg( ) Mg) we haveg® (z) = M(f) and|f®(z)] < ¢®(z), z € [a,b]. By

Theorenj 1.5 is (k — 1)—g—delta—convex.

Now we are going to discuss the accuracy of the Midpoint and Trapezoidal rules in approxi-
mate integration. We recall these rules.

Midpoint Rule. Let f be twice differentiable ona,b] and assume that/s(f) < oo. Let

b— i i\ .
az_() mandletyi:f(w),z:1,...,m.Then

meNx;,=a+1 5

_ Moo= )
- 24m? '

/ f da:——(y1+ +ym)

Observe that forn = 1 we get

[ ot — ooy (42| < 20—

(3.1)
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Trapezoidal Rule. Let f be twice differentiable ota, b] and assume that/s(f) < oo. Let

meN,z;,=a+1 _a,yi:f(xi),i:(J,...,m.Then

Ma(f)(b— )}

12m?2

b b—a
/ f<x>dx_%<y0+ym+2(yl+y2+"'+ym1))‘ <

Form = 1 we get

(f(a) + 5ty)| < 20—

Now we derive[(3..1) and (3.2) from Theorém|2.2 (€l. [3, Remark 1] and Thelorgm 1.1).

Corollary 3.2. Let f be twice differentiable oz, b)) and assume that/;(f) < oco. Then the
inequalities(3.J)and (3.2) hold.

Proof. Letn = 1. We use the notations of Theorém|1.5. By Ren.< hark 1.6 we hive =

q(r) =1, =1 a1 =1,0 = =1L Letg(zr) = 2222 Then by Remargf is g—
delta—convex and by (2.5) we have

oo () [ 240 B

Multiplying both sides of this inequality by — « we compute

/f e — (b )f(a+b)‘§M22(f) <b3;a3_(b_a)(azb)2)
_ My(f)(b—a)?®

(3.2)

24 ’
which gives|(3.1). By[@6) we have
f(a)+ f(b) /“f ﬂf) @ +67\ 1 L/bA@(ﬂxQ
2 b—ua 2 b—a /, 2
Multiplying both sides of this inequality bly— a we obtain[(3.R). O

As an example of some new inequalities we give the following

Corollary 3.3. Let f be three times differentiable da, b] and assume that/;(f) < co. Then

(3.3) a a<f( .y (a+26>)'§M3(f;(1[;_a)4 o
oo ([ o5 o (2 e

Proof. Letn = 1. Under the notations of Theorgm [L.4 we compute

1 1 2
=5 3%, )\1:_7

3 2 3

/71 11)\? 1
-z dr = =
(3 2x> T

3/‘1 2(3 — 32) 3/1 3
o] = 3 ——=—dr = rdr = —.
T2 0 (95—%)(—%) 2 /o 4
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Letg(z) = %fﬂg By Remarf is 2—g—delta—convex. By the inequality (2.1) of Theo-
remZ.1 we infer

@57 (Gar 3) - b—a/f
L[ L 3 M G 3
_b—a 6 4 6

Multiplying both sides of this inequality by—a and computing the right hand side we -3 3).
The inequality[(3.4) we obtain similarly using (R.2).

Let us now discuss the accuracy of Simpson’s Rule in approximate integration. Recall that
this rule reads as follows.

Simpson’s Rule. Let f be four times differentiable ofa, b] and assume that/,(f) < co. Let
m € N, x; :a+ib2_—m“,yi = f(x;),i=0,...,2m. Then
b b—a

f(z)dz — 6—m(y0 + Yom +2(Y2 +ys + - A Yom—2) + 4y +ys + - F yzm—l))

< Mu(f)(b—a)®
- 2880m4

(147 (5) +10) | < MG

Form = 1 we obtain

/ ()

We can derive[(3]5) from Theorgm P.2.

Corollary 3.4. Let f be four times differentiable oja, b] and assume that/,(f) < oco. Then
the inequality(3.5) holds.

Proof. Letn = 2. Using the notations of Theorgm .5 we compute

(3.5)

1 1
@)= § 12(1 — 2x), M1 =

1
- )

12

)

CDI»—\ | =

1
50:144/0 (1—21)- 114(1—2@ du

z(1— )5 (1 — 22) ! 2
1=4 i ~—dr =4 (1l —x)dr = —,
hed [ e - eie =

ol 1
62:144/ r-——(1—22)%dr = .
0

144 6

Let g(z) = % By Remarl'f is 3—g—delta—convex. By the inequalitly (2.6) of Theo-
rem2.2 we obtain

@+ () 50 - [ s

4 4
S1_M4(f)a +2‘M4(f) a+b +1 M4 /M4 ..
6 24 3 24 2 6 24
from which the inequality{ (3]5) follows. O
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Other examples of the roots of polynomials of Theorémp 1.4 and 1.5 are given in [1]. Then
the integral inequalities similar tp (3.1]), (8.9), (3-8), (3.4) (3.5) can be obtained by Theorems

2.1 and ZP.
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