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ABSTRACT. In the present paper we obtain new sufficient conditions for the univalence and
convexity of an analytic function defined in the upper half-plane. In particular, in the case of
hydrodynamically normalized functions, we obtain by a different method a known result con-
cerning the convexity and univalence of an analytic function defined in a half-plane.
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1. INTRODUCTION

In the present paper, we continue the workiin [4], by obtaining new sufficient conditions for
the convexity and univalence for analytic functions defined in the upper half-plane (Theorems
[2.3,[2.% andl 2]7). In particular, under the additional hypothgsis (1.2) below, they become nec-
essary and sufficient conditions for convexity and univalence in a half-plane (Corollary 2.9),
obtaining thus by a different method the results in [5] and [6].

We begin by establishing the notation and with some preliminary results needed for the
proofs.
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2 NICOLAE R. Pascu

We denote byD = {z € C : Im z > 0} the upper half-plane if© and fors € (0,%) we let
T. be the angular domain defined by:

f, T T
(1.1) TE:{ZE(C Ly 5<arg(z)<2+5}.

We say that a functiorf : D — C is convexif f is univalent inD and f(D) is a convex
domain.

For an arbitrarily chosen positive real numbgr> 0 we denote byA,,, the class of functions
f : D — C analytic in the upper half-planB satisfyingf (iyo) = 0 and such thaf’ (z) # 0
foranyz € D. In particular, fory, = 1 we will denoteA4; = A.

We will refer to the following normalization condition for analytic functiofis D — C as
the hydrodynamic normalization
(1.2) Ll (f(2) = %) =ai
wherea > 0 is a non-negative real number, and we will denoteHyythe class of analytic
functionsf : D — C satisfying this condition in the particular case- 0.

For analytic functions satisfying the above normalization condition, J. Stankiewicz and Z.
Stankiewicz obtained (see€l [5] and [6]) the following necessary and sufficient condition for con-
vexity and univalence in a half-plane:

Theorem 1.1.If the functionf € H; satisfies:

(1.3) f'(z)#0, forallzeD
and

/(=)
(1.4) Imm >0, forallze D,

then f is a convex function.
In order to prove our main result we need the following results fiam [2]:

Lemma 1.2. If the functionf : D — D is analytic inD, then for any € (0, g) the following
limits exist and we have the equalities:

lim f) = lim f'(2)=c¢

z—o00,2€T, 2 z—00,2€T,
wherec > 0 is a non-negative real number.
Moreover, for any: € D we have the inequality

(1.5) Imf(2) > clmz,

and if there exists, € D such that we have equality in the inequalfty {1.5), then there exists a
real numbera such that

f(z)=cz+a, forall ze D.
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Figure 2.1: The domaiD,.,.

Lemma 1.3. If the functionf : D — D is analytic in D and hydrodynamically normalized,
then for anye € (0, 5) and any natural numbet > 2 we have

lim (2" f™(z)) = 0.

2—00,2€Te
2. MAIN RESULTS
Let us consider the family of domairs, ; in the complex plane, defined by
D,y ={2z€C:|z| <r, Imz> s},

wherer ands are positive real numbers,< s < r (see Figuré 2]1).

Let us note that for any > 1 and0 < s < 1 we have the inclusio®, ; C D, and that for
anyz € D arbitrarily fixed, there exists, > 0 ands, > 0 such that: € D, ; foranyr > r,
and any0 < s < s, (for example, we can choose ands, such that they satisfy the conditions
r. > |z| ands, € (0,Im 2)).

We denote by, ; = ¢, U d, the boundary of the domaib, ;, wherec, andd, are the arc of
the circle, respectively the line segment, defined by:

¢, ={z€C:lz|=r, z>s}
ds={z€C:|z|<r, z=s} .
The curvel’, ; has an exterior normal vector at any point, except for the paiatsdb (with

arga < arg b) where the line segment and the arc of the circle. meet (see Figufe 3.1). The
exterior normal vector to the curyéc,) at the pointf(z), with z = re’ € ¢,, t € (arga, argb),
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has the argument

(2.1) p(t) = arg (21" (2))
and the exterior normal vector to the curfiél,) at the pointf(z), with = = x +is € d,
z € (Reb, Rea), has the argument

(2.2) Y(x) = —g +arg f' (x +1s).

Definition 2.1. We say that the functiorf € A is convex on the curve, ; if the argument of
the exterior normal vector to the curyél', ;) — { f(a), f(b)} is an increasing function.

Remark 2.1. In particular, the condition in the above theorem is satisfied if the functcarsd
1 defined by[(2.]1)+(2]2) are increasing functions.
Let us note that for = re' € ¢,, we have:
it £/ it
%log (Teitf' (reit)) =1 (% + 1) = %ln ‘reitf' (reit)‘ +1i (1),
and forz € d,:
" (x4 is)

0 , L
—log f' (z +is) = o tis)

ox
We obtain therefore

O g . » .
:aln]f (x +is)| + i)' (z +is).

T,eitf// (Teit)

/ — i 1

¥ (t) 7 (reit) + 4

for ret € ¢,, and o )
, (s

Yt is) = [ (x+is)’

for x +is € dg, and from the previous observation it follows that if the functfoa A satisfies
the inequalities

(2.3) foff =0 rea
' [ (2) 0 cd 7
e tES

the functionf is convex on the curvg, ,, and thereforef (D, ) is a convex domain.

Since the functiory has in the domaiD,. ;, bounded by the curvg, ; a simple zero, from
the argument principle it follows that the total variation of the argument of the fun¢tamthe
curvel’, ; is 27, and thereforgf is injective on the curvé', . From the principle of univalence
on the boundary, it follows that the functighis univalentD, ;.

We obtained the following:

Theorem 2.2. If the functionf belongs to the clasgl and there exist real numbefs< s <
1 < r such that conditiond (2.3) are satisfied, then the funcfida univalent in the domain
D, ,and f(D, ) is a convex domain.

More generally, we have the following:
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Theorem 2.3.If the functionf : D — C belongs to the clasgl and there exist real numbers
0 < s9 < 1 < rysuch that:

(2.4) Re z;(iz)) +1>0
foranyz € D with |z| > ry, and

f"(2)
(2.5) Im 702 >0

foranyz € D withIm z < s, then the functiorf is convex and univalent in the half-plahg

Proof. Let z; andz, be arbitrarily fixed distinct points in the half-plade. For anyr > r* =
max {|z1|, |22|} and anys € (0,s*), wheres* = min {Im 2, Im 25}, the pointsz; and z,
belong to the domai, .

From the hypothesi$ (4.4) arld (R.5) and using the RefnaJk 2.1 it follows that for any,
ands € (0, sq) the functionf is univalent in the domaiD, ;, and thatf(D, ;) is a convex
domain.

Therefore, choosing > max {ro,7*} ands € (0, s1), wheres; = min {sy, s*}, it follows
that the points;; andz, belong to the domaid, 5, and since the functioffi is univalent in the
domainD, s, we obtain thaff (z;) # f (22).

Sincez; andz, were arbitrarily chosen in the half-plare, it follows that the functionf is
univalent inD, concluding the first part of the proof.

In order to show thaff (D) is a convex domain, we consider, andw, arbitrarily fixed
distinct points inf (D), and letz; = f~! (w;) andz, = f~! (wy) be their preimages.

Repeating the above proof it follows that the poiatsndz, belong to the domai, , (for
anyr > max {ro,r*} ands € (0, s1), wheres; = min {sg, s*}, in the notation above), and
therefore we obtain that, = f(z;) € f(D, ) andws = f(22) € f(D,s).

Sincef(D, ;) is a convex domain, it follows that the line segment, w,] is also contained
in the domainf(D.,.,), and sincef (D,.;) C f (D), we obtain thafw,, w,] C f (D).

Sincew;,wy € f(D) were arbitrarily chosen, it follows that (D) is a convex domain,
concluding the proof. O

Remark 2.4. The pointz, = 4, in which the functionsf belonging to the clasgl = A; are
normalized can be replaced by any poipt= iy,, with y, > 0. Repeating the proof of the
previous theorem with this new choice for the normalization condition, we obtain the following
result which generalizes the previous theorem:

Theorem 2.5. If the functionf : D — C belongs to the classgl,, for somey, > 0, and there
exist real numbers < sy < yo < ro such that

Z;,N((ZZ)) +1>0, z€D, |2 > ro
f// (Z) ’
702 > 0, z€D, z€(0,s0)
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then the functiory is univalent and convex in the half-plang

Remark 2.6. By noticing that the functiory : D — C is convex and univalent i» if and
only the functionf : D — C, f(z) = f(z) — f(iyo) is convex and univalent iv, for any
arbitrarily chosen poing, > 0, and replacing the functiofiin the previous theorem bﬁ(z) =
f(z) — f(iyo), we can eliminate from the hypothesis of this theorem the condjtiom) = 0,
obtaining the following more general result:

Theorem 2.7.1f the functionf : D — C is analytic inD, satisfiesf’(z) # 0 for all z € D and
there exist real numbefs < sy < r such that the following inequalities hold:

) 0, seD, 2>
' f"(2) 7
702) > 0, z€ D, z€(0,s0)

then the functiory is convex and univalent in the half-plang
Example 2.1.Fora € R, consider the functiorf, : D — C defined by
fa(2)=2% z€D,

where we have chosen the determination of the power function corresponding to the principal
branch of the logarithm, that is:

20 = etlogz ¢ D,

wherelog z denotes the principal branch of the logarithm (Withi = 7).

We have
ful@) = ai*”!
=a <COS(G_TD7T +z'sin(a_Tl)7T>
# 0,
for anya # 0.
For an arbitrarily chosen € D we have:
fa (2) 1
Ja X" _(qa—1) =
G
(a—1) z

foranya < 1, and also
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foranya > 0.

It follows that the hypotheses of the previous theorem are satisfied fos anyo0, 1), and
according to this theorem it follows that the functifyiz) = z* (z € D) is convex and univalent
in the half-planeD for anya € (0, 1).

It is easy to see that the functiofy(z) = =%, 2z € D, is convex and univalent for any
a € (—1,0)U(0,1), and therefore the previous theorem gives only sufficient conditions for the
convexity and univalence of an analytic function defined in the upper half-ghane

Remark 2.8. As shown in[[4], the condition
f" (2)
7 (2)

is a necessary condition (but not also a sufficient one) for an analytic functionarbe convex

and univalent inD.

However, in the case of a hydrodynamically normalized function, as shown in Thgorem 1.1
(see 5] and[[B]), this becomes also a sufficient condition for the convexity and the univalence
in the half-planeD. We recall that the hydrodynamic normalization used by Stankiewicz in is
given by

(2.7) lim (f(z)—2)=0.

z—00,2€D

>0, z€D,

In particular, in the case of analytic and hydrodynamically normalized functions in the upper
half-plane, from Theorern 2.7 we can obtain as a consequence a new proof of the last cited
result, namely a necessary and sufficient condition for the convexity and the univalence of an
analytic, hydrodynamically normalized function defined in the half-plane, as follows:

Corollary 2.9. If the functionf : D — C is analytic and hydrodynamically normalized by (1.2)
in the half-planeD, and it satisfies

(2.8) f'(z) #£0 forall z € D
and

/" (2)
(2.9) Imf’—(z) >0, forallze D,

then the functiory is convex and univalent in the half-plang

Proof. Sincef satisfies the hydrodynamic normalization condition

lim (f(z) —2z—ai)=0,

z—00,2€D
for somea > 0, it follows that for any:" > 0 there exists > 0 such that for € D with |z| > r
we have:
I (f(2) =z —ai)] < |f(2) =2 —ail <€,
and therefore we obtain
Imf(z)>Imz+a—¢,
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foranyz € D with |z| > r.
Choosingy, = max {r, ¢ — a} and considering the auxiliary function: D — C defined

by
g(z) = f(z + 2iyo)
it follows that for allz € D we have:

9(2) = f(z+ 2iyo)
>z4+2y+a—e¢
> Yo
>0,

which shows thay : D — D.

Since the functiory is hydrodynamically normalized, the functignis also hydrodynami-
cally normalized, and from Lemnfia 1.2 we obtain

lim  f'(z+2iy) = lim  ¢'(2)

z—00,2€T. z—00,2€T:
. g(®)
= lim
2—00,2€T, V4
= 17

since from the hydrodynamic normalization condition we have

im 95 g gy, 9B
z—00,26€D 2 z—00,2€D z
lim g(2)—=2

z2—00,2€D

hmz—»oo,zED z
at

lim =z
z—00,2€D

=0,

and therefore we obtain lim g(zz) = 1, foranye € (0, 7).

2—00,2€T:

From Lemma 13, applied to the functignn the particular case = 2, we obtain:

lim _ [2%¢" (2)] =0,

z2—00,2€T,

for anye € (0, 7), and therefore we obtain

2’2

1' 2 pl — 1 _2 2 n _2 :0

Since lim f’(z) = 1, we obtain

z—00,2€D

2/ (%)
Z—><1>1>I,1216T8 f’ (Z)

=0,

foranye € (0, ).

J. Inequal. Pure and Appl. Math6(4) Art. 125, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

CONVEX FUNCTIONS IN A HALF-PLANE, Il 9

It follows that for anye € (0, ) arbitrarily fixed, there exists, > 0 such that

2f" (2)
/' (z)

+1>0,

foranyz € T. with |z| > r.

Following the proof Theoreim 2.7 it can be seen that this inequality together with the hypothe-
ses[(2.B) and (219) suffices for the proof, and therefore the fungtisiwonvex and univalent in
the half-planeD, concluding the proof. O
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