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Abstract

Let b > 2 be a fixed integer. Let sp(n) denote the sum of digits of the nonnegative
integer n in the base-b representation. Further let ¢ be a positive integer. In this paper
we study the length k of arithmetic progressions n,n +¢q,...,n + q(k — 1) such that
sp(n), sp(n+4q),...,sp(n+q(k — 1)) are (pairwise) distinct. More specifically, let Ly 4
denote the supremum of k as n varies in the set of nonnegative integers N. We show
that L, is bounded from above and hence finite. Then it makes sense to define fi 4
as the smallest n € N such that one can take k = L;,. We provide upper and lower
bounds for yy 4. Furthermore, we derive explicit formulas for Ly and pp1. Lastly, we
give a constructive proof that L, is unbounded with respect to q.

1 Introduction

Let b > 2 be a fixed integer and let sy(n) denote the sum of digits of the nonnegative
integer n in the base-b representation. Further let ¢ a positive integer, we are interested
in the length k of arithmetic progressions n,n+q,...,n+ q(k — 1) such that the integers
sp(n), sp(n+q),...,sp(n+q(k — 1)) are (pairwise) distinct.

There are known results on the asymptotic behavior of the sum of digits function [2, 4],
and about its distribution along arithmetic progressions [3, 5]. But, to our knowledge, this
particular problem has not been studied before.

More specifically, let L; , denote the supremum of & as n varies in the set of nonnegative
integers N. We show that L;, is bounded from above and hence finite. As a consequence,
it makes sense to define ji,, as the smallest n € N such that one can take k = L;,. Then,
we provide upper and lower bounds for 14 ,. Everything allows for an effective computation
of Ly, and py,, by checking a finite number of candidates, though this is feasible in a short
amount of time only for small values of b and ¢q. Furthermore, we derive explicit formulas
for Ly, and py 1. Lastly, we give a constructive proof that Lj, is unbounded with respect to
q, in the sense that sup,en+ Ly, = +00.
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2 Bounds for L, and

Theorem 1. Let m be the least positive integer such that

mb—1)+1< V’—mJ (1)

q
Then Ly, < 2[b™/q].

Proof. Let n e N, k e Nt and A:={n+¢qi:i=0,1,...,k— 1} such that s,(n), sy(n + q),

.y Sp(n + q(k — 1)) are distinct. For any ¢t € N we define A; :== AN [tb™, (¢t + 1)b™ — 1].
For convenience, take M := [b™/q|. Then for all nonnegative integers ¢ < u the following
statements are true:

(i). |4, < M.
(ii

). AL A, #@ = YveNt<v<u |A|=M.
(iii)

)

(

Al =M, t# -1 (mod b) = YvueNu>t A, =0.
(iv). |[Ay| =M, t#0 (mod b) = YueNu<t A,=0.

i). For all a € A; we have s;(a) = sp(t) + sp(a mod b™) and therefore

sp(Ay) = {sp(a) :a € A} CT{sp(t),sp(t) +1,...,8(t) +m(b—1)}, (2)

so by the hypotheses |A;| = [sp(A¢)] <m(b—1)+1 < M.
(ii). Since A, A, are nonempty we have n < vb™ and (v+1)b"™ —1 < n+q(k—1). Then

|AU]:|{qz’:i:O,...,k—1}ﬂ[vbm—n,(v+1)bm—n—1]|

:!qNﬂ[vbm—n,(v—i—l)bm—n—lH2{%J:M, (3)
because [¢N N [z,y]| > [(y — x + 1)/q] for any integers y > = > 0. From point (i) it follows
that |A,| = M.

(iii). We have s,(t + 1) = su(t) + 1. Suppose by contradiction that A;.; is nonempty,
so there exists a := min(A;;1). Now sp(a) = sp(t) + 1 + sp(a mod b™) and, since |A;] = M
implies sp(A;) = {sp(t), sp(t) + 1,...,8,(t) + m(b — 1)}, then necessarily s,(a mod b™) =
m(b— 1), so that a = (t + 2)b™ — 1. In fact, sp(a mod ™) < m(b — 1) and if we suppose
sp(@ mod ™) < m(b— 1) then s,(a) € sp(A;), in contradiction to our standing hypotheses.
But ¢ < ﬁbm <v" 1l soa—q>(t+1)b™ and a — q € A, 1, a contradiction. In conclusion
Ay = @ and, since ¢ < b™, this implies A, = @.

(iv). Note that ¢t > 1, we have s,(t — 1) = s(t) — 1. Suppose that A;_; is nonempty, so
there exists a := max(A4;_1). Then sy(a) = s(t) — 1 + sp(a mod b™) and, since |[A;| = M
implies sp(A;) = {sp(t), sp(t) + 1,...,55(t) +m(b — 1)}, then it must be sp(a mod b™) = 0
that isa = (t — 1)b™. But a+ ¢ < tb"™ —1so a+ q € A;_1, a contradiction. Thus A, ; = @
and, since ¢ < b™, it follows that A, = @.

The sets {A4;}72, form a partition of A, hence A = [J,.y 4. On the other hand, for the
statements proved, we have that at most two of the sets {A;}°, are nonempty and their
cardinality is less than or equal to M. In conclusion k = |A| < 2M. O

2



Corollary 2. L, = 2b, us1 = 14 and pp1 = > —b if b > 3.

Proof. From Theorem 1 we know that L;; < 2b. It is easy to verify that Ly; = 4 and
o1 = 14 (OEIS A000120). If b > 3 then Ly, = 2b and p1 < b — b because

, 20b—1)+i, if i=0,1,...,b—1;
b3—b+ _ I 9 -9 9 I 4
o i) {@'—b+1, it i=bb+1,...,20—1. (4)

Now let n < b® — b be a nonnegative integer. Write n = dyb® + dib + dy with dy,d1,dy €
{0,1,...,b—1}. If dy # b— 1 then let m be the least integer greater than or equal to n and
not divisible by b. We have m <n+ 1 and sy(m) = sp(m+b—1). If &y =b—1and dy =0
then dy < b— 2, since n < b> — b, and so sy(n) = sp(n +2b—2). If d, =b—1 and dy # 0
then let h := (dy + 1)b%. We have h < n +b— 1 and sy(h + 1) = sp(h + b). In any case we
have found two integers u, v such that n < u < v <n+2b—1 and s(u) = s(v). Therefore
o1 > b% — b and actually pp, = b3 — b. O

Theorem 3. Lb,bq = Lb7q and Hbbg = b,uqu.

Proof. Foralln,i € Nand d € {0,1,...,b—1} we have s,(bn+d+bqi) = sp(n+qi)+d. Then
for any k € N we have that s,(bn + d), sp(bn + d + bq), . .., sp(bn + d + (k — 1)bq) are distinct
if and only if s4(bn), sp(bn + bq), ..., sp(bn + (k — 1)bg) are distinct, which in turn holds if
and only if s4(n), sp(n+q), ..., sp(n+ (k — 1)g) are distinct. In conclusion Ly, = Ly, and
Hb,bq = Dhtngq- O

Ly ,—b

Theorem 4. j,, > b — q(Lpg —1).

Proof. Let r := [logy(puq + q(Lvg — 1))] + 1. Since sp(ping), s6(ting+a); - - - sp(ping+ (k= 1))
are distinct and less than or equal to r(b — 1), then

Ly <r(b—1)+1 < (b—1)log,(ps,g + q(Lig — 1)) + 0. (5)

Ly ,—b

Solving (5) for fu,, we get > b - q(Lpy — 1). O
Theorem 5. y,, < b3[q(Ly, — 1)) — 1.

Proof. Take r := |log,(q(Leg —1))] + 1, o := (ttp,g mod b"), m = |14/ |, so that py,, =
mb" + p, and let ¢ € {0,1,..., Ly, — 1}. If g+ gi < b" then

sp( g + qi) = sp(m) + sp(p + qi), (6)
else if p+ qi > 0" then
sv(png + qi) = sp(m + 1) + sp(p + qi = b7), (7)
for the fact that pu + i < 20" — 2. Define n := (0" — 1)b" + p, if p+ qi < b" then
sp(n 4+ qi) = s(B" — 1) +sp(pp+qi) = (r+1)(b— 1)+ sp(u+qi) >r(b—1). (8
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On the other hand, if ©+ ¢i > b" then
sp(n+qi) = sp(0™) +sy(p + qi = b") = L+ sp(p+qi — ") < r(b—1), (9)

because p + qi — b < b — 2 and so sp(p + gi — ") < r(b— 1) — 1. In conclusion
sp(n), se(n +q), ..., sp(n+q(Lpy — 1)) are distinct and

fhg <1 <=1 < Bg(Lyy — 1P — 1, (10)

this completes our proof. O

3 Arbitrarily large values of L;,

For the next theorem we need a lemma about the sum of digits of multiples of b" —1, r € N*.
Similar results has been considered by Stolarsky [6, Lemma 2.2] in the case b = 2, and by
Balog and Dartyge [1, Lemma 1] for a generic base b.

Lemma 6. Ifr € NT then s,((b" — 1)i) =r(b—1) foralli=1,2,...,0" — 1.

Proof. Let t be the greatest nonnegative integer such that b* | i. If ig := "4 then there
exist do,dy,...,d,—qy € {0,1,...,b— 1} with dy # 0 such that iy = Z;;é d;b' is the base-b
representation of i5. We have

2r—1
—120_2% - Zdb]
2r—1 r—1
= Y di V4 (do— DB+ = dib

j=r+1 7=0

2r—1

=Y di b+ do—lb“er—l— W+ (b — dy). (11)
j=r+1

Then it is straightforward that

2r—1 r—1

(07— 1)ig) = Y djp+(dg— 1)+ > (b—1—d;)+ (b—do) =r(b—1). (12)
j=r+1 j=1

The claim follows from s,((b" — 1)i) = s,((b" — 1)ip). O

Theorem 7. sup cy+ Lpg = +00.

Proof. Let n € N and ¢, k € N such that s,(n), sp(n +q), ..., ss(n+ q(k — 1)) are distinct.
If ¢, 7 are the least positive integers such that n + gk < b* and (b—1)0""! > k then we define
= (0 =D+ T+ (0 —1)(b— 1) —k+1))b +n

¢ =" -1 +q. (13)



For any i« = 0,1,...,k we have
n 4 qi= (=10 + 0+ (0T = 1) (-1 i —k+ 1) +n+ i, (14)
and then
sp(n’ +¢'1) = s (0" = > + 0"+ (0" = 1) ((b— 1)V " +i—k+1)) +sp(n+qi). (15)
Ifi<k—1then (0" —1)((0b—1" ' +i—k+1)<(b—1)p""" and
sp(n' +¢'1) =t(b—1)+1+s(0" = 1)((b— 1" +i—k+1)) + sp(n+qi), (16)
so Lemma 6 implies that
sp(n’ + ') =t +7r)(b—1)+1+sp(n+qi) > (t+7r)(b—1). (17)
On the other hand, if ¢ = k£ then

sp(n' + ¢'k) = s, (b + 0" = 1) + s(n+gk) =14 (r — 1)(b — 1) + sp(n + qk)
<1+ @t+r—1)0-1)<(t+r)(b-1). (18)

Therefore s,(n'), sp(n’ +q), . .., sp(n’ + ¢k) are distinct, it follows that L, > L, and hence
SUD en+ Ly, = +o0. U]

4 Further developments

Thanks to Theorem 1 we know that L; 4 is not too large when ¢ is small compared to b, e.g.,
if ¢ < %b then L;, < 2b%. Actually, it is likely that for small ¢ there exist explicit formulas
for Ly, and s, analogous to those of Corollary 2. However, when ¢ is much larger than b
the question becomes more difficult. Theorem 1 and 5 allowed us, with the aid of a personal
computer, to calculate some values of 14, and L 4.

Mogslvg |q=1]1q=2]q=3|q=4| q=5 |q=6| ¢q=T7 | ¢g=8|¢=9
b=2 | 14,4 | 28,4 | 58,4 | 56,4 | 242,6 | 116,4 | 109,5 | 112,4 | 994,6
b=3 | 24,6 | 24,3 | 72,6 | 234,5| 705,9 | 72,3 | 697,10 | 18,3 | 216,6
b=4 | 60,8 | 56,8 | 60,3 | 240,8 | 1004,8 | 244,4 | 977,13 | 224,8 | 239, 4

Table 1: Values of y,, and Ly, for b=2,3,4and ¢ =1,2,...,9.

Through these series of numerical experiments we have reason to believe that the upper
bound given by Theorem 1 is in some sense “astronomical” and surely can be improved.
Similarly, also the upper and lower bounds for j , can be improved.

Many other questions remain unsolved. For instance, let x;, be the function sending the
nonnegative integer n to the maximum k € N such that s,(n), sp(n +q), ..., sp(n + q(k — 1))
are distinct. We proved that the function x4 is bounded. Is &y, definitely periodic? Does it
present a fractal behavior? What is its Fourier expansion? What is its mean, variance, etc.?
On the other side, for which n € N is x;4(n) particularly small? These and other questions
will be the subject of future investigations.
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