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Abstract

Let X, = {1,2,...,n}. On a partial transformation o : Doma C X,, — Im o C X,
of X,, the following parameters are defined: the breadth or width of « is | Dom « |,
the height of v is | Im « |, and the right (resp., left) waist of a is max(Im «) (resp.,
min(Im «)). We compute the cardinalities of some equivalences defined by equalities of
these parameters on OP,,, the semigroup of orientation-preserving full transformations
of X,,, POP,, the semigroup of orientation-preserving partial transformations of X,,,
OR,, the semigroup of orientation-preserving/reversing full transformations of X,,, and
POR,, the semigroup of orientation-preserving/reversing partial transformations of
X, and their partial one-to-one analogue semigroups, POPZ, and PORZ,.

1 Introduction and Preliminaries

Let X, = {1,2,...,n}. A (partial) transformation o : Dom o« C X,, — Im o C X, is
said to be full or total if Im o = X,,; otherwise it is called strictly partial. The breadth or
width of a is denoted and defined by b(«r) =| Dom « |. The height or rank of « is denoted
and defined by h(a) =| Im « |. The right (resp., left) waist of « is denoted and defined
by wt(a) = max(Im «) (resp., w™ (a) = min(Dom «)). Of course, other parameters have
been defined and many more could still be defined but we shall restrict ourselves to only
these in this paper. It is worth noting that to define the left (right) waist of a transfor-
mation the base set X,, must be totally ordered. The main objects of study in this paper
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are OP,,, the semigroup of orientation-preserving full transformations of X,,, POP,, the
semigroup of orientation-preserving partial transformations of X,,, OR, the semigroup of
orientation-preserving/reversing full transformations of X,, and POR,, the semigroup of
orientation-preserving/reversing partial transformations of X,,, and their partial one-to-one
analogue semigroups, POPZ, and PORZ,. For basic and standard concepts in transforma-
tion semigroup theory the reader may consult one of Howie [10], Higgins [7] or Ganyushkin
and Mazorchuk [6].

Enumerative results of an essentially combinatorial nature in the study of semigroups of
transformations are now numerous and interesting to warrant sections and plenty of exercises
in [6] and survey articles [9, 5, 19, 20]. These enumeration problems lead to many numbers
in Sloane’s encyclopaedia of integer sequences [18] but there is also the likelihood of finding
others that may not yet be recorded in [18]. Motivated by Higgins [8], Laradji and Umar
wrote a series of papers [11, 12, 13, 14, 15] dealing exclusively with combinatorial questions.

Let S be a set of partial transformations on X,,. Next, let

F(nyr,p, k) =| {a e S:bla)=rAhla) =pAwt(a) =k} |,

and let P = {r, p, k} be the set of counters for the breadth, height, and right waist of a trans-
formation. Then any 3-parameter combinatorial function can be expressed as F'(n;aq,as),
where {ay,as} C P. For example,

F(n;r,p) =|{a € S :b(a) =7 Ah(a) =p}|.

Similarly, any 2-parameter combinatorial function can be expressed as F'(n;a;). It is not
difficult to see that

18] = 3" F(myar), Flnia) =Y Fn;ar, az).

We note also that certain special cases of these combinatorial functions, when two or
more parameters are equal or when these parameters take extreme values are worth pointing
out, see for example, [13, 14].

In Section 2 we consider the semigroups of orientation-preserving full and partial trans-
formations OP,, and POP,,, while in Section 3 we consider OR,, and POR,,, the semigroups
of orientation-preserving/reversing full and partial transformations of X,,, respectively. And
finally, in Section 4 we consider the partial one-to-one analogues of the earlier considered
classes of semigroups, POPZ, and PORZ,. We conclude this section with a list of results
that will be needed in our proofs.

Lemma 1. Let « be a partial transformation of X, = {1,2,...,n}. Let r = b(«), p = h(«a)
and k = w(a). Then we have the following:

I.n>r>p=>0;
2.n>k>p=>0;

3 r=1 = p=1;



4. k=1 = p=1;
S r=0p=0&k=0.
Lemma 2. For all natural number n we have
> (-1 (n) = (n—2)2""" +1.
1
i=1

Proof.
i=1

Lemma 3. (Vandemonde’s Convolution Identity, [17, (3a), p. 8]). For all natural numbers

m, n and p we have
m—k)\k) \ m )
k=0

Lemma 4. [13, Lemma 1.3] For all natural numbers n and p we have

(7))

k=p

2 Orientation-Preserving Partial Transformations

Let a = (ay,aq,...,a;) be a sequence of t (t > 0) elements from the chain X,,. We say that a
is cyclic if there exists no more than one index ¢ € {1,2,...,t} such that a; > a;;, where a;44
denotes a;. For a partial transformation « of X,,, suppose that Dom o« = {ay, as, ..., a;}, with
t>0and a; < ag < ... < a;. We say that « is orientation-preserving if (a1c, ascr, . . ., o)
is cyclic. The semigroups of orientation-preserving full and partial transformations of X,
will be denoted by OP,, and POP,,, respectively. Moreover, note that for all « € POP,
and y € Im o, ya~! is convex with respect to Dom a and the circular order. Further note
that to partition Dom « into p nonempty convex subsets, we insert p symbols between the
r = | Dom «a spaces. Then we have the principal result of this section.

Proposition 5. Let S = POP,,. Then

F(nyr,p k) = (Z) (f;ii) (;)p7 nzrkz>p>1
o r=1lork=1lorp=1

r)?



Proof. First, note that we can choose the r elements of Dom « from X,, in (Z) ways, and

the p elements of Im « from {1,2,...,k} in (’;j) ways, since k must be one of the choices.

Next, we partition the r chosen elements of the domain into p-convex subsets in (;) ways.
It is clear that that there are exactly p ways of tying these p-subsets to the p-images. Hence
the result follows. O

Let a € P ={r,p,k}. Then for all i € {0,1,...,n} if a = i we shall denote this by a;.
Corollary 6. Let S =POP,,. Then

(?)(Z)(;)p, n>r2>p>1;
n(”)) TZlOTp:]_,

Proof.

F(n;r,p) gF(n;r,p,k)zi(D (];:D (;)p(rzze?)

k=p

)0 56D e

Moreover, it is not difficult to see that F'(n;r1,p1) = n* and F(n;r,p;) = n(:) Hence the
result follows. 0

Corollary 7. Let S = POP,,. Then

F(n;r, k) :r(Z) (ijzz) - (r—l)(:f),

forn >nr k> 1.

Proof.

F(nir k) = Zk:F(n; r.p, k) = (Z) + Zn: (Z) (’; B D @p (r,k > 2)

- 0-E0CH0-0)
- (%600 -0 ()
_ r(?) (“;52) —(r—1)<:f) (by Lemma 3).

Moreover, it is not difficult to see that F(n;r;,k) = n and F(n;r k) = (:f) Hence the
result follows. (]



Corollary 8. Let S = POP,,. Then

p2r (M (), n=kzp> 1

2" — 1, =lorp=1.

F(n;pJf):{

Proof.

F(nip,k) = TZi:F(n;r,p,k) = Zn: (:) (k_ 1> (T)p (k>p>2)

r=2

()2 ()0)
= (370)()

Moreover, it is not difficult to see that F'(n;pi, k) = F(n;p, k1) = 2" — 1. Hence the result
follows. 0
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Corollary 9. Let S = POP,,. Then

Flnir) = {71”(3) ("3 = nlr = 1), n2rz

Proof.

-~ (2626 -0
_ T(Z) <n+: - 1) (e — 1)(7;) (by Lemma3).

Moreover, it is not difficult to see that F(n;r;) = n* and F(n;ry) = 1. Hence the result
follows. Alternatively, we can get the same result from F(n;r) =", _ F(n;r. k). O

Corollary 10. Let S = POP,,. Then
p2 ("), nzp> 1

F(n;p)=4qn2"-1), p=1
1, p = 0.



Proof.

It is not difficult to see that F'(n;p;) = n(2" — 1) and F(n;py) = 1. Hence the result follows.

Alternatively, we can get the same result from F'(n;p) =

> ke F(05 0, K). O

Corollary 11. Let S = POP,,. Then

F(n; k) = {n Lo

Proof.

F(n; k)

(o))

—(n—=2)2""1—1, n>
1 —

’

_ rilF(n;r,k:):n+rn22[r<7;)(rj:ﬁzz)—(r—l)(i)](k:ZQ)
= n—i—ni(n_l) <r+k_2)—((n—2)2"1+1) (by Lemma 2)

r—1

- nzn:(:f:D (’"jﬁz2) —(n—2)2" ! 1.

It is not difficult to see that F'(n;k;) = n(2" — 1) and for convenience we set F'(n;kq) = 1.
Hence the result follows. Alternatively, we get

F(n;k) =

k

ZF(n k) =



From the proof of Corollary 11 we deduce the following non-trivial identity.

Proposition 12. For all natural numbers n and k we have

> (C)( ) S (oo

We can now deduce the order of POP,,. The first expression is [4, Proposition 1.9].

Corollary 13. For all natural number n we have

n 2
| POP, | = 1+n(2"—1)+ ZpZ"’p (Z)
p=2

“/n—1\(n+r—1
= 1 > —n(n—2)2""" —n.
+nT:1 (r—l)( "1 ) n(n — 2) n

Corollary 14. Let S = OP,,. Then
k—1\ (n .
(p—l)(p)p’ n2k2p>17
1, k=1lorp=1.
Proof. The result follows by the substitution » = n in Proposition 5. O
Corollary 15. [1, p. 198] Let S = OP,,. Then
2
" >p>1;
P(nip) = {P(p) L onzp>l
n, =1.
Corollary 16. Let S = OP,,. Then
n+k—2 .
Fln: k) = n( 7@11 )—(n—l), n>k>1;
1, k=1.
Corollary 17. [16, Theorem 4.3] & [1, p. 194] For any natural number n we have

| OP, |= g(i:‘) “n(n—1).

Remark 18. The triangles of numbers Fpop(n;r), Fpop(n;p), Frop(n;k), Fop(n;p) and
Fop(n; k) are as at the time of submitting this paper not in Sloane [18]. However, note that
Fpop(n, p1) is [18, A066524] and Fop(n, ki) is [18, A002061].

n\r |0 1] 2 3 4 5 6 |> F(nyr)=|POP, |
0 1 1

1 111 2

2 1141 4 9

3 119127 | 24 61

4 1116 96 | 208 | 128 449

ot 11251250 950 | 1325 | 610 3161

6 1136|540 | 3120 | 7290 | 7416 | 2742 21145

Table 2.1
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n\p|0| 1 2 3 4 5 16> F(n;p) =| POP, |
0 1 1
1 11 1 2
2 11 6 2 9
3 1121 ] 36 3 61
4 1160 | 288 | 96 4 449
) 1155|1600 | 1200 | 200 | 5 3161
6 11378 | 7200 | 9600 | 3600 | 360 | 6 21145
Table 2.2
WEJO[ 1] 2] 3 | 4] 5 | 6 [SFk = POP,]
0 1 1
1 111 2
2 113 5 9
3 117119 34 61
4 |1]15| 63 | 135 | 235 449
) 1131191 ] 471 | 911 | 1556 3161
6 1163|543 | 1503 | 3183 | 5883 | 9969 21145
Table 2.3
n\p|1l| 2 3 4 5 6 | 7> F(n;p) =| OP, |
1 1 1
2 2| 2 4
3 3| 18 3 24
4 4172 | 48 4 128
) 51200 | 300 | 100 ) 610
6 6 {450 | 1200 | 900 | 180 | 6 2742
7 71882 (3675|4900 | 2205 | 294 | 7 11970
Table 2.4
n\k|1/2| 3 | 4 5 6 7 > F(n; k) =] OP,, |
1 1 1
2 113 4
3 117116 24
4 1113 37 | 77 128
5 1121 71 | 171 | 346 610
6 1(31]121|331| 751 | 1507 2742
7 1143|190 | 582 | 1464 | 3228 | 6462 11970
Table 2.5




3 Orientation-Preserving or Reversing Partial Trans-
formations

Let a = (ay,as,...,a;) be a sequence of t (¢ > 0) elements from the chain X,,. We say
that a is anti-cyclic if there exists no more than one index i € {1,2,...,t} such that a; <
a;+1, where a;pq denotes a;. For a partial transformation a of X,,, suppose that Doma =
{ai,a9,...,a;}, with t > 0 and a1 < ay < ... < a;. We say that « is orientation-reversing if
(a1, asar, . . ., aqu0) is anti-cyclic. The semigroups of orientation-preserving or reversing full
and partial transformations of X,, will be denoted by OR,, and POR,,, respectively.

Remark 19. For p = 1,2 every orientation-preserving transformation is also orientation-
reversing but distinct otherwise [1, Lemma 1.1]. However, there is a bijection between the set

of orientation-preserving transformations and that of orientation-reversing transformations
[1, Lemma 5.1].

The proofs of all the results in this section are similar to the proofs of the corresponding
results in Section 2, taking into account Remark 19.

Proposition 20. Let S = POR,,. Then

2 G Gp mzrk>p>2;
Firp k) =3 2k=1)()(), n>rk>p=2
()> r=1lork=1orp=1.

T

Corollary 21. Let S = POR,,. Then

C)C)p, r>p>2;
5)G), nzrzp=2
, r=1orp=1.

F(nyr,p) =4 2(7)

Corollary 22. Let S = POR,,. Then

Mer( ) - @r -1 -2k-1()], rnk>2;

k—1

2k —1)(3), k>r=2;

Flnyr k) =4 2P = D),

Y (205, r2h=2
r=10rr = 1.

r)?

Corollary 23. Let S = POR,,. Then

p2" T (e, k>p>2
() +2n -1, k=2
(k—=1)2"'(),  p=2
2" — 1, =lorp=1.

F(n;p, k) =

Corollary 24. Let S = POR,,. Then

Flnir) = QT(?;) (";j; 1) (2 1>(j> - 2@ (2) (2> forr>1.



Corollary 25. Let S = POR,,. Then

p2n—p+1 (;)2’ P> 2;

F(n;p) = ¢ o1 (Z)Q, p=2;

n(2" — 1), p=1
Corollary 26. Let S = POR,,. Then

F(n: k) = 2n§ (::D (TJ;EIQ) _(n—1)2”—1—(k—1)2"1(g)
- w3 () () e e ),

for k> 1.
We can now deduce the order of POR,,. The first expression is [4, Proposition 1.10].

Corollary 27. For all natural number n we have

2 n 2
n n
=1 2" — 1) =2t on—pt1
| POR,, | +n( ) (2) + p§:3p <p)

= —1 —1
= 1+2n (n 1> (TH—T )—2”_3n(n—1)(n2—n+8)—n.
r —
r=1

Corollary 28. Let S = OR,,. Then

2D k2p>2
F(uip k)= () (), k>p=2
1, k=1lorp=1
Corollary 29. Let S = OR,,. Then
(1)’ p>2;
F(n;p) = 2(;)2, p=2;
n, p=1

Corollary 30. Let S = OR,,. Then

F(n;k)ZQn("ZfIQ) —Q(k—1)<g) “on g,

for k > 1.
Corollary 31. [16, Theorem 5.2] & [1, Theorem 5.5] For any natural number n we have

2
| OR, |=n<:> —n2(n®—2n +5)/2 +n.

10



Remark 32. The triangles of numbers Fpogr(n;r), Fpor(n;p), Fror(n;k), For(n;p) and
For(n; k) are as at the time of submitting this paper not in Sloane [18]. However, note that
Fror(n;r) is [18, A000290], Fror(n;p1) is [18, A066524], Fror(n: ki) is [18, A000225],

For(n;py) is [18, A163102] and Fog(n; k1) is [18, A002061].

11

n\r |0 1] 2 3 4 5 6 |> F(nr)=|POR, |
0 1 1
1 111 2
2 1141 4 9
3 11927 | 27 64
4 1116] 96 | 256 | 180 249
5 112512501250 | 2025 | 1015 4566
6 1136|540 | 4320 | 11790 | 12996 | 5028 34711
Table 3.1
n\p|0| 1 2 3 4 5 16 |> F(n;p) =| POR, |
0 1 1
1 11 1 2
2 11 6 2 9
3 1121 36 6 64
4 160 | 288 | 192 8 049
) 11155 ]1600 | 2400 | 400 | 10 4566
6 1137817200 | 19200 | 7200 | 720 | 12 34711
Table 3.2
WNETOTLI [ 2] 3 1 4 ] 5 ] 6 [S Fmk) = POR,|
0 1 1
1 111 2
2 113 5 9
3 117119 37 64
4 1]15] 63 | 159 | 311 549
) 11311191 ] 591 | 1311 | 2441 4566
6 1163|543 | 1983 | 4863 | 9783 | 17475 34711
Table 3.3
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n\p|1]| 2 3 4 5 6 | 7|>F(n;p) =l OR, |
1 1 1
2 2| 2 4
3 3| 18 6 27
4 4172 | 96 8 180
5 51200 | 600 | 200 | 10 1015
6 6 | 450 | 2400 | 1800 | 360 | 12 5028
7 71882 | 7350 | 9800 | 4410 | 588 | 14 23051
Table 3.4
n\k|1|l 2] 3 5 6 7 Y F(njk) =| OR, |
1 1 1
2 1/ 3 4
3 117119 27
4 1/113| 49 | 117 180
5 1121]101] 281 | 611 1015
6 1131|181 | 571 | 1381 | 2863 5028
7 1432951037 | 2759 | 6245 | 12671 23051
Table 3.5

4 Orientation-Preserving or Orientation-Reversing Par-
tial One-to-one Transformations

The semigroups of orientation-preserving and orientation-preserving or reversing partial one-
to-one transformations of X,, will be denoted by POPZ, and PORTZ,, respectively.

Proposition 33. Let S = POPI,. Then F(n;p, k) = (Z) (];j)p, forn>k>p>0.

Proof. First observe that the p elements of Dom o can be chosen from X, in (;) ways, and
since k is the maximum element in Im « then the remaining p — 1 elements of Im « can
be chosen from {1,2,...,k — 1} in (Zj) ways. Finally, observe that if p > 0, then the p
elements of Dom « can be tied to the p images in a one-to-one fashion (whilst preserving the

orientation), in p ways. The result now follows. O

The following corollaries can be deduced in exactly the same manner as their correspond-
ing results in Section 2:

Corollary 34. Let S = POPZI,. Then

F(n;p)Z{



Corollary 35. Let S = POPZ,. Then F(n;k) = n(”ﬁzz), forn>k>1.

Corollary 36. Let S = POPZL,. Then F(n;k,) = n(%:‘:Q), form > 1.

1
Corollary 37. [2, Corollary 2.8] For any natural number n we have

| POPT, \=1+9<2”>.
2\ n

Proposition 38. Let S = PORZ,. Then
20 (2 )p, nzk>p>2

2 k= 2:
F(n;p, k) = s n k
PR (), p=2
n, k=1lorp=1.
Proof. The proof is similar to that of Proposition 33. m

Corollary 39. Let S = PORZ,. Then
2()°p, n>p>2;
F(n;p) = 2(2)2, p=2;
n=, p=
Corollary 40. Let S = PORZ,. Then

k—2
F(n;k):2n<n+ . >—n—n(n—1)(k—1), forn >k > 0.
n_
Corollary 41. Let S = PORZ,. Then
2n — 2
F(n;kn):Qn(:_l) —n—n(n—1)2 forn>1.

Corollary 42. /3, Proposition 5.2] For any natural number n we have
2
| PORZ, |=1+ n( n) —n*(n* —2n +3)/2.
n

Remark 43. The triangular arrays of numbers Fpopr(n;p), Fropr(n;k), Fpori(n;p) and
Fpori(n; k) are as at the time of submitting this paper not in Sloane [18]. However, note
that FPORI(TL;pg) is [18, A163102]

n\p|O0| 1] 2 3 4 1 5 16|> F(n;p)=|POPIL, |
0 1 1

1 111 2

2 114 2 7

3 119 18 3 31

4 1116| 72 | 48 4 141

5 1125{200| 300 [100| 5 631

6 1136|450 | 1200|900 | 180 | 6 2773

Table 4.1
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n\k|O0[1]2] 3 | 4|5 6 |> F(n;k)=|POPL, |
0 1 1
1 171 2
2 112 4 7
3 1131918 31
4 114116 40 | 80 141
) 1(5125] 75 | 175 | 350 631
6 116|36|126|336 | 756 | 1512 2773
Table 4.2
n\p|0| 1] 2 3 4 5 (6 |> F(n;p) =|PORZ, |
0 1 1
1 111 2
2 114 2 7
3 11918 6 34
4 1116 72 | 96 8 193
) 1125(200| 600 | 200 | 10 1036
6 1136|450 | 2400 | 1800 | 360 | 12 5059
Table 4.3
n\k|0|1]| 2] 3 | 4 5 6 |> F(n;k)=|PORI, |
0 1 1
1 1)1 2
2 112]14 7
3 1131921 34
4 114116 52 | 120 193
) 115125[105]285| 615 1036
6 1636|166 | 576 | 1386 | 2868 5059
Table 4.4
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