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Abstract

In this paper we give a variant of Jessen’s inequality for isotonic linear func-
tionals. Our results generalize some recent results of Gavrea. We also give
comparison theorems for generalized means.
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Let £ be a nonempty set antl be a linear class of real valued functiofis
E — R having the properties:
Ll: f,ge L= (af +Bg) € Lforalla, € R;
L2:1€ L,ie.iff(t)=1fort € E,thenf € L.
An isotonic linear functional is a functiona : . — R having properties:
Al A(af + Bg) = aA(f) + BA(g) for f,g € L, a, § € R (A is linear);

A2: f € L> f(t) > 0on E = A(f) >0 (A is iSOtOﬂiC). A Variant of Jess_en’s Inequality
The following result is Jessen’s generalization of the well known Jensen’s L (St ) (RS
inequality for convex functionsy] (see also, p. 47]): W.S. Cheung, A. Matkovié and

J. Pecaric

Theorem 1.1. Let L satisfy propertied.1, L2 on a nonempty sdf, and lety
be a continuous convex function on an intervat R. If A is an isotonic linear

functional onL with A(1) = 1, then for allg € L such thatp (¢) € L we have VLD LR
A(g) € I and Contents
A <A :
p(A(g)) < Ale(9)) % o
Similar to Jensen’s inequality, Jessen’s inequality has a convgrseg also p >
[5, p. 98]):
. . Go Back
Theorem 1.2. Let L satisfy propertied.1, L2 on a nonempty sef, and lety
be a convex function on an interval= [m, M] (—oo <m < M < o0). If Ais Close
an isotonic linear functional o, with A(1) = 1, then for allg € L such that Quit
L (sothatm < g(t) < M forall t € F), we have
¢(g) € L( m < g(t) < € E) E——
M—A(g) Ag) —m
A(SD <g)) S M —1m ' SO(m) + M —m ' 90<M) J. Ineg. Pure and Appl. Math. 7(1) Art. 10, 2006
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Recently I. Gavrear] has obtained the following result which is in connec-
tion with Mercer’s variant of Jensen’s inequaliti] [

Theorem 1.3. Let A be an isotonic linear functional defined @fiq, b] such
that A(1) = 1. Then for any convex functignon [a, b],

pla+b—a) < A®Y)

b—ay a, — a
< ¢(a) +¢(b) — ¢(a) —¢(b)
b—a b—a . , .
A Variant of Jessen’s Inequality
< <p(a) + go(b) - A(gp), and Generalized Means
wherey(t) = p(a + b — t) anda; = A(id). R Gt By e
Remark 1. Although it is not explicitly stated above, it is obvious that function
¢ needs to be continuous om b). Title Page
In Section2 we give the main result of this paper which is an extension of Contents
Theoreml.30n a linear clasd. satisfying propertied.1, 2. In Section3 we <« >

use that result to prove the monotonicity property of generalized power means.

We also consider in the same way generalized means with respect to isotonic < >
functionals. Go Back
Close
Quit
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Theorem 2.1. Let L satisfy propertied.1, L2 on a nonempty sdf, and lety
be a convex function on an interval= [m, M| (—oo < m < M < 00). If Ais
an isotonic linear functional o, with A(1) = 1, then for allg € L such that
v(g),o(m+ M —g) € L(sothatm < g(t) < M forall t € E), we have the
following variant of Jessen’s inequality

(2-1) 14 <m +M—A (9)) = 14 (m) e (M) -4 (SO <g)) ) A Variant of Jessen’s Inequality

- . . . .. and Generalized Means
In fact, to be more specific, we have the following series of inequalities

W.S. Cheung, A. Matkovi¢ and

o (m+ M~ A(9)) < Al (m+M — g))
M—A A(g)—m
(2.2) < —@ ) 90<M) + L ’ go(m) Title Page
M—m M —m
<p(m)+e(M)—A(p(g)). Contents
If the functiony is concave, inequalitie.1) and(2.2) are reversed. 14 s
. : : : . < 4
Proof. Sincey is continuous and convex, the same is also true for the function
Go Back
Yilm M >R Close
defined by Quit
v(t)=pm+M—1t), te[m,M]. Page 5 of 19
By Theoreml.1,
¢(A (g)) < A(¢ (g))7 J. Ineq. Pure and Appl. Math. 7(1) Art. 10, 2006
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i.e.,
e(m+M—A(g) <A(p(m+ M —g)).

Applying Theoreml.2to ¢» and then tap, we have

A(p(m+ M —g))

M —A(g) Alg) —m
< .
< S (m) S ) (M)
M—A(g) Alg) —m
M . A Variant of J s | [
M—m P+ e ) R
— M - A(g) Alg) —m W.S. Ch A. Matkovi¢ and
= (m)+¢(M)_ T ¢(m)+m.@(M) IS eti]r.l%eé.ari:towcan
<@ (m)+e(M)—Alp(g))
) _ ) Title Page
The last statement follows immediately from the facts that i concave then
— ¢ is convex, and that is linear onL. O GOl
Remark 2. In Theoren®.1, takingL = C'[a,b] andg = id (so thatm = a and S L
M =b), we obtain the results of Theoreh8. On the other hand, the results of < >

Theoreml.3for the functionalB defined onl. by B(y) = A(p(g)), for which

B(1) = 1and B(id) = A(g), become the results of Theoréni. Hence, these Go Back
results are equivalent. Close
Corollary 2.2. Let (9, A, 1) be a probability measure space, and det Q2 — Quit
[m, M] (—oo < m < M < co0) be a measurable function. Then for any contin- Page 6 of 19
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uous convex functiop : [m, M] — R,

so(erM—/S)gdu) S/Qso(erM—g)du

M — [, gdp Jo gdp —m
< 87T o (M) .
- M-m # (M) M —m @ (m)

Sw(mHs@(M)—/Qw(g)du.

A Variant of Jessen’s Inequality
Proof. This is a special case of Theoreirl for the functionalA defined on and Generalized Means

classL' (M) aSA(g) = fQ gdj. U W.S. Cheung, A. Matkovi¢ and
J. Pecaric
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Throughout this subsection we suppose that:

(i) Lis alinear class having propertiég, L2 on a nonempty sef.

(i) Ais an isotonic linear functional oh such thatd(1) = 1.

(iii) ¢g € Lisafunction ofFE to [m, M] (—oco < m < M < oo) such that all of

the following expressions are well defined.

From (iii) it follows especially thad < m < M < oo, and we define, for

anyr,s € R,
"+ M~ A(g")]" . A0
Q(r,g) == .

exp(A(logg)) ’ r=0,
([ (e + 3 = 79" 0 s 40
Rir.5.g) = exp (A (log[m:%—MT_A(gr)],l«))’ rA40 s=0
A=) O
| exp (A (log%)) r=s=0,

A Variant of Jessen’s Inequality
and Generalized Means

W.S. Cheung, A. Matkovi¢ and
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and

( 1
MT s g")—m" s| s
[MT—(T) M+J\(JT) - -m] ; r#0,s#0
exp(M logM+M logm> , r#0,s=0
S(r,s,g) = )
log M —A(log g) s A(log g)—logm s|® o
|: l;g)ngloging - M? A+ logi/[gfloggm nm i| ’ r= 0’ § 7& 0
log M —A(log g) A(log g)—logm o
| exp (W log M+ o ogm 108 m) , T=s5=0. A Variant of dessens Inequality

. and Generalized Means
In [2] Gavrea proved the following result:

“If r,s € R such thatr < s, then for every monotone positive function W.S. Cheung, . Matkovic and

J. Pecaric
g € Cla,bl, N N
<
Q(r,g9) < Q(s,9), E———
where )
B [gr (a) + gr (b) M" (7” g)r r 75 0 Contents
@r.9) = g(a)g(b) P <4< >
exp(A(log g))
. 4 >
and M (r, g) is power mean of order.”
The following is an extension to Gavrea’s result. Go Back
Theorem 3.1.1f r,s € R andr < s, then Close
Q(r,9) < Q(s,9). ot
Furthermore, Page 9 of 19
(3.1) Q(r, g) <R (r, s, g) < S (r, s, g) < Q(s, g), J. Ineq. Pure and Appl. Math. 7(1) Art. 10, 2006
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Proof. From above, we know that
O<m< g M<oo.

STEP1: Assumd) < r < s.
In this case, we have
O<m" <g" <M< oo.
Applying Theoren®.1or more precisely inequality(2) to the continuous con-

vex function
¢: (0,00) =R

() —zr, T € (0,00) ,
we have
m o+ M= A(g")]F < A((m"+ M= g)7)

M- A Alg) —m"
= M- M —mr
<m*+ M- Alg®).

.MS_|_

Sinces > r > 0, this gives

"+ M — AN < [A(n" + M= g)7))]
< [ur s,
< [m + M* = A(g")]*

A Variant of Jessen’s Inequality
and Generalized Means
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or
Q(r,g) < R(r,s,9) < S(r,s,9) <Q(s,9).

STEP2: Assumer < s < 0.
In this case we have
O<M <g"<m" <oo.

Applying Theoren®.1or more precisely inequality(2) to the continuous con-
cave function (note thdt < * < 1 here)

¢: (0,00) =R
p(z) =a7, x€(0,00),

we have
M+ = A(gD)" = A (M4m0 = g)F

m” — A(g")
> M7 T
- m'r_M'r m+ m'r’_Mr
> M*+m®— A(g°).

N———

Sincer < s < 0, this gives
"+ M= A(g"))" < A ((m+ M7 = g)7 )]

- Mr_mr Mr_mr

< [m®+ M* = A(g°)]",

A Variant of Jessen’s Inequality
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or
Q(r,g) < R(r,s,9) < S(r,s,9) <Q(s,9).

STEP 3: Assumer < 0 < s.
In this case we have
O<M <g"<m" <oo.

Applying Theoren®.1or more precisely inequality(2) to the continuous con-
vex function (note that < 0 here)

¢: (0,00) =R
p(z)=ar, x€(0,00),

we have
M+ = A(gN)] < A (M4m0 = g)F

m” — A(g")
< — — M7 T
- m'r_M'r m+ m'r’_Mr
< M°+m®—A(g°).

N———

Sincer < 0 < s, this gives
"+ M= A(g")]" < A ((m+ M7 = g)7 )]

- Mr_mr Mr_mr

< [m®+ M* = A(g°)]",

A Variant of Jessen’s Inequality
and Generalized Means

W.S. Cheung, A. Matkovi¢ and
J. Pecaric
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or
Q(r,9) < R(r,s,9) <S(r,s,9) <Q(s,9).
STEP4: Assumer < 0, s = 0.
In this case we have

O<M <g"<m" <oo.

Applying Theorem?2.1 or more precisely inequality?2(2) to the continuous

convex function
¢: (0,00) =R
p(x) = tlogz, x € (0,00),

o

we have

1 1
;log (M"+m"—A(g") <A (;log (M™ +m" — g”))

cm—Ag)
- mr_Mr

1 1 1
—logM" 4+ —logm"™ — A (— loggr> ,
r r r

Alg") —M"

1
—2 7 . logM"
mr — M7 rOg

1 T
- —logm” +
-

IN

or
log Q(r,g) <log R (r,0,9) <logS (r,0,g) <logQ(0,g).
Hence
Q(r,g9) < R(r,0,9) <S5 (r,0,9) <Q(0,9).

STEP5: Assumer =0, s > 0.

A Variant of Jessen’s Inequality
and Generalized Means
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In this case we have
—o0 < logm <logg <log M < 0.

Applying Theoren?.1or more precisely inequality?(2) to the continuous con-

vex function
p: R—(0,00)
p(r) =exp(sz) , T€R,

we have

exp (s (logm +log M — A (log g)))
< A (exp (s (logm +log M —logg)))
log M — A (log g)
log M — logm

A(log g) — logm
log M — logm

IN

-exp (slog M) +

- exp (slogm)
< exp (slogm) + exp s (log M) — A (exp (slogg)),

or
RQ(0,9)° < R(0,s,9)" < S5(0,s,9)° <Q(s,9)°
Sinces > 0, we have
Q(0,9) < R(0,s,9) <S5(0,5,9) <Q(s,9)

This completes the proof of the theorem, since whens = 0 we have

Q(0,9) = R(0,0,9) = S(0,0,9).

A Variant of Jessen’s Inequality
and Generalized Means
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Corollary 3.2. Let (92, A, 1) be a probability measure space, and et Q2 —
[m, M] (0 < m < M < o) be a measurable function. Let be defined as
A(g) = [, 9du. Then for any continuous convex functipn [m, M| — R,
and anyr, s € Rwithr < s, (3.1) holds.

Let L satisfy propertied.1, L2 on a nonempty sef, and letA be an isotonic
linear functional onL with A(1) = 1. Let 4,y be continuous and strictly
monotonic functions on an interval= [m, M| (—co < m < M < o0). Then

foranyg € L such that) (g),x (9),x (¥~ (¥ (m) + 4 (M) =1 (9))) € L
(so thatm < ¢(t) < M for all t € E), we define thegeneralized mean aof

with respect to the functional and the function) by (see for examples] p.
107])

My (g,A) =" (A (g))) -

Observe thatif) (m) < ¢ (g) < (M) fort € E, then by the isotonic charac-
ter of A, we havey (m) < A (¥ (g)) < ¢ (M), so thath, is well defined. We
further define

My (g,A4) =71 (¥ (m) + v (M) — A((9))) .-

From the above observation we know that
Y (m) < (m)+¢(M)—A@(g)) < (M)

so thatﬁw is also well defined.
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Theorem 3.3. Under the above hypotheses, we have

(i) if eitheryoty~!is convex ang, is strictly increasing, orov)~! is concave
and y is strictly decreasing, then

(3.2) My (g, A) < M, (g, 4).
In fact, to be more specific we have the following series of inequalities

33)  My(g.4) <x (A (W @ (m)+y (M) =2 (g))))
(Y (M) =AY (g))

<X (w(M)—w(m) X (M)

AW @) —vm)

S0 D) X >)

SMX(97A>;

+

(i) if eitheryow~!is concave ang is strictly increasing, oryo)~! is convex
and y is strictly decreasing, then the reverse inequalities hold.

Proof. Since is strictly monotonic and-co < m < g(t) < M < oo, we have
—00 < th(m) < 1p(g) < ¥ (M) < o0, 0r—oo < ¢ (M) < ¥(g) <1 (m) <

0.
Suppose that o 1y~ ! is convex. Lettingy = y o ¢! in Theorem2.1 we

A Variant of Jessen’s Inequality
and Generalized Means
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obtain

<A((xov™) (¥ (m)+1v (M) —(g)))
v (M) — AW (9)) )
<00 () (xov™) (v (M))
AW @) =¥ (m)
+ 500 5 (xov™) (¥ (m))
< (xed™) (W (m))+ (xov ™) (W (M) —A((xeov™) (W (9),
or
X (07 (W (m) + (M) — A(1(9))))
(3.4) <A(x (@ (m)+¢ (M) =¥ (g)))
Y (M) =A@ (g) AW@)—vm)
S on—vm XM Gn —gm X

If x o ~! is concave we have the reverse of inequalities).
If  is strictly increasing, then the inverse functign' is also strictly in-

creasing, so thgt3.4) implies (3.3). If x is strictly decreasing, then the inverse

function x ! is also strictly decreasing, so in that case the revergg.of im-
plies(3.3). Analogously, we get the reverse f3) in the cases wheg o 1)1
is convex andy is strictly decreasing, oy o ¢! is concave and is strictly
increasing. O]
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Remark 3. If we let
g, r#0
1Nm={ and Mmz{
logg, =0

then Theoren3.3reduces to Theorem. L

g, r#0
log g, 7“:0’

A Variant of Jessen’s Inequality
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