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ABSTRACT. In the present work we develop some integral identities and inequalities for the
fractional integral. We have obtained Montgomery identities for fractional integrals and a gener-
alization for double fractional integrals. We also produced Ostrowski and Griss inequalities for
fractional integrals.
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1. INTRODUCTION

Let f : [a,b] — R be differentiable orja, b], andf’ : [a,b] — R be integrable otu, b], then
the following Montgomery identity holds [1]:

1 b b
1.1) f@) == [ f@ar+ [ Pieso
whereP; (z,t) is the Peano kernel
= g <t<u,
1.2 Pi(x,t) =
(-2 ) bz <t<b.

Suppose now that : [a,b] — [0, 00) is some probability density function, i.e. it is a positive
integrable function satisfyingabw(t) dt =1,andW(t) = [ w(x) dx for ¢ € [a,b], W(t) =0
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fort < aandW(t) = 1fort > b. The following identity (given by R&ric in [4]) is the
weighted generalization of the Montgomery identity:

b b
(13) f@) = [ws@d+ [ Puofod,
where the weighted Peano kernel is
W (t), a<t<u,
P,(x,t) =
W(t)—1, z<t<b.

In [2} (3], the authors obtained two identities which generalized (1.1) for functions of two vari-
ables. In fact, for a functioif : [a, b] X [¢, d] — R such that the partial derivativ@éégz—’t), %

andaaf;tt all exist and are continuous ¢am b] x [c, d], so for all(x, y) € [a, b] X [¢, d] we have:

(1.4) (d—)(b—a)f(z.y) //fstdsdtJr//af ) ds dt
//af ) dt ds +// 08t p(@, $)q(y, 1) ds dt.

t—C, CStSyv

where

(1.5) p(z,s) = {

s—a, a<s<ux,

and q(y,t) = {

s—b, x<s<b, t—d, y<t<d.

2. FrRACTIONAL CALCULUS

We give some necessary definitions and mathematical preliminaries of fractional calculus
theory which are used further in this paper.

Definition 2.1. The Riemann-Liouville integral operator of order> 0 with a > 0 is defined
as

2.1) @) = e [ =0

Jof(x) = f(@).
Properties of the operator can be foundlih [8]. In the case ef 1, the fractional integral
reduces to the classical integral.

3. MONTGOMERY |IDENTITIES FOR FRACTIONAL INTEGRALS

Montgomery identities can be generalized in fractional integral forms, the main results of
which are given in the following lemmas.

Lemma 3.1. Let f : [a,b] — R be differentiable orja, b], and " : [a,b] — R be integrable on
la, b], then the following Montgomery identity for fractional integrals holds:

F
G f@) =
where P, (x, t) is the fractional Peano kernel defined by:

Py t)‘{ s e st

(b —z)T(a), z<t<b.

~ (0 =) IR () = Jo T (Pal,0) [ (0)) + TG (Pa(w, ) f'(B)), = 1,

(3.2)
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Proof. In order to prove the Montgomery identity for fractional integrals in relation| (3.1), by
using the properties of fractional integrals and relation| (3.2), we have

(3.3) ['(e) Jg (Pr(z,0) f'(b))

-/ (b 0 P )7 ()
- [ te-otroa | ;—b< — ) Lf 1) dt

—/x( — ) (1) dt——/ (b—1t)”

Next, integrating by parts and usirjg (3.3), we have
(3.4) T(a)J;(Pi(z,b) (b))

— (b= 0 ) — T @I ) + (o~ 1) [ - 0o

= (b= )" f (@) — T (a)J3 £ () + D) g (R, D)),

Finally, from (3.4) fora > 1, we obtain
I'(a)

F@) = 2 (b= ) T2 () = T (Palir, D) £ () + T2 (Pl D) (0),

and the proof is completed. O
Remark 1. Lettinga = 1, formula [3.]) reduces to the classic Montgomery ider@ (1.1).

Lemma 3.2. Letw : [a,b] — [0, 00) be a probability density function, i. q t)dt =1, and

setW(t) = [Tw(z)drfora <t < b W(t)=0fort <aandW(t) = 1fort >b, o> 1.
Then the generalization of the weighted Montgomery identity for fractional integrals is in the
following form:

(3.5)  flw) = (b~ =) T()J5 (w(b) f(0)) — Jg™ (Qu(z, ) (b)) + 5 (Qu(x,0) f(b)),
where the weighted fractional Peano kernel is

(b— )T ()W (1), a<t<z
Qu(z,t) = { -

(b—z)' T(a)(W(t)—1), 2 <t<b.
Proof. From fractional calculus and relatign (B.6), we have
3.7) Ja (Qu(x,b) f'(D))

1

b
- o / (b— )" Qu(x, ) f(t)dt

b b
=(b—x)™ (/ (b— )W (t)f'(t)dt — / (b— t)a_lf’(t)dt> :
Using integration by parts if (3.7) aftl (a) = 0, W (b) = 1, we have

(3.6)

(3.8) / O TW () £ (t) dt

b
= —L(@)Jg (w(b) (b)) + (o — 1)/ (b= )2 W (L) f(t)dt,
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and
(3.9) / (b—t)* L (t)dt = —(b—2)* ' f(z) + (o — 1) / (b—1)*2f(t) dt.

We apply [3.8) and (3]9) td (3.7), to get
(3.10)  JI(Qu(x,b)f (b))

= (0= ) [T ®0) - (o~ 1) [ 0= 00

b
+(b—2)*  f(z) + (e — 1) / (b—1)*2W () f(t) dt}
= f(@) = T(a)(b—2)' "3 (w(d) f(b)) + (b — 2)'"*(a — 1)
T b
X [/ (b— ) 2W () f(t)dt + / (b—1)*2(W(t) — 1)f(t) dt}
= f(x) = T(a) (b — 2)' T3 (w(b) f(0)) + g~ (Qu(x, b) f(D)).
Finally, we have obtained that
(3.11) f(z) = (b—2)'"°T(a)Jg (w (D) f (b)) — Jo~ (Qu (2, ) f()) + Jg (Qu(x,b) f' (1)),
proving the claim. O

Remark 2. Letting o = 1, the weighted generalization of the Montgomery identity for frac-
tional integrals in[(3)5) reduces to the weighted generalization of the Montgomery identity for

integrals in[(1.B).
Lemma 3.3. Let a functionf : [a,b] X [¢,d] — R have continuous partial derivativ@é%,

01(28) and ZL=h on|q, b] x [¢, d), for all (x,y) € [a,b] X ¢, d] anda, 3 > 2. Then the following

two variables Montgomery identity for fractional integrals holds:
(d—=c)(b—a)f(z,y)
0
= (0= 0= T |75 (a7 0) )

af(b,d)
0s

+ p(z,b) q(y, d)

LB (f(a 4) + pla.b)

_Jpe (p<x, ) £(b,d) + ple,b) q(y, d)

it (q<y,d> £(b.d) + p(ab) gy, )

+ I8 (plab) aly, d) (6, ) ) .
where
I f(x,y) / / z— ) Ny =) f(s,t)dsdt.
Also,p(z, s) andq(y, t) are deflned by-5)
Proof. Put into [1.4), instead of, the functiong(z, y) = f(z,y)(b — x)*~*(d — y)*~. O
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4. AN OSTROWSKI TYPE FRACTIONAL INEQUALITY

In 1938, Ostrowski proved the following interesting integral inequality [5]:

w—a><x_a;b)2

wheref : [a,b] — R is a differentiable function such thaf’(z)| < M, for everyz € [a,b].
Now we extend it to fractional integrals.

Theorem4.1.Letf : [a,b] — R be differentiable oifu, b] and|f'(z)| < M, for everyx € |a, b|
anda > 1. Then the following Ostrowski fractional inequality holds:

(b—a)M,

(4.1) ' ——/f dt‘

%(b — 2)ITOTYf () + JOT Py (s, b)f(b)‘

g% [(b—x) <2a (Z:z) —a—l) +(b—a)°‘(b—x)1_“}.

Proof. From Lemma 3.1 we have

) = L 0 2 )+ T Pl D0 =

Therefore, from[(4]3) andl (3.1) andf (x)| < M, we have

(4.2) ‘f(l") -

(4.3)

Je (ol 0)J'0))].

@8 / (b—t)a‘ng(x,t)f’(t)dt‘

[ o)

< F(a)/Q(b—t)a1|P2(x,t)|dt

SM% (/:(b—t) (t—a dt+/bb—t dt)

ey oo (5) o= o]
This proves inequality (4]2). O

5. A GRUSSTYPE FRACTIONAL INEQUALITY

In 1935, Gruss proved one of the most celebrated integral inequalities [6], which can be stated
as follows

i [ e - gt [ e [ ot <

provided thatf andg are two mtegrable functions dn, b] and satisfy the conditions
m< flz) <M,  n<g(@) <N,

for all z € [a,b], wherem, M, n, N are given real constants.
A great deal of attention has been given to the above inequality and many papers dealing with
various generalizations, extensions, and variants have appeared in the litefature [7].

(5.1) <

M = m)(N = ),
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Proposition 5.1. Given thatf(z) and g(z) are two integrable functions for alt € [a, b], and
satisfy the conditions

m< (-2 fl@) <M, n<(b—2)g(z) <N,

wherea > 1/2, andm, M,n, N are real constants, the following Gruss fractional inequality
holds:

F(20é — 1) 2a—1 1 @ @ 1
(5.2) m% (fg)(b) — mJa f(0)J3g(b)] < W(M —m)(N —n).
Proof. If substituteh(z) = (b—z)*~! f(z) andk(x) = (b— )" g(x) in (5.), we will obtain
G.2). 0

In [10] some related fractional inequalities are given.
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