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In this paper by making use of the generalized Bernardi-Libera—Livingston inte-
gral operator we introduce and study some new subclasses of univalent functions.
Also we investigate the relations between those classes and the classes which are
studied by Jin—Lin Liu.
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1. Introduction

Let A be the class of functions of the forfiiz) = z+>_ >, a,2" which are analytic
inthe unitdiskU = {z : |z| < 1}. Also, letS denote the subclass dfconsisting of
all univalent functions ir/. Suppose\ is a real number with < A < 1. A function

f € S is said to be starlike of ordex if and only if Re{zﬁg)} >\ z e U.

Also, f € S is said to be convex of ordex if and only if Re {1 - Z,f(S)} >\,

z € U. We denote byS*(\), C'()\) the classes of starlike and convex functions of
order \ respectively. It is well known thaf € C(\) if and only if zf*(X). If

f € A thenf € K(5,\) if and only if there exists a function € S*()\) such that
Re{zg('g)} > 3, z € U, where0 < 3 < 1. These functions are called close-to-
convex functions of ordef type A. A function f € A is called quasi-convex of

order3 type ) if there exists a functiog € C'(\) such thaRRe { (Zf'(z))'} > 3. We

g'(z)
denote this class bi* (5, \) [10]. Itis easy to see thgt € K*(3,~) if and only if
zf' € K(6,7v)[9]. For f € AifforsomeA(0 < X < 1)andn(0 <n < 1)we have

(7 )

then f(z) is said to be strongly starlike of ordgland type\ in U and we denote this
class byS*(n, A). If f € A satisfies the condition

Zf//(z) )
arg [ 1+ — A
i ( )
for some\ andn as above, then we say thAtz) is strongly convex of order and

type A in U and we denote this class 6)(n, A). Clearly f € C(n, \) if and only if
zf™(n, A), and in particular, we havg*(1, \) = S*(A) andC(1,\) = C(\).

<y, (zel),

(1.1) 5

<y (zeU)

(1.2) .
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Forc > —1 and f € A the generalized Bernardi—Libera—Livingston integral
operatorL.. f is defined as follows

z¢

(1.3) Lof(z) = <1 / 1L f ().

This operator foe € N = {1,2,3,...} was studied by Bernardi] and forc = 1
by Libera H] (see also §]). The classesT.(n, \) andCV,(n, \) were introduced
by Liu [7], where

_ . ; 2(Lef(2))
STc(n,A)_{feA.cheS(77,)\), L f(2) %A,zeU},
_ | (E(Lef(2))
CV.(n,)) = {f e i Lof e Clr), ST s e U} |
Now by making use of the operator given by 3) we introduce the following

classes.
Se(N) ={feA:L.feS N}
CcN) ={feA:L.feCN}

Obviously f € CV.(n,\) if and only if zf" € ST.(n,A). J. L. Liu [5] and [6]
introduced and similarly investigated the clasSgg\), C,(\), K, (5, \), KX(5, \),
ST, (n,\), CV,(n, \) by making use of the integral operattstf given by

o | (o3) s oo0ea

The operator/? was introduced by Jung, Kim and SrivastagZhdnd then investi-
gated by Uralegaddi and Somanattd][ Li [ 3] and Liu [5]. For the integral opera-

14  If(z) =
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tors given by(1.3) and(1.4) we have verified following relationships.

(1.5) I°f(z) =z + i <ni+1>a anz",
(1.6) L.f(z) =z+ Z ;:ianz",
(1.7) 2(I7Lef(2))7 f(2) = eI7Le f(2),
(1.8) 2(Lel? f(2))7 f(2) = cLd” f(2).

It follows from (1.5) that one can define the operaf6ifor any real numbes. In this
paper we investigate the properties of the claggéa), C.(\), K.(5,\), KX (5, \),
ST.(n, ) andCV.(n, A). We also study the relations between these classes by the
classes which are introduced by Liu i8] [and [6]. For our purposes we need the
following lemmas.

Lemma 1.1 (B]). Letu = uy + iug, v = vy + ive and lety(u,v) be a complex
functiony : D C C x C — C. Suppose thap satisfies the following conditions

(i) ¥ (u,v) is continuous inD;
(i) (1,0) € D andRe{¥(1,0)} > 0;

(iii) Re{t(iug,vy)} < 0for all (iug, v;) € D withv, < 242,
Letp(z) =1+ > 7, c,2" be analytic inU so that(p(z), zp/(z)) € D for all
ze U. If Re{y(p(2),2p'(2))} > 0, z € U thenRe{p(2)} >0,z € U.
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Lemma 1.2 ([L1]). Let the functiorp(z) = 1+ >, ¢,2" be analytic inU and
p(z) # 0, z € U. If there exists a point, € U such that|arg(p(z))| < 57 for

z| < |20 andargp(z)| = Zn where0 < n < 1, then2Z) — jkp and k >
2 p(20)

s(r + 1) whenarg p(z0) = %7, Also,k < SH(r + 1) whenargp(z) = 5, and

p(20)Y" = Lir(r > 0).
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2. Main Results

In this section we obtain some inclusion theorems by following the method of proof
adopted in12].

Theorem 2.1.

2) Lef(2) +1f(2)
tion, thenS¥(\) C S% (V).

(i) For f € Aif Re {Z}cé(z) — Z(ch("'))'} > 0 and 2LesJG) g an analytic func-

. : zf!(z 2(Ley1f(2)) 2(Let1f(2))
(i) Letc > —\. For f € Alif Re{ [l denili) } > 0 and 2= s an
analytic function, thers?, , (\) C S¥()).
Proof. (i) Suppose thaf € S*(\) and set
2(Let1f(2))"
Lc-i-lf(z)

wherep(z) =1+ > ", ¢,2". An easy calculation shows that

(2.1) —A=(1-A)p(2),

2(Lesr f(2)) [2 1o e f@)”

Let1f(2) (Ler1 f(2)) zf'(2)
2.2) , - .
el 4 ¢4 1 f(2)
By settingH (z) = (=242 we have
2(Les1 (2))” zH'(2)
2.3 1+ ——""-"-=H(2)+
#2) Leafz)y T HE)
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By making use of2.3) in (2.2) , sinceH (z) = A + (1 — A\)p(z), we obtain
(

(=N )
)~ S

(2.4) (1—=XNp(z) +

Adc+14+(1-

~—

If we consider
(1—=Xw
Atc+1+(1=Nu’
thent(u, v) is a continuous function i = {C — A<} x C and(1,0) € D.
Als0,(1,0) > 0 and for all (iug, v;) € D with v, < —2 we have

P(u,v) = (1 —Nu+

(I=XNA+c+ 1wy
(I=A)2ug+ (A+c+1)
—(1=ANA+c+1)(1+u3)

T 2[(1 = N2ui+ (A +e+1)?
Therefore the function)(u, v) satisfies the conditions of Lemnial and since in
view of the assumption, by consideririg.1) , we haveRe{v(p(z), zp/(2))} > 0,
Lemmal.limplies thatRe p(z) > 0, z € U and this completes the proof of (i).
(i) For proving this part of the theorem, we use the same method and a easily

verified formula similar to(2.2). By replacinge + 1 with ¢ we get the desired
result. O

Theorem 2.2.

Re ¢ (iug, vy) =

< 0.

(i) For f € Aif Re {Zf' ALef )) } > 0 and 2L/ s an analytic func-

f(2) Lef( Let1f(2)
tion, thenC.(\) C Ciiq (A
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H H Zf/(z) (Lc f( ) 4 Lc f(Z))/ 1
(i) Lete > —\. For f € Aif Re{ ONE Lcillf(z) } > (0 and —+11f(z) IS an

analytic function, ther®’.,.; (A) C C.()).
Proof. (i) In view of part (i) of Theoren®.1we can write

fECN) & Lef € C(N) & 2(Lef)"(N) & Lez f"(A) & 2f0(N) = 21 (N)
<~ Lc+12f/*()\) <~ Z(LC_Hf),*(/\) <~ Lc—i—lf € C()\) ~ f € Cc+1()\).

Part (ii) of the theorem can be proved in a similar manner. ]

Theorem 2.3.1f ¢ > —)\ and Zf )is an analytic function, therf € S*(\) implies
feSiA).

Proof. By differentiating logarithmically both sides df .3) with respect to: we
obtain

2Lef(2) (et 1)f(2)
=) L) T LG

Again differentiating logarithmically both sides ©f.5) we have

2 (2) 2f'(2)
2.6 + = —\
(2.6) P(2) c+ A+ p(2) f(2)
wherep(z) = “Z=HEC — . Let us consider(u,v) = u + 4. Theny is a
continuous function iD = {C — (—c¢— \)} x C, (1,0) € D andRe (1,0) > 0.
If (iUQ, U1> € D with v < — 1+2u2’ then
. U1(0+ )\)
R = ——— <0
epliun,v1) = o T S
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Sincef € S*(\), then(2.6) gives

Re(y(p(2), 2p'(2))) = Re {Z]{(,;) — A} > 0.

Therefore Lemmad..1 concludes thaRe{p(z)} > 0 and this completes the proof.
]

Corollary 2.4. If ¢ > X and zf(g) is an analytic function, therf € C'()\) implies
feC.(N).

Proof. We have

feC\) e zf"NAzfr(\) < Lezf' € S*(\)
& 2(Lf)*(N) & Lof € C(\) & f e C.(N.
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