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Abstract

In the present paper we obtain new sufficient conditions for the univalence and
convexity of an analytic function defined in the upper half-plane. In particular,
in the case of hydrodynamically normalized functions, we obtain by a different
method a known result concerning the convexity and univalence of an analytic
function defined in a half-plane.
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In the present paper, we continue the work4h py obtaining new sufficient
conditions for the convexity and univalence for analytic functions defined in
the upper half-plane (Theoreis2, 2.3and?2.4). In particular, under the addi-
tional hypothesis.2) below, they become necessary and sufficient conditions
for convexity and univalence in a half-plane (Coroll&ry), obtaining thus by
a different method the results ia][and [7].

We begin by establishing the notation and with some preliminary results
needed for the proofs.

We denote byD = {z € C: Imz > 0} the upper half-plane i and for
€€ (O, g) we letT. be the angular domain defined by:

(1.2) Tsz{ze(c*:g—5<arg(z)<g+€}.

We say that a functiorf : D — C is convexf f is univalentinD andf(D)
is a convex domain.

For an arbitrarily chosen positive real numhgr> 0 we denote by4,, the
class of functionsf : D — C analytic in the upper half-plan® satisfying
f (iyo) = 0 and such that’ (z) # 0 for anyz € D. In particular, fory, = 1 we
will denote A, = A.

We will refer to the following normalization condition for analytic functions
f : D — C as thehydrodynamic normalization

(1.2) lim (f(2) —2) = ai,

z—00,2€D
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wherea > 0 is a non-negative real number, and we will denotéhythe class
of analytic functionsf : D — C satisfying this condition in the particular case
a=20.

For analytic functions satisfying the above normalization condition, J.
Stankiewicz and Z. Stankiewicz obtained (segdnd [5]) the following nec-
essary and sufficient condition for convexity and univalence in a half-plane:

Theorem 1.1.If the functionf € H; satisfies:

/ Convex Functions in a
1.3) f'(z) #0, forall ze D oo
and Nicolae R. Pascu
f"(z)
(1.4) Im 702 >0, forallze D, TR
then f is a convex function. CRIMEE
In order to prove our main result we need the following results fran [ K -
Lemma 1.2.1f the functionf : D — D is analytic inD, then for any € (0, Z) ¢ >
the following limits exist and we have the equalities: Go Back
Close
lim (2) = lim f'(2)=c¢, _
z—00,z€T. %2 2—00,2€T, QU|t
wherec > 0 is a non-negative real number. Page 4 of 17
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and if there existg, € D such that we have equality in the inequality),
then there exists a real numbesuch that

f(z)=cz+a, forallze D.

Lemma 1.3. If the functionf : D — D is analytic inD and hydrodynamically
normalized, then for any € (0, 7) and any natural numbet > 2 we have

lim (z”f(")(z)) = 0.

z—00,2€T,
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Let us consider the family of domaits, ; in the complex plane, defined by
D,s={2€C:|z| <r, Imz > s},

wherer ands are positive real number8,< s < r (see Figurel).

Let us note that for any > 1 and0 < s < 1 we have the inclusio®, ; C D,
and that for any: € D arbitrarily fixed, there exists, > 0 ands, > 0 such
thatz € D, , foranyr > r, and any0 < s < s, (for example, we can choose

Convex Functions in a

r, ands, such that they satisfy the conditions> |z| ands, € (0, Im 2)). Half-plane, II
We denote by, ; = ¢, U d, the boundary of the domaib, ;, wherec, and Nicolae R. Pascu
d, are the arc of the circle, respectively the line segment, defined by:
¢, ={z€C:lz|=r, z>s} Title Page
ds={z€C:|z|<r, z=5s} . CaliEi
44 44

The curvel’, ; has an exterior normal vector at any point, except for the
pointsa andb (with arg a < arg b) where the line segment and the arc of the < >
circle ¢, meet (see Figuré). The exterior normal vector to the curyéc,) at

the pointf(z), with z = re’ € ¢,, t € (arga, argb), has the argument Go Back
Close
2.1) o (1) = arg (=" (2)) out
and the exterior normal vector to the curfgl,) at the pointf(z), with z = S
x +1is € dg, x € (Reb, Rea), has the argument g
22) V() =5 g f (x4 is). f
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Figure 1. The domaib,.,.
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Definition 2.1. We say that the functiofi € A is convex on the curvg, ; if
the argument of the exterior normal vector to the cufV€, ;) — {f(a), f(b)}
is an increasing function.

Remark 1. In particular, the condition in the above theorem is satisfied if the
functionsy and defined by %.1)—(2.2) are increasing functions.
Let us note that for = re’ € ¢,, we have:

2 log (Teit , (reit)) =1 (M + 1) = 2 In |reitf’ (7’6“) ’ +iy’ (),

ot f, (Teit) ot Convex Functions in a
and forz € d,: RS,
a I : a Nicolae R. Pascu
a—xlogf’(x—i-is) = % = %ln|f’(:€+is)] + ) (x4 1is).
We obtain therefore Title Page
rett f” (r eit) Contents
t)= ——m— +1
[ (ret) < 33
for ret € ¢,, and < >
. " (x+1s)
w/ (;U —+ ZS) = m, Go Back
for x +is € d,, and from the previous observation it follows that if the function Close
f € A satisfies the inequalities Quit
n
’Zf, (Z) +1>0, z€e¢, Page 8 of 17
' f” (Z) ’ J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005
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the functionf is convex on the curvg, ;, and thereforef (D, ;) is a convex
domain.

Since the functiory has in the domairD, ; bounded by the curvg, ; a

simple zero, from the argument principle it follows that the total variation of the

argument of the functiori on the curved’, ; is 27, and thereforef is injective

on the curvd’, ;. From the principle of univalence on the boundary, it follows

that the functionf is univalentD,. .
We obtained the following:

Theorem 2.1. If the functionf belongs to the clasd and there exist real num-
bersO < s < 1 < r such that conditions3) are satisfied, then the functigh
is univalent in the domaid,. ; and f (D, ;) is a convex domain.

More generally, we have the following:

Theorem 2.2.1f the functionf : D — C belongs to the clasd and there exist
real numbers) < sy < 1 < ry such that:

(2.4) Re ZJ{, H(S) +1>0
foranyz € D with |z| > ry, and

/" (z)
(2.5) Im ) >0

foranyz € D with Im 2z < sy, then the functiory is convex and univalent in
the half-planeD.
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Proof. Let z; andz, be arbitrarily fixed distinct points in the half-plade For

anyr > r* = max {|z], 22|} and any € (0, s*), wheres* = min {Im z;, Im 2, },

the pointsz; andz, belong to the domait, ;.

From the hypothesi2(4) and @.5) and using the Remarkit follows that
for anyr > ry ands € (0, so) the functionf is univalent in the domaim, ,
and thatf(D,.,) is a convex domain.

Therefore, choosing > max {rq,7*} ands € (0, s1), wheres; = min {sg, s*},

it follows that the points; andz, belong to the domaim, ,, and since the func-
tion f is univalent in the domai, ;, we obtain thaif (z1) # f (z2).

Sincez; andz, were arbitrarily chosen in the half-plari, it follows that
the functionf is univalent inD, concluding the first part of the proof.

In order to show thaf (D) is a convex domain, we consider andw, arbi-
trarily fixed distinct points inf (D), and letz; = f~! (w;) andz, = f~1 (w»)
be their preimages.

Repeating the above proof it follows that the poiatsand z, belong to
the domainD, ; (for any » > max{ry,r*} ands € (0,s;), wheres; =
min {sg, s*}, in the notation above), and therefore we obtain that f(z;) €
f(D,s)andwy = f(z2) € f(D,5).

Since f(D, ) is a convex domain, it follows that the line segmeént, w-]
is also contained in the domaji{ D, ), and sincef (D, ) C f (D), we obtain
that[wl, wz} C f (D)

Sincew;, wy € f(D) were arbitrarily chosen, it follows thgt(D) is a con-
vex domain, concluding the proof. O

Remark 2. The pointz, = 4, in which the functiong belonging to the class
A = A, are normalized can be replaced by any poigt = iyy, with yo >

Convex Functions in a
Half-plane, Il

Nicolae R. Pascu

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 10 of 17

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:pascun@greenmtn.edu
http://jipam.vu.edu.au/

0. Repeating the proof of the previous theorem with this new choice for the
normalization condition, we obtain the following result which generalizes the
previous theorem:

Theorem 2.3.If the functionf : D — C belongs to the classl,, for some
Yo > 0, and there exist real numbebs< sy < yy < 79 Such that
2f" (2)
f'(2)
/" (2) ’
>0 D 0
70 , z€D, z€(0,sp)

then the functiory is univalent and convex in the half-plang

+1>0, z€D, |z| >

Remark 3. By noticing that the functiorf : D — C is convex and univalent
in D if and only the functionf : D — C, f(z) = f(z) — f(iyo) is convex

and univalent inD, for any arbitrarily chosen poing, > 0, and replacing the

function f in the previous theorem bf(z) = f(z) — f(iyo), we can eliminate
from the hypothesis of this theorem the conditiiy,) = 0, obtaining the

following more general result:

Theorem 2.4.1If the functionf : D — C is analytic in D, satisfiesf’(z) # 0
for all z € D and there exist real numbefs< sy < ry such that the following
inequalities hold:

2f" (2)
f'(z

)
[ (2) ’
70 > 0, ze D, z€(0,s0)

+1>0, ze€ D, |z| >
(2.6)
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then the functiory is convex and univalent in the half-plang

Example 2.1.For a € R, consider the functiorf, : D — C defined by
fa(2)=2% z€D,

where we have chosen the determination of the power function corresponding
to the principal branch of the logarithm, that is:

20— ealogz’ = D,

wherelog z denotes the principal branch of the logarithm (witly i = 7).
We have

# 0,
for anya # 0.
For an arbitrarily chosen: € D we have:

fa (2) 1
—(a—1) =

ACHRRE
 (a—1)z

Elh

>0
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foranya < 1, and also

for anya > 0.

It follows that the hypotheses of the previous theorem are satisfied for any
a € (0,1), and according to this theorem it follows that the functjQz) = 2*
(z € D) is convex and univalent in the half-plafgfor anya € (0, 1).

It is easy to see that the functigh(z) = 2%, z € D, is convex and univalent
for anya € (—1,0) U (0,1), and therefore the previous theorem gives only
sufficient conditions for the convexity and univalence of an analytic function
defined in the upper half-planB.

Remark 4. As shown in {], the condition
/" (2)
/()
is a necessary condition (but not also a sufficient one) for an analytic function
in D to be convex and univalent iD.

However, in the case of a hydrodynamically normalized function, as shown
in Theoreml.1 (see [] and [6]), this becomes also a sufficient condition for
the convexity and the univalence in the half-pldneWe recall that the hydro-
dynamic normalization used by Stankiewicz in is given by
(2.7 lim (f(z2)—2)=0.

z—00,2€D

>0, zeD,
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In particular, in the case of analytic and hydrodynamically normalized func-
tions in the upper half-plane, from Theoré&w we can obtain as a consequence
a new proof of the last cited result, namely a necessary and sufficient condition
for the convexity and the univalence of an analytic, hydrodynamically normal-

ized function defined in the half-plane, as follows:

Corollary 2.5. If the functionf : D — C is analytic and hydrodynamically
normalized by 1.2) in the half-planeD, and it satisfies

(2.8) f'(z)#£0 forallze D
and

f(z)
(2.9) Im 700 >0, forallze D,

then the functiory is convex and univalent in the half-plang

Proof. Sincef satisfies the hydrodynamic normalization condition

lim (f(z) —z—ai)=0,

z—00,2€D

for somea > 0, it follows that for any=’" > 0 there exists: > 0 such that for
z € D with |z| > r we have:

T (f(2) — 2z —ai)| < |f(2) — 2 —ai] <€,
and therefore we obtain

Imf(z)>Imz+a—¢,
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foranyz € D with |z| > r.
Choosingy, = max {r, ¢ — a} and considering the auxiliary functian:
D — C defined by

g (2) = f(z + 2iyo)
it follows that for allz € D we have:

9(2) = f (= + 2iy)
>z4+2yp+a—c¢
> Yo > 07
which shows thay : D — D.

Since the functiory is hydrodynamically normalized, the functigris also
hydrodynamically normalized, and from Lemr& we obtain

. ! . o . /
Zﬁ}gggg f'(z + 2iyo) = Zﬁg{g@ 9 (2)
= lim 9(2) =1

z2—00,2€T, 4

since from the hydrodynamic normalization condition we have

hm 9 g, 9=z
z—00,2€D 2 2—00,2€ED yA
lim g(z)—z

z—00,2€D

1imz—>oo,z€D z
at
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and therefore we obtain lim g(j) = 1, foranye € (0, 7).

2z—00,2€Te
From Lemmal.3, applied to the functiom in the particular case = 2, we
obtain:
lim _ [2%¢"(2)] =0,

z—00,z€T,

foranye € (0, 7), and therefore we obtain

22

l‘ 2 pll — 1 _2 2.1 _2 - :O

Since lim f'(z) = 1, we obtain

z—00,2€D

lim 2MC)

=0
z—00,2€T: f’ (z) ’

foranye € (0, 7).
It follows that for anye € (0, 7) arbitrarily fixed, there exists, > 0 such

that
2f" (2)
f(z)

+1>0,

foranyz € T, with |z| > r.

Following the proof Theorer.4it can be seen that this inequality together
with the hypotheses2(8) and @.9) suffices for the proof, and therefore the
function f is convex and univalent in the half-plad& concluding the proof.

N
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