(L), Journal of Integer Sequences, Vol. 13 (2010),
VIS Article 10.5.7

® 0%

Full Description of Ramanujan
Cubic Polynomials

Roman Witula
Institute of Mathematics
Silesian University of Technology
Kaszubska 23
Gliwice 44-100
Poland
roman.witula@polsl.pl

Dedicated to Vladimir Shevelev — for his inspiration

Abstract
We give a full description of the Ramanujan cubic polynomials, introduced and first
investigated by V. Shevelev. We also present some applications of this result.

1 Introduction

Shevelev [2] called the cubic polynomial
? rprttqrtr (1)
a Ramanugjan cubic polynomial (RCP), if it has real roots 1, x9, x3 and the condition
priB 433 £ q=0 (2)
is satisfied. It should be noticed, that if xy, 25, x3 are roots of RCP of the form (1), then the
following formulas hold (see [2, 5]):
x}/g + xé/g + x:l),/s = (—p — 672 +3(9r —pq)l/g)l/g, (3)

1/3
(w122)"/* + (129) "+ (@220) /% = (q 4+ 672 = 3(97% —pgn)") (4)
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and Shevelev’s formula [2]:
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We note that (3) easﬂy implies all three Ramanujan equalities
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since the following decompositions of polynomials hold: (19), which implies (6) after some
algebraic transformations for every r € R\ {0} (the equality (6) we obtain by setting r =
8/729), (28), which implies (7) and at last (10), which implies (8).

In [2] many interesting and fundamental properties of RCP’s are presented.

The object of this paper is to prove the following fact
Theorem 1. All RCP’s have the following form

3 P(y-1) /3,2 P2 —17)
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1/3

=
where r € R\ {0}, v € R\ {1,2}, and
P(y) =79 -3vy+1= (7—2 COS%) (7—2 cos%) (7—2 COS%T). (10)

Corollary 2. From formulas (3), (4) and (5) for the sums of the real cube root of the roots
of polynomial (9), the following equalities can be generated

P =0 -1) 43 =37 +3) V(- D (-2 =
= (VT - Y- P+ Y@-2),

e 4=

P =97 +9-3(1=37+3) V(-1 (y-2) =
- (V=7 - Va-neE=—P-Ya-7). 1

which, after replacing v := 3 — =, is equivalent to (11);
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- (17 =87 +8)" =0 (7 12 (2—7)" — P(y— 1) P2 7). (14)

The above relations essentially supplement the set of identities presented in [1]. Further-
more, (11)—(14) entail Ramanujan’s equalities (6)—(8), as well as all the other expressions of
this type discussed in [2, 4, 5].

In the second part of this paper we will discuss an important Shevelev parameter 2%
of RCP’s having the form (1). We note, that from (17) the following Shevelev inequality

follows: vq 9

. < e (15)
We remark that for every a € R, a < %, there exist at most six different sets of RCP’s,
depending only on values 7 and having the same value of 2%, equal to a. In the sequel,
there exist only two sets of RCP’s, depending on r € R, having the value 22 = 2 (see the
descriptions (40) and (41)). However, there is only one family of RCP’s, depending on r € R
with 2¢ = 2 (see the descriptions (19)). This fact is proven in Section 2, but it independently

results from (31), (9), (14) and from the following identity

pa_,_ (0-DO-2)+1)" (16)

T (-0 -2)

From (16) we get

]%:z & t::(v—l)(y—Z)E{—i,Q} A 76{07;3}7

since we have

d (t+1)3 (t+1)?
%(9— e ):t(2—t) .

All three values v € {0,3,3} generate the same set of RCP’s of the form (19).

2 Proof of Theorem 1

Let us indicate that from condition (2) the following equality follows (see [2]):

%—pq—<§+ p)Q. (17)

s oGt
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By (17) we have



In other words, an RCP has the form

x3+<a—g)r1/3x2—<a+§>r2/3x+r (18)
for some a,r € R. If o = 0, the following decomposition holds
3 3 1
3 — §r1/3x2 — §r2/3x +r= (:c — §r1/3> (z + /%) (z —20"3). (19)
Accordingly, the roots x1, z9, 23 of the polynomial (18) have the form (r # 0):
1
= <§+ﬁ) P my = (=149) P ws = (246) ' (20)
for certain 3,7,0 € R. Then from Vieta’s formulae the following equations can be obtained
~(8+7+9). 21)
1 1 3
(5+8) ((1+9) + (5+8) @+6) + (-1+7) (2+0) = —a -3, (22)
1
(5+8) (1+9) 2+9) =1. (23)
From (21) and (22) we receive
3(0—~)—6
5> (6 —7) 14 (24)
o+
which, by (23), implies
(V¥ =37+2)+5(37*—T7+3)+27* -3y =0.
Hence, after some manipulations, we get
A(s = (’72 — 37“‘ 3)2,
and next 3_9
§= 1 or 0= iy (25)
1—7 v—2
If we choose § = =, then by (24) we have = ==, and by (20) we obtain
ri/3 2 —
m=g—— m= (=) ay = T
2—7 1—x (26)
a:—(L—i—’y—i— 7y ):—27 +9~%2—-9x
2(2-7) l—v/ 2(v=1)(v-2)
Finally
230 —73+372—3T1/3x2+7 —67*+97 -3 P2y 4y =
(-1 (r—-2) (-1 (r—-2)
1/3 9 _
:(x— ! )(m—(y—l)rl/3> (x——7r1/3>, (27)
2—7 1—7
which is compatible with (9).
On the other hand, if we choose § = , then g = __31), and we obtain the same
values of x1,x9, 23 and « as in (26) above. O



Example 3. Since
2 4 8
(x—2 COSTW) (ac—2 cos%) (x—2 COS%) =2 4+22—2x—1

is the RCP [4], then, from (9) the following relations can be deduced

™
=1-2 — = -1
¥y CcOS - T ,
P(v—1 P(2 —
0= 1 o (7):’
(1-=7 2= (1= 2=
which implies the equalities
1 4 -2 8
—zQCos—ﬂ, 7——2608—7-(
v —2 7 1—7 7’
(Cos—+cos—) (cos——i—co T“)(cos——I—cos%”)_ 1
cos27”(1+200827”) g
and the equivalent one
(%—1—00827”—008%”)( —i—cosT—cos—”)( +cosT—cos%7r)_1

3 Values of Pq for RCP’s
r

By (9) we obtain
pqg _Ply=1)PQ2-7)
ro (y=12(2-9)

9
cos—(l—l—QCo 7”) 2

(28)

(31)

The examples of RCP’s, which are given in [4, 5] (see also [2]), are produced by ¢ equal

only to 2, —40, —180.
The following theorem holds.

Theorem 4. For every a < 9 there exist at most six different sets of RCP’s, depending on

pq

r € R, having the same Ualue of 1, equal to a.

Proof. The proof of this theorem results easily from inequality (15) and from relation (31).

We will present now a series of remarks, connected with the parameter a = 24,

T

Remark 5. Let us consider the following equation

P(y—1)P2—1)
(v=1)?(2—7)?

=a (a € R).

]

(32)



This equation, by (16), after substitution ¢ := (v — 1) (7 — 2), is equivalent to the following

one
R(t) =t +(a—6)t*+3t+1=0. (33)

If we replace ¢ in (33) by 7 — %5%, then the canonical form of R(t) can be generated

P om0 a6 (0= 6)+1 30

But the polynomial (34) has only one real root, if and only if

1@ 6P~ (@=6)+1)"+ 23—  (a-6)")* >0 =
— %(a—G)g—é(a—G)Z—Q(a—6)+5>O — (a—9)2<a—§> > 0.

9

Since the case a = I

9
a§4.

was discussed in (19), the polynomial R(t) has three real roots for every

Remark 6. If 75 € C is a root of equation (32) (for fixed a € C) then also v = 3 — 79
and v = 11070 are roots of this one. We note, that the last fact derives from the following
identities

(1= P(—) = P2=7)

and
(1= P(1=) = Pl

Consequently, the roots of (32) are also

3—7% _ 3— 5 Y 3—4v

1—-B83—9%) -2 1= 1—7 Y—2 -2

Remark 7.  Let us separately discuss equation (32) for a = 2. After substitution ¢t = 1—7
in (33), the following equation is derived

Tt —27-1=0, (35)
i.e. (see [4]):
<T—2C08277T> <T—2COS477T> <7—2008877T> = 0. (36)
Hence, equation (32) for a = 2 is equivalent to each of the following three equations
(7—1)(7—2):1—2(3os277T = y—-1=-2 COS477T Y ’)/—2:2C08477T, (37)
or

4 8 8
(7—1)(7—2):1—2cos77r PR 7—1:—2cos77r v 7—2:2c087ﬁ, (38)



or
8 2 2
(7—1)(7—2):1—200877r = 7—1:—2(:0377T Y 7—2:2(:03%. (39)
For the values
2k
v E {1—20087 k= 1,2,3},
we obtain the same set of RCP’s

BB 0B r_p peR (40)

On the other hand, for values

2k:
= {2+2 cosT”: k:1,2,3},

we obtain the following set of RCP’s
2 —2r B g 4o, reR. (41)
We note, that RCP of the form (see [2, 4]):

22+ 72— 982 — 343 =

2 2 Sm\3 4 2 470 \3
= <x—128 (30877T<sir177T sin%) > (93—128 cos77r<sir177T sin%)) .

4 3
. <x—128 c08877r (sinT7T sin877r> )

belongs to the set (40) of RCP’s with 24 = 2 for r = 7%, because of the following remark.

Remark 8. Suppose, that a € {27“, 47“, 87”} Then, we have sin a = sin 8a;, which implies
9 9 .
14 cosaa =7 s1.n e (8 sin o sin 2a sin4a)2 51'11 e 4 S_ma (sin2a)3 (sin4a)3 =
sin o sin o sin 4o
in 8
=64 s?n a (sin 204)3 (sin 404)3 = 128 cos4«w (sin 2¢v sin 404)3.
sin 4o
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