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ABSTRACT. In the present paper we obtain new sufficient conditions for the univalence and
convexity of an analytic function defined in the upper half-plane. In particular, in the case of
hydrodynamically normalized functions, we obtain by a different method a known result con-
cerning the convexity and univalence of an analytic function defined in a half-plane.
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1. I NTRODUCTION

In the present paper, we continue the work in [4], by obtaining new sufficient conditions for

the convexity and univalence for analytic functions defined in the upper half-plane (Theorems

2.3, 2.5 and 2.7). In particular, under the additional hypothesis (1.2) below, they become nec-

essary and sufficient conditions for convexity and univalence in a half-plane (Corollary 2.9),

obtaining thus by a different method the results in [5] and [6].

We begin by establishing the notation and with some preliminary results needed for the

proofs.
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We denote byD = {z ∈ C : Im z > 0} the upper half-plane inC and forε ∈
(
0, π

2

)
we let

Tε be the angular domain defined by:

(1.1) Tε =
{
z ∈ C∗ :

π

2
− ε < arg (z) <

π

2
+ ε

}
.

We say that a functionf : D → C is convexif f is univalent inD andf(D) is a convex

domain.

For an arbitrarily chosen positive real numbery0 > 0 we denote byAy0 the class of functions

f : D → C analytic in the upper half-planeD satisfyingf (iy0) = 0 and such thatf ′ (z) 6= 0

for anyz ∈ D. In particular, fory0 = 1 we will denoteA1 = A.

We will refer to the following normalization condition for analytic functionsf : D → C as

thehydrodynamic normalization:

(1.2) lim
z→∞,z∈D

(f (z)− z) = ai,

wherea ≥ 0 is a non-negative real number, and we will denote byH1 the class of analytic

functionsf : D → C satisfying this condition in the particular casea = 0.

For analytic functions satisfying the above normalization condition, J. Stankiewicz and Z.

Stankiewicz obtained (see [5] and [6]) the following necessary and sufficient condition for con-

vexity and univalence in a half-plane:

Theorem 1.1. If the functionf ∈ H1 satisfies:

(1.3) f ′(z) 6= 0, for all z ∈ D

and

(1.4) Im
f ′′(z)

f ′(z)
> 0, for all z ∈ D,

thenf is a convex function.

In order to prove our main result we need the following results from [2]:

Lemma 1.2. If the functionf : D → D is analytic inD, then for anyε ∈
(
0, π

2

)
the following

limits exist and we have the equalities:

lim
z→∞,z∈Tε

f (z)

z
= lim

z→∞,z∈Tε

f ′ (z) = c,

wherec ≥ 0 is a non-negative real number.

Moreover, for anyz ∈ D we have the inequality

(1.5) Im f (z) ≥ c Im z,

and if there existsz0 ∈ D such that we have equality in the inequality (1.5), then there exists a

real numbera such that

f (z) = cz + a, for all z ∈ D.
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Figure 2.1: The domainDrs.

Lemma 1.3. If the functionf : D → D is analytic inD and hydrodynamically normalized,

then for anyε ∈ (0, π
2
) and any natural numbern ≥ 2 we have

lim
z→∞,z∈Tε

(
znf (n)(z)

)
= 0.

2. M AIN RESULTS

Let us consider the family of domainsDr,s in the complex plane, defined by

Dr,s = {z ∈ C : |z| < r, Im z > s} ,

wherer ands are positive real numbers,0 < s < r (see Figure 2.1).

Let us note that for anyr > 1 and0 < s < 1 we have the inclusionDr,s ⊂ D, and that for

anyz ∈ D arbitrarily fixed, there existsrz > 0 andsz > 0 such thatz ∈ Dr,s for anyr > rz

and any0 < s < sz (for example, we can chooserz andsz such that they satisfy the conditions

rz > |z| andsz ∈ (0, Im z)).

We denote byΓr,s = cr ∪ ds the boundary of the domainDr,s, wherecr andds are the arc of

the circle, respectively the line segment, defined by:{
cr = {z ∈ C : |z| = r, z ≥ s}

ds = {z ∈ C : |z| ≤ r, z = s}
.

The curveΓr,s has an exterior normal vector at any point, except for the pointsa andb (with

arg a < arg b) where the line segmentds and the arc of the circlecr meet (see Figure 2.1). The

exterior normal vector to the curvef(cr) at the pointf(z), with z = reit ∈ cr, t ∈ (arg a, arg b),
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has the argument

(2.1) ϕ (t) = arg (zf ′ (z)) ,

and the exterior normal vector to the curvef(ds) at the pointf(z), with z = x + is ∈ ds,

x ∈ (Re b,Re a), has the argument

(2.2) ψ (x) = −π
2

+ arg f ′ (x+ is) .

Definition 2.1. We say that the functionf ∈ A is convex on the curveΓr,s if the argument of

the exterior normal vector to the curvef(Γr,s)− {f(a), f(b)} is an increasing function.

Remark 2.1. In particular, the condition in the above theorem is satisfied if the functionsϕ and

ψ defined by (2.1)–(2.2) are increasing functions.

Let us note that forz = reit ∈ cr, we have:

∂

∂t
log

(
reitf ′

(
reit

))
= i

(
reitf ′′ (reit)

f ′ (reit)
+ 1

)
=

∂

∂t
ln

∣∣reitf ′
(
reit

)∣∣ + iϕ′ (t) ,

and forz ∈ ds:
∂

∂x
log f ′ (x+ is) =

f ′′ (x+ is)

f ′ (x+ is)
=

∂

∂x
ln |f ′ (x+ is)|+ iψ′ (x+ is) .

We obtain therefore

ϕ′(t) =
reitf ′′ (reit)

f ′ (reit)
+ 1,

for reit ∈ cr, and

ψ′ (x+ is) =
f ′′ (x+ is)

f ′ (x+ is)
,

for x+ is ∈ ds, and from the previous observation it follows that if the functionf ∈ A satisfies

the inequalities

(2.3)


zf ′′ (z)

f ′ (z)
+ 1 > 0, z ∈ cr

f ′′ (z)

f ′ (z)
> 0, z ∈ ds

,

the functionf is convex on the curveΓr,s, and thereforef(Dr,s) is a convex domain.

Since the functionf has in the domainDr,s bounded by the curveΓr,s a simple zero, from

the argument principle it follows that the total variation of the argument of the functionf on the

curveΓr,s is 2π, and thereforef is injective on the curveΓr,s. From the principle of univalence

on the boundary, it follows that the functionf is univalentDr,s.

We obtained the following:

Theorem 2.2. If the functionf belongs to the classA and there exist real numbers0 < s <

1 < r such that conditions (2.3) are satisfied, then the functionf is univalent in the domain

Dr,s andf(Dr,s) is a convex domain.

More generally, we have the following:
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Theorem 2.3. If the functionf : D → C belongs to the classA and there exist real numbers

0 < s0 < 1 < r0 such that:

(2.4) Re
zf ′′ (z)

f ′ (z)
+ 1 > 0

for anyz ∈ D with |z| > r0, and

(2.5) Im
f ′′ (z)

f ′ (z)
> 0

for anyz ∈ D with Im z < s0, then the functionf is convex and univalent in the half-planeD.

Proof. Let z1 andz2 be arbitrarily fixed distinct points in the half-planeD. For anyr > r∗ =

max {|z1| , |z2|} and anys ∈ (0, s∗), wheres∗ = min {Im z1, Im z2}, the pointsz1 and z2

belong to the domainDr,s.

From the hypothesis (2.4) and (2.5) and using the Remark 2.1 it follows that for anyr > r0

ands ∈ (0, s0) the functionf is univalent in the domainDr,s, and thatf(Dr,s) is a convex

domain.

Therefore, choosingr > max {r0, r∗} ands ∈ (0, s1), wheres1 = min {s0, s
∗}, it follows

that the pointsz1 andz2 belong to the domainDr,s, and since the functionf is univalent in the

domainDr,s, we obtain thatf (z1) 6= f (z2).

Sincez1 andz2 were arbitrarily chosen in the half-planeD, it follows that the functionf is

univalent inD, concluding the first part of the proof.

In order to show thatf (D) is a convex domain, we considerw1 andw2 arbitrarily fixed

distinct points inf (D), and letz1 = f−1 (w1) andz2 = f−1 (w2) be their preimages.

Repeating the above proof it follows that the pointsz1 andz2 belong to the domainDr,s (for

any r > max {r0, r∗} ands ∈ (0, s1), wheres1 = min {s0, s
∗}, in the notation above), and

therefore we obtain thatw1 = f(z1) ∈ f(Dr,s) andw2 = f(z2) ∈ f(Dr,s).

Sincef(Dr,s) is a convex domain, it follows that the line segment[w1, w2] is also contained

in the domainf(Dr,s), and sincef(Dr,s) ⊂ f (D), we obtain that[w1, w2] ⊂ f (D).

Sincew1, w2 ∈ f(D) were arbitrarily chosen, it follows thatf (D) is a convex domain,

concluding the proof. �

Remark 2.4. The pointz0 = i, in which the functionsf belonging to the classA = A1 are

normalized can be replaced by any pointz0 = iy0, with y0 > 0. Repeating the proof of the

previous theorem with this new choice for the normalization condition, we obtain the following

result which generalizes the previous theorem:

Theorem 2.5. If the functionf : D → C belongs to the classAy0 for somey0 > 0, and there

exist real numbers0 < s0 < y0 < r0 such that
zf ′′ (z)

f ′ (z)
+ 1 > 0, z ∈ D, |z| > r0

f ′′ (z)

f ′ (z)
> 0, z ∈ D, z ∈ (0, s0)

,
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then the functionf is univalent and convex in the half-planeD.

Remark 2.6. By noticing that the functionf : D → C is convex and univalent inD if and

only the functionf̃ : D → C, f̃(z) = f(z) − f(iy0) is convex and univalent inD, for any

arbitrarily chosen pointy0 > 0, and replacing the functionf in the previous theorem bỹf(z) =

f(z)− f(iy0), we can eliminate from the hypothesis of this theorem the conditionf(iy0) = 0,

obtaining the following more general result:

Theorem 2.7. If the functionf : D → C is analytic inD, satisfiesf ′(z) 6= 0 for all z ∈ D and

there exist real numbers0 < s0 < r0 such that the following inequalities hold:

(2.6)


zf ′′ (z)

f ′ (z)
+ 1 > 0, z ∈ D, |z| > r0

f ′′ (z)

f ′ (z)
> 0, z ∈ D, z ∈ (0, s0)

,

then the functionf is convex and univalent in the half-planeD.

Example 2.1.Fora ∈ R, consider the functionfa : D → C defined by

fa (z) = za, z ∈ D,

where we have chosen the determination of the power function corresponding to the principal

branch of the logarithm, that is:

za = ea log z, z ∈ D,

wherelog z denotes the principal branch of the logarithm (withlog i = iπ
2
).

We have

f ′a(i) = aia−1

= a

(
cos

(a− 1)π

2
+ i sin

(a− 1)π

2

)
6= 0,

for anya 6= 0.

For an arbitrarily chosenz ∈ D we have:

f ′′a (z)

f ′a (z)
= (a− 1)

1

z

= −(a− 1) z

|z|2

> 0

for anya < 1, and also

zf ′′a (z)

f ′a (z)
+ 1 = (a− 1) + 1

= a

> 0
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for anya > 0.

It follows that the hypotheses of the previous theorem are satisfied for anya ∈ (0, 1), and

according to this theorem it follows that the functionfa(z) = za (z ∈ D) is convex and univalent

in the half-planeD for anya ∈ (0, 1).

It is easy to see that the functionfa(z) = za, z ∈ D, is convex and univalent for any

a ∈ (−1, 0)∪ (0, 1), and therefore the previous theorem gives only sufficient conditions for the

convexity and univalence of an analytic function defined in the upper half-planeD.

Remark 2.8. As shown in [4], the condition

f ′′ (z)

f ′ (z)
> 0, z ∈ D,

is a necessary condition (but not also a sufficient one) for an analytic function inD to be convex

and univalent inD.

However, in the case of a hydrodynamically normalized function, as shown in Theorem 1.1

(see [5] and [6]), this becomes also a sufficient condition for the convexity and the univalence

in the half-planeD. We recall that the hydrodynamic normalization used by Stankiewicz in is

given by

(2.7) lim
z→∞,z∈D

(f (z)− z) = 0.

In particular, in the case of analytic and hydrodynamically normalized functions in the upper

half-plane, from Theorem 2.7 we can obtain as a consequence a new proof of the last cited

result, namely a necessary and sufficient condition for the convexity and the univalence of an

analytic, hydrodynamically normalized function defined in the half-plane, as follows:

Corollary 2.9. If the functionf : D → C is analytic and hydrodynamically normalized by (1.2)

in the half-planeD, and it satisfies

(2.8) f ′(z) 6= 0 for all z ∈ D

and

(2.9) Im
f ′′ (z)

f ′ (z)
> 0, for all z ∈ D,

then the functionf is convex and univalent in the half-planeD.

Proof. Sincef satisfies the hydrodynamic normalization condition

lim
z→∞,z∈D

(f (z)− z − ai) = 0,

for somea ≥ 0, it follows that for anyε′ > 0 there existsr > 0 such that forz ∈ D with |z| > r

we have:

|Im (f(z)− z − ai)| ≤ |f (z)− z − ai| < ε′,

and therefore we obtain

Im f (z) > Im z + a− ε′,
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for anyz ∈ D with |z| > r.

Choosingy0 = max {r, ε− a} and considering the auxiliary functiong : D → C defined

by

g (z) = f(z + 2iy0)

it follows that for allz ∈ D we have:

g (z) = f (z + 2iy0)

> z + 2y0 + a− ε

> y0

> 0,

which shows thatg : D → D.

Since the functionf is hydrodynamically normalized, the functiong is also hydrodynami-

cally normalized, and from Lemma 1.2 we obtain

lim
z→∞,z∈Tε

f ′(z + 2iy0) = lim
z→∞,z∈Tε

g′(z)

= lim
z→∞,z∈Tε

g (z)

z
= 1,

since from the hydrodynamic normalization condition we have

lim
z→∞,z∈D

g (z)

z
− 1 = lim

z→∞,z∈D

g (z)− z

z

=
lim

z→∞,z∈D
g(z)− z

limz→∞,z∈D z

=
ai

lim
z→∞,z∈D

z

= 0,

and therefore we obtain lim
z→∞,z∈Tε

g(z)
z

= 1, for anyε ∈ (0, π
2
).

From Lemma 1.3, applied to the functiong in the particular casen = 2, we obtain:

lim
z→∞,z∈Tε

[
z2g′′ (z)

]
= 0,

for anyε ∈ (0, π
2
), and therefore we obtain

lim
z→∞,z∈Tε

[
z2f ′′ (z)

]
= lim

z→∞,z∈Tε

[
(z − 2iy0)

2g′′(z − 2iy0)
z2

(z − 2iy0)
2

]
= 0.

Since lim
z→∞,z∈D

f ′(z) = 1, we obtain

lim
z→∞,z∈Tε

zf ′′ (z)

f ′ (z)
= 0,

for anyε ∈ (0, π
2
).
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It follows that for anyε ∈ (0, π
2
) arbitrarily fixed, there existsr0 > 0 such that

zf ′′ (z)

f ′ (z)
+ 1 > 0,

for anyz ∈ Tε with |z| > r0.

Following the proof Theorem 2.7 it can be seen that this inequality together with the hypothe-

ses (2.8) and (2.9) suffices for the proof, and therefore the functionf is convex and univalent in

the half-planeD, concluding the proof. �
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(2001), 93–96.

[4] N.N. PASCUAND N.R. PASCU, Convex functions functions in a half-plane,J. Inequal. Pure Appl.
Math., 4(5) (2003), Art. 102. [ONLINEhttp://jipam.vu.edu.au/article.php?sid=
343 ].

[5] J. STANKIEWICZ AND Z. STANKIEWICZ, On the classes of functions regular in a half-plane I,
Bull. Polish Acad. Sci. Math., 39(1-2) (1991), 49–56.

[6] J. STANKIEWICZ, Geometric properties of functions regular in a half-plane,Current Topics in
Analytic Function Theory, World Sci. Publishing, River Edge NJ, pp. 349–362 (1992).

J. Inequal. Pure and Appl. Math., 6(4) Art. 125, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/article.php?sid=343
http://jipam.vu.edu.au/article.php?sid=343
http://jipam.vu.edu.au/

	1. Introduction
	2. Main Results
	References

