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ABSTRACT. By making use of the principle of differential subordination, the authors investigate
several inclusion relationships and other interesting properties of certain subclasses of meromor-
phically multivalent functions which are defined here by means of a linear operator. They also
indicate relevant connections of the various results presented in this paper with those obtained in
earlier works.
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1. INTRODUCTION AND DEFINITIONS

For any integern > —p, let¥, ,, denote the class of all meromorphic functiofis) nor-
malized by

(11) f(Z) =z P+ iakzk (pE N:= {172737“'})7
k=m

which are analytic ang-valent in the punctured unit disk
Ur={z:2€C and 0<|z| <1} =U\{0}.
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2 H. M. SRIVASTAVA AND J. FATEL

For convenience, we write
Xp,—p+1 = Zp.
If f(z) andg(z) are analytic inU, we say thatf(z) is subordinate tg(z), written symboli-
cally as follows:
f<g in U or f(z) <g(z) (z€0),
if there exists a Schwarz functian(z), which (by definition) is analytic if with
w(0) =0 and |w(z)| <1 (z€0)
such that
f(z) = g(w(2)) (= € V).
Indeed it is known that
f(z) <g(z) (2€U) = f(0)=4(0) and f(U) C g(U).
In particular, if the functiory(z) is univalent inU, we have the following equivalence (cf., e.g.,
[5]; see alsol[B, p. 4]):

f(z)=9(z) (z€U) <= f(0)=g(0) and f(U)C g(U).
For functionsf(z) € ¥,,,, given by (1.1), and(z) € %,,, defined by

(1.2) g(z)=z2"P+ Z brz®  (m > —p; p €N),
k=m
we define the Hadamard product (or convolution) 6f) andg(z) by
1.3)  (fx9)(2) =27+ abz* = (gx f)(2) (m>—p; peN; z€ ).
k=m

Following the recent work of Liu and Srivastava [3], for a functiffx) in the class:, .,
given by [1.1), we now define a linear operaidt by

D°f(z) = f(2),

D'f(z) =27+ Z(p+/€+ Dagz" =

k=m

(271 f(2))

and (in general)

D"f(z)=D(D"'f(z)) =27+ Z(p + k4 1)"a2"
(Zp—i-an—lf(Z))’

(1.4) = por (n € N).

It is easily verified from[(1]4) that
(15)  2(D"f(2)) = D" f(z) — (p+ 1)D"f(2) (f €ym; n€Ny=NU {0}>.

The casen = 0 of the linear operatoD™ was introduced recently by Liu and Srivastava [3],
who investigated (among other things) several inclusion relationships involving various sub-
classes of meromorphicallyvalent functions, which they defined by means of the linear op-
erator D" (see alsol[2]). A special case of the linear operd®rfor p = 1 andm = 0
was considered earlier by Uralegaddi and Somanatha [13]. Aouf and Hossen [1] also obtained
several results involving the operatof for m = 0 andp € N.

Making use of the principle of differential subordination as well as the linear opeftpr
we now introduce a subclass of the function clags, as follows.
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Definition.  For fixed parametersl andB (-1 = B < A £ 1), we say that a function
f(z) € ¥ isinthe classl) | (A, B), if it satisfies the following subordination condition:

zp+1(D”f(z))/ - 1+ Az
P 1+ Bz

(1.6) (n € No; z € U).

In view of the definition of differential subordinatiorf, (1.6) is equivalent to the following
condition: /

(D f(2) +p
Bzrt1(Dnf(2)) + pA
For convenience, we write

<1l (z€U).

n 20 n
Epym (1 o ?’ _1) = Ep,m (Oé) )

whereX}  (a) denotes the class of functionsih ,, satisfying the following inequality:
R(— " (D"f(2)) >a (0L a<p; z€).
In particular, we have
Yoo (A, B) =Ruu(A, B),
whereR,, ,(A, B) is the function class introduced and studied by Liu and Srivastava [3]. The
function classH(p; A, B), considered by Mogra [7], happens to biiether special case of the
Liu-Srivastava clas®,, ,(A, B) whenn = 0.

Inthe present paper, we derive several inclusion relationships for the functiof¢lasd, 13)
and investigate various other properties of functions belonging to theXfgséA, B), which
we have defined here by means of the linear oper@tor These include (for example) some
mapping properties involving the linear operafot. Relevant connections of the results pre-
sented in this paper with those obtained in earlier works are also pointed out.

2. PRELIMINARY LEMMAS
In proving our main results, we need each of the following lemmas.

Lemma 1 (Miller and Mocanu|[5]; see als@[[6])Let the functiom.(z) be analytic and convex
(univaleny in U with h(0) = 1. Suppose also that the functigfz) given by

(2.1) $(2) = 14 cpym2”™™ + 2T 4
is analytic inU. If
@2) o)+ <hs) (R 20y £0; 2 € D)

then

a@<¢@:p+mzaklﬂ$n%@ﬁ<m@ (z € U),

and(z) is the best dominant @.2).

With a view to stating a well-known result (Lemina 2 below), we denot®by) the class of
functionsy(z) given by

(2.3) 0(2) =1+ bz +by2®+ -+,
which are analytic ifU and satisfy the following inequality:
R(p(z)) >y (0=y<1; z€l).
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Lemma 2 (cf., e.g., Pashkouleval[9])Let the functiony(z), given by(2.3), be in the class
P(v). Then

2(1 —7)
14+ |z2|

Ri{p(2)} 22y -1+ 0=vy<1 z€l).

Lemma 3(seel[12]) For0 < v, v < 1,

P(n)*P(r2) CPys)  (vs:=1—2(1 =)L —72)).
The result is the best possible.

For real or complex numbers b, andc (¢ ¢ Z, = {0,—1,-2,---}), theGauss hyperge-
ometric functions defined by

ab z ala+1)b(b+1) 22
Fi(a,bc;2) =14+ — - — el
2Fifa,bieiz) PEETR c(c+1) 2!

We note that the above series converges absolutely §éfU and hence represents an analytic
function inU (see, for details| [14, Chapter 14]).

Each of the identities (asserted by Lemima 4 below) is well-known (cf., €.g., [14, Chapter
14]).

Lemma 4. For real or complex parameters, b, andc (¢ ¢ Z, ),

(2.4) /01 71— )1 - 2t) T dt

I'ie)I'(c — b
= % 2Fia,byc;z)  (R(c) > R(b) > 0);
(2.5) oFi(a,byc2) = (1 —2)""2 1y (a,c-—»b;c;——z—1> ;
P
(2.6) oFi(a,b;c;2) = o Fi(a,b— 15¢,2) + a—cz o1 (a+1,b;¢+ 1; 2);
a+b+1
()

(27) 2F1 (a7ba

‘a+b+L1>_
2 2 r

a+1 r b+1
2 2
We now recall a result due to Singh and Singh [11] as Lefnma 5 below.

Lemma 5. Let ®(z) be analytic inU with

®(0)=1 and R(P(z)) > % (z € V).

Then for any functionF'(z) analytic inU, (® = £')(U) is contained in the convex hull f(U).

J. Inequal. Pure and Appl. Math6(3) Art. 88, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

APPLICATIONS OFDIFFERENTIAL SUBORDINATION 5

3. THE MAIN SUBORDINATION THEOREMS AND THE ASSOCIATED FUNCTIONAL
INEQUALITIES

Unless otherwise mentioned, we shall assuhreughout the sequehatm is an integer
greater than-p, and that

—1<B<AZ<1,A>0 neNy and p e N.
Theorem 1. Let the functiory (=) defined by(1.1|) satisfy the following subordination condition

(1= N)zPtH(D f(2)) + APt (DM F(2)) 1+ Az

- ’ <1 B (z €U).
Then
2Ptt (D”f(z))/ 1+ Az
(3.1) - 5 < Q(z) < B (z € ),
where the functior)(z) given by
A A 1 _ 1 Bz
§+(1—§)(1—|—Bz) 2F1<1’1’>\(p+m)+1’1+3z) (B #0)
Q) = )
1+ — B=0
* Ap+m)+1 - ( )
is the best dominant @8.1)). Furthermore
pas (an(z))’
(3.2) R - p >p (z€0),
where
A A ., 1 B
E+(1—§>(1—B) 2F1<1’1’A(p+m)+1’3—1> (B #0)
p =
A
l—— B =0).
A(p+m)+1 ( )
The inequality in(3.2)) is the best possible.
Proof. Consider the functiog(z) defined by
(D f(2))
(3.3) o(z) = — ( . () (z € U).

Then¢(z) is of the form [2.1) and is analytic ify. Applying the identity [(1.5) in[(3]3) and
differentiating the resulting equation with respecttave get

(1= N2 (D f(2)) + AP (D f(2)) 14 Az

- . = 0(2) + A2 (2) < T

(z € D).
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Now, by using Lemma|1 foy = 1/, we deduce that

_Zp-l—l(an(Z))/ {Q(Z)
_ 1 -9 1/A(p+m) ? 1/A(p+m) t—1 1+ At
_A(p+m)z{ " }/ot{ g (1+Bt>dt
A A _ ' 1 Bz
B §+(1_E)(1+Bz) Hof (1’1’)\(p—|—m)+1’1+32) (B #0)
B A
1+/\(p+m)+lz (B =0),

by change of variables followed by the use of the identified (2.4)] (2.5),[and @@itB)y(= 1
andc = a + 1). This proves the assertidn (B.1) of Theofgm 1.
Next, in order to prove the assertign (3.2) of Theofem 1, it suffices to show that

(3.4) inf {%(Q(z))} =Q(-1).

|z|<1

Indeed, forjz| < r < 1,

14 Az 1—Ar
> <

8?’<1+Bz) 2 1= (FIsr<i)
Upon setting

1+ Asz 1
and d = —
1+ Bsz v(s) A(p+m)

which is a positive measure on the closed intefal], we get

G(s,z) = sUAPEILgs (0 s £ 1),

M@zlg@@w®,

so that

2@ 2 [ (1582 ) dvls) = Q) (<)

Lettingr — 1— in the above inequality, we obtain the assert[on|(3.2) of Thepiem 1.
Finally, the estimate irf (32) is the best possible as the fun€jia is the best dominant of

G.0). O

For A = 1andm = 0, Theoreni [l yields the following result which improves the correspond-
ing work of Liu and Srivastava [3, Theorem 1].

Corollary 1. The following inclusion property holds true for the function cl&s, (A, B):
Rn-l—Lp(Av B) - Rn,p(l - 297 _1) C Rn,p(Aa B)a

where
A A » 1 . B
. §+(l_§)(1_3) 2F1(1,1,§+17ﬁ) (B #0)
N A
1—— B =0).
p+1 ( )

The result is the best possible.
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Putting

2
A=1-22 B= 1, A=1,1n=0, andm= —p+2
p

in Theorem 1L, we get Corollafy 2 below.

Corollary 2. If f(2) € X, _,12 satisfies the following inequality

3‘8( — zp+1{(p+ 2)f'(2) + zf”(z)}) >a (0SS a<p; zel),
then .
R(— 2" f(2) >a+ (p— oz)(E — 1) (z € U).
The result is the best possible.

Remark 1. From Corollaryf2, we note that, iff (z) € %, _,, satisfies the following inequality:

%(‘”“{@+2U%@+ZW@”>>‘pf:f)

(z € D),

then
R(— 2" f(2)) >0 (2 €.
This result is the best possible.

The result (asserted by Rematk 1 above) was also obtained by|Pap [8].
Theorem 2. If f(z) € X7 (o) (0 = a < p), then
(3.5) §R< - zp+1{(1 —N(Drf(2) + )\(D”“f(z))'}) >a (2] <R),

where

1

R= (VI Rp+mP = Ap+m)”"
The result is the best possible.

Proof. We begin by writing
(3.6) — YD f(2)) =a+ (p—a)u(z) (z€U).

Then, clearlyy(z) is of the form [(2.1L), is analytic ift/, and has a positive real partih Making
use of the identity| (1]5) irfj (3]6) and differentiating the resulting equation with respectue
observe that
(1= N)(Df(2) + M D™(2)) +a
(3.7) - = u(z) + Azu/(2).
p—«

Now, by applying the following estimate![4]:

/()] _ 2(p +m)rrh

R{u(z)} = 1—r2etm)

(lz| =r<1)
in (3.7), we get

A1 =N (D" F(2)) + A(D" L f(2)) a
@3)%< (A= 1=) + ML £()) + )

p—«

1\

R(u(z)) (1 B QAI(IJ_J:“ZZDY::WL)
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It is easily seen that the right-hand side [of [3.8) is positive, providedrtkatR, whereR is
given as in Theorein 2. This proves the asserfiorj (3.5) of Thelgrem 2.

In order to show that the bourfd s the best possible, we consider the functfgn) € 3, ,,
defined by

p+1( ' 1+ zptm <
Noting that
(L= 0D () + AP (2)) + a
_ p—
1= 22 L N (p+ m)P T 0
o (1 — 2)2(P+m) o
for .
(xn
pr— R . y
e ()
we complete the proof of Theorgm 2. O

Putting\ = 1 in Theorenj 2, we deduce the following result.
Corollary 3. If f(z) € X7 () (0 £ a < p), thenf(z) € ¥F1(a) for [z] < R, where
R= ( 1+ (p+m)?— (p—l—m))m.
The result is the best possible.
Theorem 3. Let f(z) € X7, (A, B) and let

) ? _ %
(3.9) Fn(f)(2) = ZM/O P (5> 0; 2 € UY),
Then
(D F5,(f)(2)) 14 Az

(3.10) - ) < 0(z2) < T Bs (z € l),
where the functio®(z) given by

A A . 0 . Bz

E—I— (I_E) (1+ Bz)™' oF, <1’1’p—|—m +1; 1—{—Bz) (B #0)

o) = A6

e (B=0)

is the best dominant @B.10]). Furthermore
p+1 Dn /

(3.11) R (—Z ( .7;5,1,(]”)(2)) ) >x (ze€l),
where

A A ., 0 B
Ao

1-—-
d+p+m
The result is the best possible.
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Proof. Setting

(3.12) o(z) = — (Dnjz’“f E) (. ew,

we note that(z) is of the form [2.11) and is analytic ii. Using the following operator identity:

(3.13) (D" Fsp(f)(2) = 6 D"f(2) = (84 p) D"Fip(f)(2)
in (3.12), and differentiating the resulting equation with respeet tee find that

#H (D f(z)) 2¢(z) 1+ Az
_ ; = ¢(2) + 5 <1—|—Bz (z € U).
Now the remaining part of Theorem 3 follows by employing the techniques that we used in
proving Theorem|1 above. OJ

Settingm = 0 in Theorenj B, we obtain the following result which improves the correspond-
ing work of Liu and Srivastava [3, Theorem 2].

Corollary 4. If § > 0and f(z) € R, ,(A, B), then
Fsp(£)(2) € Rup(l =26, =1) C Rnyp(A, B),

where A A 1) B
- _ _ -1 L9 LD
. B—I—(l B)(l B) 2F1<1,1,p+1,B_1) (B #0)
N Adb
_ B=0
0+p ( )

The result is the best possible.

Remark 2. By observing that

(3.14) YD Fs,(£)(2) = %/0 (DR f(t)) dt (f € Spm; 2 € U),

Corollary[d can be restated as follows.
If 6 >0andf(z) €R,,(A, B), then

R (—]% /O tM(D”f(t))’dt) >¢ (zel),

where¢ is given as in Corollary]
In view of (3.14), Theorer|3 for

2
A:1——a,B:—1, andn =0
p

yields

Corollary 5. If § > 0 and if f(z) € ¥, ,, satisfies the following inequality
R(=2"7(:) >0 (0Sa<p ze),

then

R (—i/oz t5+f’f’(t)dt) >a+(p—a) {QFI (1, 1; o +1; %) — 1} (z € U).

20 p+m
The result is the best possible.
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Theorem 4. Let f(z) € ¥, ,,,. Suppose also thatz) € %, ,, satisfies the following inequality
R(2*D"g(z)) >0 (2 € ).

If
D"f(2) ,
‘D”g(z) -1l <1 (neNy ze€U),
then
2(D"f(2))
%(—W >0 (|Z| <R0),
where
po_ V9Pt m)?+4p2p +m) —3(p+m)
0 2(2p + m) '
Proof. Letting
D" f(z . .
(3.15) w(z) = D”g(zi 1= K™ 4 Ky 2T

we note thato(z) is analytic inU, with

w(0)=0 and |w(z)| < |2P™™ (2 €N).
Then, by applying the familiar Schwarz lemma, we get

w(z) = 2T (),
where the functionl(z) is analytic inU and
}\If(z)| <1 (z€0).

Therefore,[(3.15) leads us to
(3.16) D"f(z) = D"g(2) (1 + 2"T™U(2)) (2 € V).
Making use of logarithmic differentiation if (3.]L6), we obtain

(3.17) z(D”f(z))/ B Z(D”g(z))/ L (p+m)¥(z) + 20 (2)}
' Drf(z) — Drg(z) 1+ 2ptmU(2)
Settingp(z) = 2?D"g(z), we see that the functiop(z) is of the form [2.1), is analytic if,

R(¢(2)) >0 (2 €U),

and )
AD9() )
Drg(z) o(z)
so that we find from[(3.17) that
2(D"f(z)) 29 (2)| |+ m)U(e) + 2V (2) )
(3.18) % <‘W> =P | T+ 2 () zel)
Now, by using the following known estimates [10] (see also [4]):
¢'(2)| o 2(p+myrrtm (p+m)V(z) +2V'(2) | - (p+m)
(2) S~ e and 1+ 2rom(z) =1 o (=7 <)
in (3.18), we obtain
D f(2)’ — 3(p 4+ m)rtm — (2p + m)r2etm)
R <_Z(an(zz)) ) = £ (p m):_ T2(p—£m];) m)r (|Z| =r< 1);
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which is certainly positive, provided that< Ry, R, being given as in Theorejm 4. 0J

Theorem 5. Let—1 < B; < A; =1 (5 = 1,2). If each of the functiong;(z) € %, satisfies
the following subordination condition

(3.19) (1= N)22D" f;(2) + AP D" f(2) < 1 igjz (1=1,2; z€U),
then
(3.20) (1= XN)2PD"H(z) + Az D"M H(2) < w (z € ),
where

H(z) = D"(fi* f2)(2)
and

n=1- 4(2411__51))((11% —352) [1 _ % o Fy (1, 1; % +1; %ﬂ .

The result is the best possible whBn= B; = —1.

Proof. Suppose that each of the functiofi§z) € %, (j = 1,2) satisfies the conditiof (3.]19).
Then, by letting

(3.21) 0i(2) = (1= NPDy(2) + APD™ () (5 =1,2),

we have

1—-4;
v;(z) € P(vy) (%’ =7= ij j= 1,2> :
By making use of the operator identify (L.5) in (3.21), we observe that
1 z
DUz = 320 [ g ar (= 1,2),
0

which, in view of the definition of{ (=) given already with[(3.20), yields

1 z
(3.22) D"H(z) = Xz*pfﬂ/” / tIA=L () dt,
0

where, for convenience,
0o(2) = (1 = N\)2PD"H(z) + \2* D" H(2)
1 4
(3.23) =3 PR / tIN (o1 % @y (t)dt.
0

Sincep:(z) € P(v1) andys(z) € P(72), it follows from Lemmd B that

(3.24) (1% 2)(2) € P(v3) (73 =1-2(1—y)1 - ”72))-
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Now, by using[(3.2}4) in(3.23) and then appealing to Lerina 2 and Lgmma 4, we get
1 1
R{po(2)} = X/ ut/N-1 R{ (1 *cpﬂ}(uz)du
0

1
/ w1 25 — 1 + — )
0 1 —i—u! |
/1 W1 (g 2T 8) 2(1 —3) Ju
0 1+u

_ 4(1(411_ Bl;((lAj 5 ( /01 WL 4 ) 1du)

—1- 4(é1_ ;il))((lAi = Bs) [1 -5 2R (1,1, i +1; %)]

=n (zel).

When B, = B, = —1, we consider the function§ (z) € £, (j = 1,2), which satisfy the
hypothesis[(3.19) of Theorem 5 and are defined by

i 1 : o (14 At ,
D) = 2 (m)/ AA/N)-1 (1_3) dt (j=1,2).
0

—z
Thus it follows from [(3.2B) and Lemnj4 4 that

wo(z) = ;/01 ut/A-1 (1 —(1+ A1+ Ay) + (

du

1\

> = >

>

—_

14+ A)(1+ Ag)) du

1 —uz
=1—(1+A)1+ A+ (1+ AN+ A)(1—2) oFy (1, 1; i +1—— 1)
— 1 — (14 A1+ Ay) + %(1 + A1+ Ay) o Fy (1, 1; % +1; %) as z— —1,
which evidently completes the proof of Theorgm 5. 0J

By setting
Aj:1—2aj, B]:—l(jzl,Q), and n=0

in Theorenj b, we obtain the following result which refines the work of Yang [15, Theorem 4].

Corollary 6. If the functionsf;(z) € ¥, (j = 1,2) satisfy the following inequality
(3.25) %((1 + A\p)2P fi(2) + )\sz“lfj’»(z)) >a; 0Sa;<1;j=1,2; z€U),
then
R((1+ )2 (f 5 f)(2) + A (fix o)/ (2)) >m0 (2 € 1),
where
4l —a)(—an) |1— SR (1121t
To = an &%) g 21 {H by 9 .
The result is the best possible.

Theorem 6. If f(2) € ¥,,,,, satisfies the following subordination condition
1+ Az

(1= N)2PD"f(2) + AP D" f(2) < B>

(= €U),

then
R((D"f())"") > o1 (g€ N; 2 € D),
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wherep is given as in Theoreff] The result is the best possible.

Proof. Defining the functiony(z) by

(3.26) ¢(z) =2"D"f(2) (f € Lpm; 2z € 1),
we see that the function(z) is of the form [2.1) and is analytic iti. Using the identity[(1]5)
in (3.26) and differentiating the resulting equation with respeet e find that

14+ Az
1+ Bz

Now, by following the lines of proof of Theorepjrhutatis mutandisand using the elementary
inequality:

(1= N)2PD"f(2) + AP D" f(2) = (2) + A 2¢/(2) <

(z € U).

R(w'/) 2 (?R(w))l/q (R(w) > 0; ¢ € N),
we arrive at the result asserted by Theofém 6. O
Upon setting

A—[E”Ol- ! +11) q P F(ll ! +y1ﬂ_1
— 2471 77)\(p+m) a2 241 77)\(p+m) 72 3

B=-1,n=0, and ¢=1
in Theoren B, we deduce Corolldry 7 below.

Corollary 7. If f(z) € %,,, satisfies the following inequality

3-25F (1 L5k + 111)

(3.27) R((1+ Ap)2"f(2) + APT f(2)) > . .
22 2B (L1 sphm + 113))

then
(z € U).

DO | —

%(zpf(z)) >
The result is the best possible.

From Corollary 6 and Theorep 6 (fot = —p+ 1, A =1 — 21, B = —1, andq = 1), we
deduce the following result.

Corollary 8. If the functionsf;(z) € ¥, (j = 1,2) satisfy the inequality3.25), then

R( (7> 1)) > m+ (1 m) [25 (1, 1: % et %) - 1} (z e U),

wherer, is given as in Corollar{l The result is the best possible.

Theorem 7. Let f(z) € X7, (A, B) and letg(z) € %,,,,, satisfy the following inequality

R(2"g(z)) > (z € U).

N | —

Then
(f*9)(2) € 2},,(A, B).

Proof. We have

(DM (fxg)(2) __Z (D"f(2) *2"g(z) (2 €).
P p

Since

(z € U)

%(ng(z)) > %

J. Inequal. Pure and Appl. Math6(3) Art. 88, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

14 H. M. SRIVASTAVA AND J. FATEL

and the function
1+ Az

1+ Bz
is convex (univalent) ifJ, it follows from (1.6) and Lemmp]5 that
(f *9)(2) € X ,.(A, B).
This completes the proof of Theorém 7. O

In view of Corollary[ 7 and Theorefr] 7, we have Corollgfy 9 below.

Corollary 9. If f(2) € ¥y (A, B) and the functioy(z) € %, ,, satisfies the inequalit{s.27),
then

(f *9)(2) € 55,,.(A, B).
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