SOME APPLICATIONS OF THE GENERALIZED BERNARDI-LIBERA-LIVINGSTON INTEGRAL OPERATOR ON UNIVALENT FUNCTIONS

M. ESHAGHI GORDJI

Dept, of Mathematics, Faculty of Science Semnan University, Semnan, Iran EMail: madjideshaghi@gmail.com

D. ALIMOHAMMADI

Department of Mathematics Arak University, Arak, Iran

EMail: d-alimohammadi@araku.ac.ir

A. EBADIAN

Dept. of Mathematics, Faculty of Science

Urmia University, Urmia, Iran EMail: ebadian.ali@gmail.com

Received: 17 October, 2008

Accepted: 24 July, 2009

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: 30C45, 30C50.

Key words: Analytic function, Integral operator, Univalent function.

Abstract: In this paper by making use of the generalized Bernardi–Libera–Livingston inte-

gral operator we introduce and study some new subclasses of univalent functions. Also we investigate the relations between those classes and the classes which are

studied by Jin-Lin Liu.

Acknowledgements: The authors would like to thank the referee for a number of valuable suggestions

regarding of a previous version of this paper.

Bernardi-Libera-Livingston Integral Operator M. Eshaghi Gordji, D. Alimohammadi and A. Ebadian

vol. 10, iss. 4, art. 100, 2009

Contents

Contents

Page 1 of 12

Go Back

journal of inequalities in pure and applied mathematics

Full Screen

Close

issn: 1443-5756

Contents

2 Main Results 7

Bernardi-Libera-Livingston Integral Operator M. Eshaghi Gordji, D. Alimohammadi and A. Ebadian

vol. 10, iss. 4, art. 100, 2009

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

1. Introduction

Let A be the class of functions of the form, $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ which are analytic in the unit disk $U = \{z : |z| < 1\}$. Also, let S denote the subclass of A consisting of all univalent functions in U. Suppose λ is a real number with $0 \le \lambda < 1$. A function $f \in S$ is said to be starlike of order λ if and only if $\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \lambda$, $z \in U$. Also, $f \in S$ is said to be convex of order λ if and only if $\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \lambda$, $z \in U$. We denote by $S^*(\lambda), C(\lambda)$ the classes of starlike and convex functions of order λ respectively. It is well known that $f \in C(\lambda)$ if and only if $zf'^*(\lambda)$. If $z \in A$, then $z \in K(\beta, \lambda)$ if and only if there exists a function $z \in K(\beta, \lambda)$ such that $z \in K(\beta, \lambda)$ and $z \in K(\beta, \lambda)$ if there exists a function $z \in K(\beta, \lambda)$ such that $z \in K(\beta, \lambda)$ if there exists a function $z \in K(\beta, \lambda)$ if and only if $z \in K(\beta, \lambda)$ if any interval $z \in K(\beta, \lambda)$ if any interval $z \in K(\beta, \lambda)$ if $z \in K(\beta, \lambda)$

(1.1)
$$\left| \arg \left(\frac{zf'(z)}{f(z)} - \lambda \right) \right| < \frac{\pi}{2} \eta, \quad (z \in U),$$

then f(z) is said to be strongly starlike of order η and type λ in U and we denote this class by $S^*(\eta, \lambda)$. If $f \in A$ satisfies the condition

(1.2)
$$\left| \arg \left(1 + \frac{zf''(z)}{f'(z)} - \lambda \right) \right| < \frac{\pi}{2} \eta, \quad (z \in U)$$

for some λ and η as above, then we say that f(z) is strongly convex of order η and type λ in U and we denote this class by $C(\eta, \lambda)$. Clearly $f \in C(\eta, \lambda)$ if and only if $zf'^*(\eta, \lambda)$, and in particular, we have $S^*(1, \lambda) = S^*(\lambda)$ and $C(1, \lambda) = C(\lambda)$.

Bernardi-Libera-Livingston Integral Operator M. Eshaghi Gordji,

D. Alimohammadi and A. Ebadian

vol. 10, iss. 4, art. 100, 2009

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

For c>-1 and $f\in A$ the generalized Bernardi–Libera–Livingston integral operator $L_c f$ is defined as follows

(1.3)
$$L_c f(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt.$$

This operator for $c \in \mathbb{N} = \{1, 2, 3, ...\}$ was studied by Bernardi [1] and for c = 1 by Libera [4] (see also [8]). The classes $ST_c(\eta, \lambda)$ and $CV_c(\eta, \lambda)$ were introduced by Liu [7], where

$$ST_c(\eta, \lambda) = \left\{ f \in A : L_c f \in S^*(\eta, \lambda), \frac{z(L_c f(z))'}{L_c f(z)} \neq \lambda, z \in U \right\},$$

$$CV_c(\eta, \lambda) = \left\{ f \in A : L_c f \in C(\eta, \lambda), \frac{(z(L_c f(z))')'}{(L_c f(z))'} \neq \lambda, z \in U \right\}.$$

Now by making use of the operator given by (1.3) we introduce the following classes.

$$S_c^*(\lambda) = \{ f \in A : L_c f \in S^*(\lambda) \},$$

$$C_c(\lambda) = \{ f \in A : L_c f \in C(\lambda) \}.$$

Obviously $f \in CV_c(\eta, \lambda)$ if and only if $zf' \in ST_c(\eta, \lambda)$. J. L. Liu [5] and [6] introduced and similarly investigated the classes $S_{\sigma}^*(\lambda)$, $C_{\sigma}(\lambda)$, $K_{\sigma}(\beta, \lambda)$, $K_{\sigma}^*(\beta, \lambda)$, $ST_{\sigma}(\eta, \lambda)$, $CV_{\sigma}(\eta, \lambda)$ by making use of the integral operator $I^{\sigma}f$ given by

(1.4)
$$I^{\sigma}f(z) = \frac{2^{\sigma}}{z\Gamma(\sigma)} \int_{0}^{z} \left(\log \frac{z}{t}\right)^{\sigma-1} f(t)dt, \quad \sigma > 0, f \in A.$$

The operator I^{σ} was introduced by Jung, Kim and Srivastava [2] and then investigated by Uralegaddi and Somanatha [13], Li [3] and Liu [5]. For the integral opera-

Bernardi-Libera-Livingston Integral Operator M. Eshaghi Gordji,

D. Alimohammadi and A. Ebadian

vol. 10, iss. 4, art. 100, 2009

Full Screen

Go Back

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

tors given by (1.3) and (1.4) we have verified following relationships.

(1.5)
$$I^{\sigma}f(z) = z + \sum_{n=2}^{\infty} \left(\frac{2}{n+1}\right)^{\sigma} a_n z^n,$$

(1.6)
$$L_c f(z) = z + \sum_{n=2}^{\infty} \frac{c+1}{n+c} a_n z^n,$$

$$(1.7) z(I^{\sigma}L_cf(z))^{\prime\sigma}f(z) - cI^{\sigma}L_cf(z),$$

$$(1.8) z(L_c I^{\sigma} f(z))^{\prime \sigma} f(z) - cL_c I^{\sigma} f(z).$$

It follows from (1.5) that one can define the operator I^{σ} for any real number σ . In this paper we investigate the properties of the classes $S_c^*(\lambda)$, $C_c(\lambda)$, $K_c(\beta,\lambda)$, $K_c^*(\beta,\lambda)$, $ST_c(\eta,\lambda)$ and $CV_c(\eta,\lambda)$. We also study the relations between these classes by the classes which are introduced by Liu in [5] and [6]. For our purposes we need the following lemmas.

Lemma 1.1 ([9]). Let $u = u_1 + iu_2$, $v = v_1 + iv_2$ and let $\psi(u, v)$ be a complex function $\psi : D \subset \mathbb{C} \times \mathbb{C} \to \mathbb{C}$. Suppose that ψ satisfies the following conditions

- (i) $\psi(u,v)$ is continuous in D;
- (ii) $(1,0) \in D$ and $\text{Re}\{\psi(1,0)\} > 0$;
- (iii) $\text{Re}\{\psi(iu_2, v_1)\} \leq 0$ for all $(iu_2, v_1) \in D$ with $v_1 \leq -\frac{1+u_2^2}{2}$. Let $p(z) = 1 + \sum_{n=2}^{\infty} c_n z^n$ be analytic in U so that $(p(z), zp'(z)) \in D$ for all $z \in U$. If $\text{Re}\{\psi(p(z), zp'(z))\} > 0, z \in U$ then $\text{Re}\{p(z)\} > 0, z \in U$.

Bernardi-Libera-Livingston
Integral Operator
M. Eshaghi Gordji,
D. Alimohammadi and A. Ebadian

vol. 10, iss. 4, art. 100, 2009

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

Lemma 1.2 ([11]). Let the function $p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$ be analytic in U and $p(z) \neq 0$, $z \in U$. If there exists a point $z_0 \in U$ such that $|\arg(p(z))| < \frac{\pi}{2}\eta$ for $|z| < |z_0|$ and $\arg p(z_0)| = \frac{\pi}{2}\eta$ where $0 < \eta \leq 1$, then $\frac{z_0 p'(z_0)}{p(z_0)} = ik\eta$ and $k \geq \frac{1}{2}(r+\frac{1}{r})$ when $\arg p(z_0) = \frac{\pi}{2}\eta$, Also, $k \leq \frac{-1}{2}(r+\frac{1}{r})$ when $\arg p(z_0) = \frac{-\pi}{2}\eta$, and $p(z_0)^{1/\eta} = \pm ir(r > 0)$.

Bernardi-Libera-Livingston Integral Operator M. Eshaghi Gordji,

D. Alimohammadi and A. Ebadianvol. 10, iss. 4, art. 100, 2009

Title Page

Contents

Page 6 of 12

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

2. Main Results

In this section we obtain some inclusion theorems by following the method of proof adopted in [12].

Theorem 2.1.

- (i) For $f \in A$ if $\operatorname{Re}\left\{\frac{zf'(z)}{f(z)} \frac{z(L_cf(z))'}{L_cf(z)}\right\} > 0$ and $\frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)}$ is an analytic function, then $S_c^*(\lambda) \subset S_{c+1}^*(\lambda)$.
- (ii) Let $c > -\lambda$. For $f \in A$ if $\operatorname{Re}\left\{\frac{zf'(z)}{f(z)} \frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)}\right\} > 0$ and $\frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)}$ is an analytic function, then $S_{c+1}^*(\lambda) \subset S_c^*(\lambda)$.

Proof. (i) Suppose that $f \in S_c^*(\lambda)$ and set

(2.1)
$$\frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)} - \lambda = (1 - \lambda)p(z),$$

where $p(z) = 1 + \sum_{n=2}^{\infty} c_n z^n$. An easy calculation shows that

(2.2)
$$\frac{\frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)} \left[2 + c + \frac{z(L_{c+1}f(z))''}{(L_{c+1}f(z))'} \right]}{\frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)} + c + 1} = \frac{zf'(z)}{f(z)}.$$

By setting $H(z) = \frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)}$ we have

(2.3)
$$1 + \frac{z(L_{c+1}f(z))''}{(L_{c+1}f(z))'} = H(z) + \frac{zH'(z)}{H(z)}.$$

Bernardi-Libera-Livingston Integral Operator M. Eshaghi Gordji,

D. Alimohammadi and A. Ebadian

vol. 10, iss. 4, art. 100, 2009

Title Page

Contents

Page 7 of 12

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

By making use of (2.3) in (2.2), since $H(z) = \lambda + (1 - \lambda)p(z)$, we obtain

(2.4)
$$(1 - \lambda)p(z) + \frac{(1 - \lambda)zp'(z)}{\lambda + c + 1 + (1 - \lambda)p(z)} = \frac{zf'(z)}{f(z)} - \lambda.$$

If we consider

$$\psi(u,v) = (1-\lambda)u + \frac{(1-\lambda)v}{\lambda + c + 1 + (1-\lambda)u},$$

then $\psi(u,v)$ is a continuous function in $D=\left\{\mathbb{C}-\frac{\lambda+c+1}{\lambda-1}\right\}\times\mathbb{C}$ and $(1,0)\in D$. Also, $\psi(1,0)>0$ and for all $(iu_2,v_1)\in D$ with $v_1\leq -\frac{1+u_2^2}{2}$ we have

$$\operatorname{Re} \psi(iu_2, v_1) = \frac{(1 - \lambda)(\lambda + c + 1)v_1}{(1 - \lambda)^2 u_2^2 + (\lambda + c + 1)^2} \\ \leq \frac{-(1 - \lambda)(\lambda + c + 1)(1 + u_2^2)}{2[(1 - \lambda)^2 u_2^2 + (\lambda + c + 1)^2]} < 0.$$

Therefore the function $\psi(u,v)$ satisfies the conditions of Lemma 1.1 and since in view of the assumption, by considering (2.4), we have $\operatorname{Re}\{\psi(p(z),zp'(z))\}>0$, Lemma 1.1 implies that $\operatorname{Re}p(z)>0,z\in U$ and this completes the proof of (i).

(ii) For proving this part of the theorem, we use the same method and a easily verified formula similar to (2.2). By replacing c+1 with c we get the desired result.

Theorem 2.2.

(i) For $f \in A$ if $\operatorname{Re}\left\{\frac{zf'(z)}{f(z)} - \frac{z(L_cf(z))'}{L_cf(z)}\right\} > 0$ and $\frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)}$ is an analytic function, then $C_c(\lambda) \subset C_{c+1}(\lambda)$.

Bernardi-Libera-Livingston Integral Operator M. Eshaghi Gordji, D. Alimohammadi and A. Ebadian

vol. 10, iss. 4, art. 100, 2009

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

(ii) Let $c > -\lambda$. For $f \in A$ if $\operatorname{Re}\left\{\frac{zf'(z)}{f(z)} - \frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)}\right\} > 0$ and $\frac{z(L_{c+1}f(z))'}{L_{c+1}f(z)}$ is an analytic function, then $C_{c+1}(\lambda) \subset C_c(\lambda)$.

Proof. (i) In view of part (i) of Theorem 2.1 we can write

$$f \in C_c(\lambda) \Leftrightarrow L_c f \in C(\lambda) \Leftrightarrow z(L_c f)^{\prime *}(\lambda) \Leftrightarrow L_c z f^{\prime *}(\lambda) \Leftrightarrow z f_c^{\prime *}(\lambda) \Rightarrow z f_{c+1}^{\prime *}(\lambda)$$
$$\Leftrightarrow L_{c+1} z f^{\prime *}(\lambda) \Leftrightarrow z(L_{c+1} f)^{\prime *}(\lambda) \Leftrightarrow L_{c+1} f \in C(\lambda) \Leftrightarrow f \in C_{c+1}(\lambda).$$

Part (ii) of the theorem can be proved in a similar manner.

Theorem 2.3. If $c \ge -\lambda$ and $\frac{zf'(z)}{f(z)}$ is an analytic function, then $f \in S^*(\lambda)$ implies $f \in S^*_c(\lambda)$.

Proof. By differentiating logarithmically both sides of (1.3) with respect to z we obtain

(2.5)
$$\frac{z(L_c f(z))'}{L_c f(z)} + c = \frac{(c+1)f(z)}{L_c f(z)}.$$

Again differentiating logarithmically both sides of (2.5) we have

(2.6)
$$p(z) + \frac{zp'(z)}{c + \lambda + p(z)} = \frac{zf'(z)}{f(z)} - \lambda,$$

where $p(z) = \frac{z(L_c f(z))'}{L_c f(z)} - \lambda$. Let us consider $\psi(u,v) = u + \frac{v}{u+c+\lambda}$. Then ψ is a continuous function in $D = \{\mathbb{C} - (-c - \lambda)\} \times \mathbb{C}$, $(1,0) \in D$ and $\text{Re } \psi(1,0) > 0$. If $(iu_2, v_1) \in D$ with $v_1 \leq -\frac{1+u_2^2}{2}$, then

Re
$$\psi(iu_2, v_1) = \frac{v_1(c+\lambda)}{u_2^2 + (c+\lambda)^2} \le 0.$$

Bernardi-Libera-Livingston Integral Operator M. Eshaghi Gordji,

D. Alimohammadi and A. Ebadianvol. 10, iss. 4, art. 100, 2009

Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Since $f \in S^*(\lambda)$, then (2.6) gives

$$\operatorname{Re}(\psi(p(z), zp'(z))) = \operatorname{Re}\left\{\frac{zf'(z)}{f(z)} - \lambda\right\} > 0.$$

Therefore Lemma 1.1 concludes that $Re\{p(z)\} > 0$ and this completes the proof.

Corollary 2.4. If $c \ge \lambda$ and $\frac{zf'(z)}{f(z)}$ is an analytic function, then $f \in C(\lambda)$ implies $f \in C_c(\lambda)$.

Proof. We have

$$f \in C(\lambda) \Leftrightarrow zf'^*(\lambda)\Lambda zf_c'^*(\lambda) \Leftrightarrow L_c zf' \in S^*(\lambda)$$

$$\Leftrightarrow z(L_c f)'^*(\lambda) \Leftrightarrow L_c f \in C(\lambda) \Leftrightarrow f \in C_c(\lambda).$$

Bernardi-Libera-Livingston Integral Operator M. Eshaghi Gordji, D. Alimohammadi and A. Ebadian

vol. 10, iss. 4, art. 100, 2009

П

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

References

- [1] S.D. BERNARDI, Convex and starlike univalent functions, *Trans. Amer. Math. Soc.*, **135** (1969), 429–446.
- [2] I.B. JUNG, Y.C. KIM AND H.M. SRIVASTAVA, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, *J. Math. Anal. Appl.*, **176** (1993), 138–147.
- [3] J.L. LI, Some properties of two integral operators, *Soochow. J. Math.*, **25** (1999), 91–96.
- [4] R.J. LIBERA, Some classes of regular functions, *Proc. Amer. Math. Soc.*, **16** (1965), 755–758.
- [5] J.L. LIU, A linear operator and strongly starlike functions, *J. Math. Soc. Japan*, **54**(4) (2002), 975–981.
- [6] J.L. LIU, Some applications of certain integral operator, *Kyungpook Math. J.*, **43**(2003), 21–219.
- [7] J.L. LIU, Certain integral operator and strongly starlike functions, *Int. J. Math. Math. Sci.*, **30**(9) (2002), 569–574.
- [8] A.E. LIVINGSTON, On the radius of univalence of certain analytic functions, *Proc. Amer. Math. Soc.*, **17** (1996), 352–357.
- [9] S.S. MILLER and P.T. MOCANU, Second order differential inequalities in the complex plane, *J. Math. Anal. Appl.*, **65** (1978), 289–305.
- [10] K.I. NOOR, On quasi-convex functions and related topics, *Internat. J. Math. Math. Sci.*, **10** (1987), 241–258.

Bernardi-Libera-Livingston Integral Operator M. Eshaghi Gordji, D. Alimohammadi and A. Ebadian

vol. 10, iss. 4, art. 100, 2009

journal of inequalities in pure and applied mathematics

Full Screen

Close

issn: 1443-5756

- [11] M. NUNOKAWA, S. OWA, H. SAITOH, A. IKEDA AND N. KOIKE, Some results for strongly starlike functions, *J. Math. Anal. Appl.*, **212** (1997), 98–106.
- [12] J. SOKOL, A linear operator and associated class of multivalent analytic functions, *Demonstratio Math.*, **40**(3) (2007), 559–566.
- [13] B.A. URALEGADDI AND C. SOMANATHA, Certain integral operators for starlike functions, *J. Math. Res. Expo.*, **15** (1995), 14–16.

Bernardi-Libera-Livingston Integral Operator M. Eshaghi Gordji, D. Alimohammadi and A. Ebadian

vol. 10, iss. 4, art. 100, 2009

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756