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Abstract

We study parallel algorithms for addition of numbers having finite representation
in a positional numeration system defined by a base § in C and a finite digit set A
of contiguous integers containing 0. For a fixed base [, we focus on the question of
the size of the alphabet that permits addition in constant time, independently of the
length of representation of the summands. We produce lower bounds on the size of
such an alphabet A. For several types of well-studied bases (negative integer, complex
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numbers —1 + 2, 2¢, and 2v/2, quadratic Pisot units, and non-integer rational bases),
we give explicit parallel algorithms performing addition in constant time. Moreover we
show that digit sets used by these algorithms are the smallest possible.

1 Introduction

Since the beginnings of computer science, the fact that addition of two numbers has a
worst-case linear-time complexity has been considered as an important drawback (see, in
particular, the seminal paper of Burks, Goldstine and von Neumann [5]). In 1961, Avizienis
gave a parallel algorithm to add two numbers: numbers are represented in base 10 with digits
from the set {—6,—5,...,5,6}, which allows avoiding carry propagation [3]. Note that as
early as 1840, Cauchy considered the representation of numbers in base 10 with digit set
{-=5,...,5}, and remarked that carries have little propagation, due to the fact that positive
and negative digits are mutually cancelling in the addition process [6].

Since the Avizienis paper, parallel addition has received much attention, because it forms
the core of some fast multiplication and division algorithms. See, for instance, [8]. General
conditions on the digit set allowing parallel addition in a positive integer base can be found
in [23] and [19].

A positional numeration system is given by a base and a set of digits. The base (3 is a
real or complex number such that |3| > 1, and the digit set A is a finite alphabet of real
or complex digits. Non-standard numeration systems — where the base 3 is not a positive
integer — have been extensively studied. When [ is a real number > 1, this results in the
well-known theory of the so-called f-expansions, due to Rényi [26] and Parry [24]. Special
attention has been paid to complex bases, which allow the representation of any complex
number by a single sequence (finite or infinite) of natural digits, without separating the
real and the imaginary part. For instance, in the Penney numeration system every complex
number can be expressed with base —1 +2 and digit set {0, 1}, [25]. The Knuth numeration
system [18] is defined by the base 2: with digit set {0,...,3}. Another complex numeration
system with digit set {0, 1} is based on 1v/2; see [22].

To design a parallel algorithm for addition, some redundancy is necessary. In the Avizienis
or Cauchy numeration systems, numbers may have several representations. In order to have
parallel addition on a given digit set, there must be enough redundancy; see [21] and [19].
Both the Avizienis and the Cauchy digit sets allow parallel addition, but the Avizienis digit
set is not minimal for parallel addition, as the Cauchy digit set is.

When studying the question on which digit sets it is possible to do addition in parallel for
a given base (3, we restrict ourselves to the case that the digit set is an alphabet of contiguous
integer digits containing 0. This assumption already implies that the base (5 is an algebraic
number. In a previous paper [12], we have shown that it is possible to find an alphabet of
integer digits on which addition can be performed in parallel when 3 is an algebraic number
with no algebraic conjugates of modulus 1. This digit set is not minimal in general, but the
algorithm is quite simple: it is a kind of generalization of the Avizienis algorithm.

In this work we focus on the problem of finding an alphabet of digits allowing parallel
addition that is minimal in size. The paper is organized as follows:

First, we give lower bounds on the cardinality of the minimal alphabet allowing parallel



addition. When 3 is a real positive algebraic number, the bound is [$]. When f is an
algebraic integer with minimal polynomial f(X), the lower bound is equal to |f(1)|. This
bound can be refined to |f(1)| + 2 when [ is a real positive algebraic integer.

Addition on an alphabet A can be seen as a digit set conversion between alphabets A+ .A
and A. In Section 4, we show that the problem of parallel addition on A can be reduced
to problems of parallel digit set conversion between alphabets of cardinality smaller than
A+ A, cf. Proposition 18. We also give a method allowing us to link parallel addition
on several alphabets of the same cardinality; more precisely, to transform an algorithm for
parallel addition over one alphabet into algorithms performing parallel addition over other
alphabets.

We then examine some popular numeration systems, and show that our bounds are
attained. When £ is an integer > 2, our bound becomes 4+ 1, and it is known that parallel
addition is feasible on any alphabet of this size, which is minimal; see [23] for instance.

In the case that the base is a negative integer, § = —b, b > 2, the lower bound we
obtain is once more equal to b+ 1. We show that parallel addition is possible not only over
the alphabet {0, ..., b}, but in fact on any alphabet (of contiguous integers containing 0) of
cardinality b + 1.

We then consider the more general case where the base has the form 8 = ¥/b, b € Z,
|| > 2, and k € N, k > 1. We show that parallel addition is possible on every alphabet
(of contiguous integers containing 0) of cardinality [b| + 1. If b > 2, then this cardinality
is minimal (assuming that the expression of 3 = /b is written in the minimal form). We
use this result on several examples. The complex base 3 = —1 + ¢ satisfies 8* = —4,
and the minimal alphabet for parallel addition must have 5 digits; in fact it can be any
alphabet (of contiguous integers containing 0) of cardinality 5. Using similar reasoning for
the Knuth numeration system, with base § = 21, parallel addition is doable on any alphabet
(of contiguous integers containing 0) of cardinality 5. Analogously, in base = 11/2 parallel
addition is doable on any alphabet (of contiguous integers containing 0) of cardinality 3.

We then consider f-expansions, where 3 is a quadratic Pisot unit, i.e., the largest zero
of a polynomial of the form X? —aX + 1, with a € N, a > 3, or of a polynomial of the
form X? —aX — 1, with @ € N, @ > 1. Such numeration systems have been extensively
studied, since they enjoy many nice properties. In particular, by a greedy algorithm, any
positive integer has a finite S-expansion, and it is known that the set of finite S-expansions
is closed under addition [4]. In the case where 3% = a8 — 1, any positive real number has a
p-expansion over the alphabet {0,...,a — 1}. We show that every alphabet (of contiguous
integers containing 0) of cardinality a is sufficient to achieve parallel addition, so the lower
bound |f(1)| + 2 is reached. In the case 3* = af + 1, any positive real number has a (-
expansion over the alphabet {0,...,a}. We show that parallel addition is possible on any
alphabet (of contiguous integers containing 0) of cardinality a + 2, which also achieves our
lower bound |f(1)| 4+ 2. In both cases, we provide explicitly the parallel algorithms.

One case where the base is an algebraic number but not an algebraic integer, is the
rational number +a/b, with a > b > 2. When f = a/b our bound is equal to [a/b],
which is not good enough, since we show that the minimal alphabet has cardinality a + b.
We prove that parallel addition is doable on {0,...,a + b — 1}, over the negated alphabet
{—a—0b+1,...,0}, and over any alphabet of cardinality a + b containing {—b,...,0,...,b}.



In the negative case, f = —a/b, our results do not provide a lower bound. We show that the
minimal alphabet has cardinality a + b, and any alphabet of this cardinality permits parallel
addition.

The question of determining the size of the minimal alphabet for parallel addition in
other numeration systems remains open.

2 Preliminaries

2.1 Numeration systems

For a detailed presentation of these topics, the reader may consult [13].

A positional numeration system (3, .A) within the complex field C is defined by a base S,
which is a complex number such that || > 1, and a digit set A usually called the alphabet,
which is a subset of C. In what follows, A is finite and contains 0. If a complex number x
can be expressed in the form > _ <j<n x;/37 with coefficients x; in A, we call the sequence
() —co<j<n & (B, A)-representation of x.

The problem of representability in a complex base is far from being completely char-
acterized, see the survey [13]. However, when the base is a real number, the domain has
been extensively studied. The most well-understood case is the one of representations of real
numbers in a non-integer base 8 > 1, the so-called greedy expansions, introduced by Rényi
[26]. Let T denote a transformation 7" : [0,1) — [0, 1) given by the prescription

T(x) = Bz — D(x), where D(x) = |Bz].

Then
T = Déa:) + T(;) for any z € [0,1).

Since T'(xz) € [0,1) as well, we can repeat this process infinitely many times, and thereby
obtain a representation of x € [0,1) in the form

2 3
_ D), D) D) D) "
B p? B Ch
This representation is called the Rényi expansion or greedy expansion of x and denoted ().
Since the coefficients are D(x) = |fx| and x € [0, 1), the alphabet of the Rényi expansion
is Cs = {0,1,...,[B] —1}. We will refer to this alphabet as the canonical alphabet for
B > 1. A sequence (z;);>1 such that (z)g = 0 @ zyx9z3--- for some = € [0,1) is called
B-admissible. If this sequence has only finitely many non-zero entries, we say that = has a
finite Rényi expansion in the base 5. Let us stress that not all sequences over the alphabet
Cs are [f-admissible. For a characterization of S-admissible sequences, see [24]. If the base
B is not an integer, then some numbers have more than one (f3,Cgs)-representation. It is
important to mention that the Rényi expansion (z)4 is lexicographically greatest among all
(B, Cs)-representations (z)gs.
In order to find a representation of a number x > 1, we can use the Rényi transformation
T as well: first, we find a minimal k& € N such that y = 237% € [0,1). Next, we determine
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(y)g = 0 @ y1yoys -+ - and finally we put (x)s = y1ya - Yp ® Ypp1Yki2---. If the base [ is
an integer, say [ = 10, then the Rényi expansion is the usual decimal expansion (or S-ary
expansion). The Rényi expansion of a negative real number x is defined to be —(|z|) 3, which
means that one additional bit for the sign =+ is necessary. In the Rényi expansion of numbers
(analogously to the decimal expansion), the algorithms for addition and subtraction differ.

Since the Rényi transformation 7" uses the alphabet Cs, we can represent any positive
real number x as an infinite word z,x,_1---xg®x_1x_o--- over this alphabet. The numbers
represented by finite prefixes of this word tend to the number x.

Now let us consider an integer m satisfying m < 0 < m + [#] — 1, and an alphabet
Ay ={m,...,0,...,m+ [f] — 1} of cardinality [5]. Let

T = [%,%jtl).

We describe a transformation 7,, : J,, — J,, which enables us to assign to any real number
x a (B, A, )-representation. Put

Tn(x) = fx — Dyy(x), where D,,(z) = | Bz — ﬁ%lj

Since Ty () — 325 = Bz — 375 — | Bz — %J € [0,1), we have T,,,(x) € [%, 1t 1) for any
x in J,,, and therefore T}, maps the interval .J,, into J,,. Moreover, any = from the interval
J,, satisfies

fr =gt < B+ 1)~ gy =mfand fr gt > g g =,

and thus m < Lﬁx — %J <m + [B] — 1, i.e., the digit D,,(x) belongs to A,,. Therefore,
each z in J,, can be written as in (1). Since for any z in R there exists a power n in N such
that % is in J,,, all real numbers have a (3, .4,,)-representation. This already implies that
the set of numbers having finite (3, .4,,)-representation is dense in R.
Let us mention that, if we consider an alphabet A such that A = —A, we can exploit
instead of T;, a symmetrized version of the Rényi algorithm introduced by Akiyama and
1

Scheicher in [2]. They use the transformation S : [—3, 3) — [—3, 3) given by the prescription

S(z) = fx — D(x), where D(z) =[Sz + 1].
This expansion has again the form (1), but the digit set is changed into
_ B+l p+1
A=7ZnN (_%’ %)

Since the alphabet is symmetrical around 0, it has an odd number of elements. In general,
it can be bigger than the canonical alphabet Cg, but not too much, because [5|+1 > #A >
(3] = #Cs. On the other hand, the Akiyama-Scheicher representation has an important ad-
vantage: the representation of —x can be obtained from the representation of x by replacing
the digit a by the digit —a. Therefore, an algorithm for subtraction can exploit an algorithm
for addition, and clearly, no additional bit for indicating the sign is needed.

A more general construction including our 7}, is discussed in [17].

In the case where the base § is a rational number of the form a/b, with a > b > 1, a and
b co-prime, the greedy algorithm gives a representation over the alphabet {0, ..., [a/b] —1},
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but another algorithm — a modification of the Euclidean division algorithm — gives any
natural integer a unique and finite expansion over the alphabet {0,...,a — 1}; see [11] and
[1]. For instance, if 5 = 3/2, the expansion of the number 4 is 21.

Furthermore, negative bases have also been investigated. As early as 1885, a negative
integer base was considered by Griinwald [14]. When f is a real number, (—3)-expansions
were introduced in [16]. Negative rational bases of the form 5 = —a/b, witha > b > 1, and a
and b co-prime, were studied in [11]. Any integer can be given a unique and finite expansion
over the alphabet {0,...,a — 1} by a modification of the Euclidean division algorithm, so
this system is a canonical numeration system; see [13] for properties and results.

2.2 Parallel addition

We consider addition and subtraction on the set of real or complex numbers from an algo-
rithmic point of view. In analogy with the classical algorithms for arithmetical operations,
we work only on the set of numbers with finite representations, i.e., on the set

Fin(8) = { S 4,8 | 1CZ, T finite, ;€ A}. 2)
jEI
Such a finite sequence (z;);es of elements of A is identified with a bi-infinite string (z;);ez in
A% where only a finite number of digits z; have non-zero values. The index zero in bi-infinite
strings is indicated by e. So if 2 belongs to Finy(3), we write

w w
(2)pa="0T,Lp_1- T120 @ T_1T_9---T_40

with =370 a7
Let z,y € Fing(8), with (y)sg.a = “0YnYn-1--- 1Yo ® Y—1y—2---y—s0. Adding x and y
means rewriting the (5,4 + A)-representation

“O(zn +Yn) - (1 +y1)(To +y0) @ (v + Y1) (75 +y5)0”

of the number = + y into a (3, .A)-representation of x + y.
A necessary condition for existence of an algorithm rewriting finite (5, .A+.4)-representations
into finite (3, .A)-representations is that the set Fin4 (/) be closed under addition, i.e.,

Fina(B) + Fina(8) C Fina(B). (3)

Let us point out that we are not specifically discussing here whether or not the inclusion
(3) is satisfied by a numeration system (3,.4); however, the inclusion is satisfied for the
numeration systems studied in this paper.

As we have already mentioned, we are interested in parallel algorithms for addition. Let
us mathematically formalize parallelism. First, we recall the notion of a local function, which
comes from symbolic dynamics (see [20]) and is often called a sliding block code.

Definition 1. A function ¢ : AZ — BZ is said to be p-local if there exist two non-negative
integers r and t satisfying p = r +t + 1, and a function ® : A? — B such that, for any
u = (uj)jez € A* and its image v = p(u) = (v;),ez € B%, we have v; = ®(uj4y -+ uj,) ' for
every j in Z.

LCareful! Indices of Z are decreasing from left to right.



This means that the image of u by ¢ is obtained through a sliding window of length p.
The parameter r is called the memory and the parameter ¢ is called the anticipation of the
function . We also write that ¢ is (¢, r)-local. Such functions, restricted to finite sequences,
are computable by a parallel algorithm in constant time.

Definition 2. Given a base § with |#| > 1 and two alphabets A and B containing 0, a digit
set conversion in base ( from A to B is a function ¢ : AZ — BZ such that

1. for any u = (u;)jez € A” with a finite number of non-zero digits, v = (v;)jez = ¢(u) €
B% has only a finite number of non-zero digits, and
2. Y v =3 wp
JEL JEL
Such a conversion is said to be computable in parallel if it is a p-local function for some
p e N.

Thus, addition in Fin4(f) is computable in parallel if there exists a digit set conversion
in base  from A+ A to A which is computable in parallel. We are interested in the following
question:

Given a base 8 € C, which alphabet A permits parallel addition in Finy(f) ¢

If we restrict ourselves to integer alphabets A C 7Z, then the necessary condition (3)
implies that g is an algebraic number, i.e., (3 is a zero of a non-zero polynomial with integer
coefficients. In [12], we have studied a more basic question: For which algebraic number
[ does there exist at least one alphabet allowing parallel addition? We have proved the
following statement.

Theorem 3. Let 5 be an algebraic number such that |3| > 1 and all its conjugates in modulus
differ from 1. Then there exists an alphabet A C Z such that addition on Fina(5) can be
performed in parallel.

The proof of this theorem is constructive. The alphabet obtained is a symmetric set of
contiguous integers A = {—a,—a+1,...,—1,0,1,...,a — 1,a} and, in general, a need not
be minimal.

In this article, we address the question of minimality of the alphabet allowing parallel
addition. In the whole text we assume

e the base [ is an algebraic number such that |5] > 1;

e the alphabet A is a finite set of consecutive integers containing 0 and 1, i.e., A is of
the form

A={mm+1,...,0,1,... M —1,M}, wherem <0< M and m,M € Z. (4)

Remark 4. Despite the usual requirement that a base  has modulus larger than one, we
can define the set Finy (/) even in the case where |5] < 1 and ask whether addition in this
set can be performed in parallel. Since for any g € C\ {0}, we have

Fing(B) = Fina(3),
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a p-local function performing parallel addition can be found either for both the sets Fin4 (/)

and Fin4( %), or for neither of them.

Remark 5. Let 8 and v be two different algebraic numbers with the same minimal polynomial
and o : Q(f) — Q(v) be the isomorphism induced by o(5) = v. If A C Z, then

Finy(y) = {o(z) |z € Fina(5)}

and, for any integers a;, b;, ¢;, and for any finite coefficient sets I, I, C Z,
Z(CL]‘ + bj)ﬁj = ZCjﬁj <~ Z(aj + bj)’)/j = ZCj’yj.
Jjeh jelz jeh jelz

Therefore, a p-local function performing parallel addition exists either simultaneously for
both the sets Fin4(y) and Fing(8), or for neither of them.

3 Lower bounds on the cardinality of an alphabet al-
lowing parallelism

In this section, we give two lower bounds on the cardinality of alphabet A allowing parallel
addition in the set Finy(f).

Theorem 6. Let S be a positive real algebraic number, 5 > 1, and let A be a finite set of
contiguous integers containing 0 and 1. If addition in Fing(B) can be performed in parallel,

then #A > [[].
Proof. For any alphabet B, denote

g = Zlg(ﬂ) = {Z Sjﬁj | Sj € B,n € N}

J=0

At first we recall a result from [9]. For an integer ¢ > 0, let Q, = {0,1,...,q}. Erdés and
Komornik proved the following: If 8 < ¢+ 1, then any closed interval [a, a + 1] with o > 0
contains at least one point from Zg,, i.e., [@,a + 1] N Zg, # ( for any o > 0.

We use the notation m = min A < 0 and M = max A > 1. Suppose, to get a contradic-
tion, that #4 = M —m + 1 < . In particular, this assumption implies that, for any n € N

n—1 n
T, ="+ Zmﬁj >0 and vy, := ZMﬂj < Bt (5)
=0 =0

We can see that, for any n € N, y,, > z,,, and, additionally, since x,, —y,_1 = " —Z;:Ol (M —

m)ﬁj>W>0, we have
T <Y1 < Ty <Y< X3 <Yg< Ty <Yg<---

Consider an element z from Z4 = Z4(5). It can be written in the form z = Zﬁzo a; B,
with a; € A, where ay # 0. If the leading coefficient a, < —1, then z = Zﬁzo a]ﬂj <
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-3¢+ Zﬁ;é MPpB7, and, according to (5), the number z is negative. It means that any

positive element x € Z 4 can be written as x = Z?ZO a;f37, where a; > 1, and, clearly,
Ty < T < Yo

Thus, the intersection of Z4 with the open interval (y,_1,x,) is empty for any n € N, or,
equivalently, y,_1 and z,, are the closest neighbors in Z 4. The gap between them is x, —y,_1,
and it tends to infinity with increasing n.

The existence of a p-local function performing addition in Fin4(/5) implies that, for any
x,y € Zy, the sum x + y has a (3, A)-representation = + y = Z?:fp z;7 with z; € A, or,
equivalently,

1
A+ 24 C —2Zy4.

510
As 1 € A, for any positive integer ¢ we obtain
1
ZQQCZA—F"'—FZAC@ZA. (6)

q times

Let us fix ¢ = |f]. Since ¢+ 1 > f3, then, according to the result of Erdés and Komornik,
the gaps between two consecutive elements in the set Zo, are at most 1. The set ﬁZ A
is just a scaled copy of Z4 and thus ﬁ%Z 4 has arbitrary large gaps. This contradicts the

inclusion (6). O

Remark 7. The inequality #A4 > [f] guarantees that Fing(f) is dense in Rt or in R,
depending on the fact whether the digits of A are non-negative. This property is very
important, as it enables us to approximate each positive real number (resp., real number)
by an element from Fin4(5) with arbitrary accuracy.

Using Remarks 4 and 5 we can weaken the assumptions of Theorem 6.

Corollary 8. Let 3 be an algebraic number with at least one positive real conjugate (possibly
B itself) and let A be an alphabet of contiguous integers containing 0 and 1. If addition in
Fing(5) can be performed in parallel, then

#A > max{[v]| v or v ! is a positive conjugate of [}.

When £ is an algebraic integer, and not only an algebraic number, we can obtain another
lower bound on the cardinality of alphabet for parallelism:

Theorem 9. Let 3, with |3| > 1, be an algebraic integer of degree d with minimal polynomial
f(X)=X%—ag 1 X4 —ay 9X¥2 — ... — a1 X —ag. Let A be an alphabet of contiguous
integers containing 0 and 1. If addition in Finy(B) is computable in parallel, then #A >
|f(1)]. If, moreover, B is a positive real number, 8 > 1, then #A = |f(1)] + 2.

First, we prove several auxiliary statements with fewer restrictive assumptions on the
alphabet than required in Theorem 9.



In order to emphasize that the used alphabet is not necessarily in the form (4), we will
denote it by D. We suppose that addition in Finp () is performable in parallel, which means
that there exists a p-local function ¢ : (D + D)% — D? with memory r and anticipation ¢,
and p =+t + 1, defined by the function ® : (D + D)? — D, as introduced in Definitions 1
and 2. We work in the set Z[8] = {by + 018 + ba3> 4+ - - + bg_184"" | b; € Z}. Since j is an
algebraic integer, the set Z[f] is a ring.

Let us point out that in the following claim, we do not assume that the digits are integers:

Claim 10. Let 5 be an algebraic number, and let D be a finite set such that 0 € D C Z[f].
Then, for any x € D + D, the number ®(xP) — x belongs to the set (5 — 1)Z[5].

Proof. Let us write y := ®(zP). For any n € N, we denote by S,, the number represented by
the string

“Og-- -z xgxx---xxe e x---x,0% (7)
—— e
t times n times r times

After the conversion by the function ®, we obtain the second representation of the number
Sh:
“0Wy—1Wp—2 - Wawy YYY - Yyy @ Wity - - - Wy—10%, (8)
—
n times

where
w; =®(?2?7)eD  and w; =0 70)eD for j=1,2,...,p—1. (9)

Put W= w, 16772+ -+ weff + w; and W=, 24+ Wy—of + Wy_1. Let us stress
that neither W nor W depend on n. Comparing the two representations (7) and (8) of the
number S,,, we obtain

n+t—1 n—1
Sp=x Y F=Wp"+y) #+Wpr
j=—r §=0
ie.,
Bn—&—t _ —1 . Bn -1 .
x 71 —l—xZijWB”—i-yﬁ_l—i-Wﬁ*pH for any n € N. (10)
j=-

Subtracting these equalities (10) for n = ¢+ 1 and n = ¢, we get
et =W Wyt = (B 1) =W(B-1)+y - (11)

Since ' — 1= (8 —1)(8" ' +---+ B+ 1), the number y — = can be expressed in the form
(B—=1)> 0, w.B" with wj, € Z. O

A technical detail concerning the value of W in the course of the previous proof (Equation
(11)) will be important in the sequel as well. Let us point out this detail.
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Corollary 11. Let 8 be an algebraic number, £ C Z[B] and D C Z[B] be two alphabets
containing 0. Suppose that there exists a p-local digit set conversion & : E2 — D? defined by
the function = : EP - D, p=r+t+ 1. Then

1 —
E(0 2P ) pit = M

1 -1

p
forany z€€&.

.
Il

Claim 12. Let 8 be an algebraic integer and let D be a finite set of (not necessarily contigu-
ous) integers containing 0. Then

®(2P) =2 mod |f(1)| forany z €D+ D.

Proof. According to Claim 10, the number 5 — 1 divides the integer ®(z?) —x = y — x in
the ring Z[f], i.e.,

y—x=QLB—-D(co+cafB+ -+ cd_lﬁd’l) for some ¢, c1,...,cq-1 € Z.

As B = ag_ 1B 4+ ag_oBY2 4+ - + a1 S + ao and powers 3°, 51, 32, ..., f%! are linearly
independent over Q, we deduce the following:

Yy—x = —Co+ C4-1Q0
= Cg—C+Cq-101

= €1 — C2+ C4-102

0 = c¢4-3—Cag—2+Cig_104-2

= C4—2 — Cd—1 t+ C4—1Qd—1

Summing up all these equations, we obtain

y—x=—cq1(l—ap—ay - —ag_1) = —cq1f(1),
which implies Claim 12. O

The following claim again permits a more general alphabet, but the base must be a
positive real number.

Claim 13. Let 8 be a real algebraic number, 5 > 1, and let D be a finite set, such that
0€DcCZ[B]. Write \ = minD and A = maxD. Then ®(A?) # X and P(N\) # A.

Proof. First, let us assume that ®(A?) = A\. Put z = A and y = A into (10) and use (11) for
determining W. We get

Bn-}-t_l -1 i Bt 1 . ﬁn_l ~
A———+AY B _<A5_1—)\5_1>B +)\B_1 + W B,



After cancellation of the same terms on both sides, we have to realize that ﬁ = Z;; %,

all digits in W are at least A, and our base § > 1. Therefore, we obtain

p—1 ~ e’}
1
Ay ST ey
J=r+l J=p
which yields a contradiction, as A < A. The proof of ®(AP) # A is analogous. m

Claim 14. Let [ be a real algebraic number, § > 1, and let D be a finite set, such that
0 €D cC Z[B]. Write A\ = minD and A = maxD. Then ®(AP) # A. If, moreover, \ # 0
then ®(AP) # \.

Proof. We prove the claim by contradiction. Let us assume ®(A?) = A. For any ¢ € N,
denote 7, the number represented by

0/:~.~~A o« 48 (2NN (20)(24) 0% (12)
times r times q times

After conversion by the function ®, we get
“OWp—1Wp—9+ + - Woly ® 2129+ Zpip1q 0%, (13)

where w; = CID(OjAp*j) According to Corollary 11 the value W = ZJ 1 wjﬂj*1 is equal to

W = Aﬂtﬁ . Aﬁt L=A Z;;E (37. Using the representations (12) and (13) for evaluation

of the number Tj, and the fact that z; < A for any j, we obtain

t—1 —r—1 r+t+q r+t+q
A B +020) ﬁJ—W+Zz]ﬁf—AZﬁJ > B,
Jj=-r J=—r—q j=1
and thus
-1 —r—1 %) —r—1
A B+ (20) ZBJ<AZBJ —= ) < Z@J
Jj=-r Jj=—r—gq j=—r—q Jj=q+r+1

Summing up both sides of the last inequality, we get ﬁqﬂr ,5;:11 < @ L ﬁ 7 for all ¢ € N, thus

a contradiction. The proof of ®(AP) # X is analogous. O
Now we can easily deduce the statement of Theorem 9:

Proof. Let A={m,m+1,...,M — 1, M} be a set of contiguous integers containing 0 and
1,ie,. m<0< M.

First, consider the base 3 as any algebraic integer of modulus greater than 1. If |f(1)| = 1,
there is nothing to prove. Therefore, suppose now that |f(1)| > 2. Since M + 1 € A+ A,
then, according to Claim 12, the digit ®((M + 1)?) < M is congruent to M + 1 modulo
|f(1)]. Therefore, necessarily, M + 1 —|f(1)| = ®((M + 1)?) > m. This implies the claimed
inequality #A4 =M —m+1 > |f(1)].

12



Now suppose that 5 > 1. According to Claims 13 and 14, the digits M, m, and ®(MP)
are distinct, i.e., the alphabet A contains at least three elements. Therefore, for the proof
of #4 > |f(1)| + 2, we can restrict ourselves to the case |f(1)| > 2. As M > &(MP) > m
and ®(MP) = M mod |f(1)], we have M — [f(1)| = ®(MP) > m + 1. It implies the second
part of the claim, namely that #4 =M —m +1 > |f(1)| + 2. O

The assumptions of the previous Claims 12, 13, and 14 are much more relaxed than
the assumptions of Theorem 9. Therefore, modified statements can be proved as well. For
instance, the following result holds.

Proposition 15. Given 5 > 1 an algebraic integer with minimal polynomial f(X), let D be
a finite set of (not necessarily contiguous) integers containing 0, such that ged D = 1 and
minD < 0 < maxD. If addition in Finp () is computable in parallel, then #D > |f(1)|+ 2.

Remark 16. Exploiting Remarks 4 and 5, we may also strengthen Theorem 9.

1. If a polynomial f(X) € Z[X] of degree d is the minimal polynomial of /3, then g(X) =
X4f(%) is the minimal polynomial of §, and, moreover, f(1) = g(1). Therefore, the
assumption “f is an algebraic integer” in Theorem 9 can be replaced by “S or % is an
algebraic integer”.

2. Even the second part of Theorem 9 can be applied to a broader class of bases. The
lower bound #.A4 > |f(1)] + 2 remains valid even if 5 is an algebraic integer and one
of its conjugates is a positive real number greater than 1.

4 Addition versus subtraction and conversion

As we have already mentioned, addition in the set Fin4(5) can be interpreted as a digit
set conversion from alphabet A + A into alphabet A. Let us point out that, if addition of
two numbers can be performed in parallel, then addition of three numbers can be done in
parallel as well, and the same holds for any fixed number of summands. This implies that,
if {—1,0,1} C A, then subtraction of two numbers from Finy (/) can be viewed as addition
of fixed numbers of summands, and therefore, no special study of parallelism for subtraction
of (5, A)-representations is needed.

On the other hand, if the elements of A are non-negative and the base [ is a real number
greater than 1, then the set Fing(8) C [0, +00) is not closed under subtraction. We may
investigate only the existence of a parallel algorithm for subtraction y — z for y > x. But
even if Finy (/) is closed under subtraction of y — x for y > z, it is not possible to find any
parallel algorithm for it. Let us explain why: Suppose that subtraction is a p-local function
. Then ¢ must convert a string with a finite number of non-zero digits into a string with a
finite number of non-zero digits. It forces the function ® associated with ¢ (see Definition 1)
to satisfy ®(07) = 0. Therefore, the algorithm has no chance to exploit the fact that y > x,
when the (3, A)-representation of y is “010™e0“ and the (3, .A)-representation of x is “01e0%.

Therefore, we will focus only on addition of (3, .A4)-representations. We start with setting
some terminology.

13



Definition 17. Let § with |3] > 1 be fixed, and consider ¢ and K from Z, K > 2. The
parameters ¢ and K must be such that 0 is always an element of the considered alphabets
(both before and after the conversion).

e Smallest digit elimination (SDE) in base [3 is a digit set conversion from {c,...,c+ K}
to{c+1,...,c+ K}.

e Greatest digit elimination (GDE) in base (3 is a digit set conversion from {c,...,c+ K}
to{c,...,c+ K —1}.

The following result enables us to replace the alphabet A + A entering into conversion
during parallel addition by a smaller one. When looking for parallel algorithms for addition
on minimal alphabets, we will discuss the case when an alphabet contains only non-negative
digits separately.

Proposition 18. Let A ={m,m+1,...,M — 1, M} be an alphabet of contiguous integers
containing 0 and 1 and let 3 be the base of the respective numeration system.

1. If m = 0, then addition in Fina(B) can be performed in parallel if, and only if, the
conversion from AU{M + 1} into A (greatest digit elimination) can be performed in
parallel.

2. Suppose that {—1,0,1} C A. Then addition in Finy(5) can be performed in parallel if,
and only if, the conversion from AU{M + 1} into A (greatest digit elimination) and
the conversion from {m — 1} U A into A (smallest digit elimination) can be performed
wn parallel.

Proof. The necessity is trivial. We prove only the sufficiency.

1. Consider = and y from Fing(f), and let z = = + y. The coefficients of z are in
{0,...,2M}, so z can be decomposed into the sum of 2’ with coefficients in {0,..., M + 1}
and z” with coefficients in {0,..., M — 1}. According to the assumption of Statement 1,
Z' is transformable in parallel into w with coefficients in A. So w + 2" has coefficients in
{0,...,2M — 1}. We iterate this process until the result is on .4, so we need M iterations
(i.e., a finite fixed number of iterations).

2. Analogous to the proof of Statement 1; and, again, the number of iterations is finite
and fixed, this time equal to max{M, —m}.

]

In the sequel we will discuss only questions about parallel addition on Finyg (/). Nev-
ertheless, parallel addition is closely related to the question of parallel conversion between
different alphabets.

Corollary 19. Let A and B be two alphabets of consecutive integers containing 0.

1. Suppose that {—1,0,1} C A and addition on Finyg(f) can be performed in parallel.
Then conversion from B into A can be performed in parallel for any alphabet B.
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2. Suppose that conversion from B to A and conversion from A to B can be performed in
parallel. Then parallel addition on Fina(5) can be performed in parallel if, and only if,
parallel addition on Fing(8) can be performed in parallel.

Proof. 1. Possibility of parallel addition on Finy (/) implies that conversion

from A+A+---+A4 into A

k  times

can be made in parallel for any fixed positive integer k. Any finite alphabet B is a subset of
A+ A+ --- 4 Afor some k. This proves Statement 1.

k times

2. Let us assume that parallel addition is possible on Fins(5). To add two numbers x
and y represented on the alphabet B, we at first use parallel algorithm for conversion from
B to A, then we add these numbers by parallel algorithm acting on Finy (/) and finally we
use parallel algorithm for conversion back from A to B. [

We now show how a parallel algorithm acting on one alphabet can be modified to work
on another alphabet. First we mention a simple property.

Proposition 20. Given a base 8 € C, 8 an algebraic number, and two alphabets A and B
containing 0 such that AUB C Z[5]. Then conversion in base § from A to B is computable
in parallel by a p-local function if, and only if, conversion in base B from (—A) to (—B) is
computable in parallel by a p-local function.

Proof. Let ¢ : AZ — BZ be p-local, defined by ® : A? — B. Conversion from the alphabet
(—A) ={—a|a € A} to (—B) is computable in parallel by the p-local function ¢ : (—.A)% —
(—B)% which uses the function P : (—A)P — (—DB) defined for any x1,2s,...,2, € (—A) by
the prescription .

O(zraz - 1p) = _(I)((_xl)(_xl) e (_xp)) ’

which implies that ®(07) = —®(07) = 0. O

The next result allows passing from one alphabet allowing parallel digit-set conversion
to another one. First, we set a definition.

Definition 21. Let A and B be two alphabets containing 0 such that AU B C Z[5]. Let
¢ : AZ — B% be a p-local function realized by the function ® : A? — B. The letter h in A
is said to be fized by ¢ if p(“h e h¥) =“h e h¥, or, equivalently, ®(h?) = h.

Theorem 22. Given a base § € C, [ an algebraic number, and two alphabets A and B
containing 0 such that AU B C Z[f], suppose that conversion in base [ from A to B is
computable by a p-local function ¢ : A — BZ.

If some letter h in A is fized by ¢ then conversion in base B from A" = {a — h|a € A}
to B'={b—h|be B} is computable in parallel by a p-local function.
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Proof. Let ® : AP — B be the function realizing conversion from A to B, with memory r
and anticipation ¢ satisfying p = r + ¢ + 1. It means that for any u = (u;) € A% such that u
has only a finite number of non-zero entries, we have after conversion the sequence v = p(u)
such that

e v = (v;) € BZ has only a finite number of non-zero entries;
o vj = O(ujsy - Ujpr1ujuj_q - - uj_,) for any j € Z;
® ZjEZ u;F = ZjEZ v; 7.
For any zy,...,z, € A" we define
U(z1xy- - xp) = P((z1 + h)(z2 + h) - (2, + h)) — h. (14)

It is easy to check that ¥ : (A)? — B'. Let ¢ : (A")2 — (B')% denote the p-local function
realized by the function W. We will show that the function ¢ performes conversion from A’
to B'.

As ®(h?) = h we have ¥(0?) = &(h?) — h = 0. Consequently, v" = 1 (u’) has only a finite

numbers of non-zero digits of the form

V= W)

for any u' € (A')” with a finite number of non-zero entries f. It remains to show that
2B =D U = D Wy ety ) (15)
JEL JEZ JEL

Before verifying the previous statement, we deduce an auxiliary equality. Put L := max{j €

Z|uf; # 0} and define u = (u;) € A” as

uj == Q h, ifL<j<L+p—1;
0, if j > L+0p.

As @ realizes conversion from A to B, we have
hy, B il =) wh =) By ) =) vl (16)
j<LAp—1 j<L ez JET jez

Let us split the last sum into three pieces

L+p+r—1
P1 = E Ujﬁj, PQ = E ’Ujﬁ] and P3 = E ’l}jﬁ].
j=L+p+r j=L+r+1 J<L+r

In the first sum, v; = ®(0P) =0, as for j > L+ p+r, all arguments w;4¢,...,u;,..., uj_, of
the function ® are zeros, i.e., P, = 0.
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In the second sum P, the first coefficient is vy 11 = P(upyp - upy1) = ©(0hP1), the
second one i vp 42 = P(upipi1 - urpe) = P(02hP~2), ete. Using Corollary 11, we obtain

T = : Bt —1
Py=3 +r+1 Z@(thp_JWJ_l =8 +rtly, T
j=1

Since ., v;#7 = P1 + Py + Ps, we may calculate the value of P3 using (16)

=Y Wi +h Yy, B ﬁ”’”“h => wf+h )y F. (A7)

Jsk JsLAp-1 J<L J<L+r

All coefficients v}s in the sum Pj are of the form v; = ®((u},, +h)--- (u)_, +h)). We have
thus shown that

S ((uy, Hh) (BB =D WS R Y B (18)

j<L+r j<L Jj<L+r

Let us come back to the task to show (15). In the right sum of (15), all arguments
Wiy oo, of Ware zero for j > L+, and therefore v} = W(0P) = ®(hP) — h = 0.
In the left sum of (15), all coefficients u are for j > L equal to zero as well. So we have to

check whether ' .
S = 3 Wi )

j<L j<Ltr

Because of the definition of W in (14), this relation is equivalent to Equation (18). O

Remark 23. For deduction of (16), we have applied the mapping ¢ to the word u =
COUL4p1UL4p—2 -~ Uy ® U_1U_ 2 - with infinitely many non-zero entries. Let us explain the
correctness of this step Let ™ denote the word “OUL4+p—1UL+p—2 - Uo®U_7 - - - U_, 0%, Since

) has only a finite number of non-zero digits, we know that the value corresponding to
go(u(")) equals the value corresponding to v(™ = p(u™). Clearly u, — u and p(u™) — ¢ (u)
as n — oo in the product topology. The same is true for the numerical values represented
by these words.

In the following sections, we give parallel algorithms for addition in a given base on al-
phabets (of contiguous integers) containing 0, of the minimal cardinality K. While doing
so, we favour the method of starting with an alphabet containing only non-negative digits,
and writing a parallel algorithm for the greatest digit elimination, Algorithm GDE(f), con-
verting representations on {0,1..., K — 1, K'} into representations on {0,1..., K —1}. By
Proposition 18, parallel addition is thus possible on {0,1..., K —1}. In order to show that
parallel addition is possible also on other alphabets (of the same size), we use the following
corollary.

Corollary 24. For K,d € Z, where 0 < d < K — 1, denote
A g={-d,...,0,... K—1-d}.

Let ¢ be a p-local function realizing conversion in base 3 from AgU{K} to Ag. If both letters
d and K — 1 —d are fixed by @, then addition is performable in parallel on A_4 as well.
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Proof. According to Theorem 22, conversions from {—d,...,0,..., K — 1 —d, K — d} into
{=d,...,0,...,K —1—d} and also from {—-K +1+4d,...,0,...,d+ 1} into {—-K + 1+
d,...,0,...,d} are performable in parallel. According to Proposition 20, conversion from
{-d—-1,...,0,..., K — 1 —d} into {—d,...,0,..., K — 1 —d} is performable in parallel,
as well. Using Proposition 18 Point (2), addition on the alphabet A_, can be made in
parallel. O

5 Integer base and related complex numeration sys-
tems

In this section, we consider some well studied numeration systems, where the base is an
integer, or a root of an integer. Parallel algorithms for addition in these systems can be
found in [10], but the question of minimality of the alphabet was not discussed there.

5.1 Positive integer base

If the base (3 is a positive integer b > 2, then the minimal polynomial is f(X) = X — b, and
Theorem 9 gives #A > |f(1)|4+2 = b+ 1. It is known that parallel addition is feasible on any
alphabet of cardinality b + 1 containing 0, in particular on alphabets A = {0,1,...,b} and
A={-1,0,1,...,b— 1}, see for instance Parhami [23]. In the case that b is even, b = 2a,
parallel addition is realizable over the alphabet A = {—a,...,a} of cardinality b + 1 by the
algorithm of Chow and Robertson [7].

5.2 Negative integer base

If the base [ is a negative integer, § = —b, b > 2, then the minimal polynomial is f(X) =
X + b, and Theorem 9 gives the bound #.A4 > |f(1)| = b+ 1. In this section we prove

Theorem 25. Let § = —b, b€ Z, b > 2. Any alphabet A of contiguous integers containing
0 with cardinality #A = b+ 1 allows parallel addition in base § = —b and this alphabet
cannot be further reduced.

Any alphabet of contiguous integers containing 0 which has cardinality b + 1 can be
written in the form

A g={-d,...;0,....b0—d} for 0<d<b.

For proving Theorem 25, we firstly consider the alphabet consisting only of non-negative
digits, i.e., the alphabet A,.

Algorithm GDE(—b): Base § = —b, b € Z, b > 2, parallel conversion (greatest digit
elimination) from {0,...,b+ 1} to {0,...,b}.
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Input: a finite sequence of digits (z;) of {0,...,b+ 1}, with z =" 2;47.
Output: a finite sequence of digits {0, ...,b}, with z =3 2, 4.

for each j in parallel do

1. case{zj:b and z;_, = 0 } then ¢; :=1

if 2;=0 and zj_1 >0 then ¢; :== —1
else qj =0
2. Zj = Z5— bq] —(qj—-1

Proof. Let w; = zj — bgj, and 27" = w; — q; 1 after Step 2 of the algorithm.
o If z; =b+1, then w; = 1. Thusogzyew<2<b.
e For z; = b and z;_; =0, we get w; = 0. Since g;_; < 0, the resulting 27" € {0, 1}.

e For z; = b and z;1 # 0, we obtain w; = b. Since g;_; # —1, the resulting 27" €
{b—1,b}.

e When z; =0 and z;_; > b, then w; = b, and b — 1 < /AN b, because q;—; = 0.
e When z; =0 and z;_1 < b—1, then w; = 0. Since g;_; # 1, we obtain 0 < 27 < 1
o If 1<z <b—1,then 0 < 2f* < b, as ¢; € {—1,0,1}.

Note that we obtain ¢; # 0 only if z; itself or its neighbor z;_; are different from zero; it
means that the algorithm is correct in the sense that it does not create a string of non-zeros
from a string of zeros. The input value 2z equals the output value z thanks to the fact that
the base [ satisfies 37! 4 bB7 = 0 for any j € Z. This parallel conversion is 3-local, with
memory 2 and anticipation 0, i.e., (0,2)-local since 27 depends on (zj, 21, 2j2)- ]

Let us prove Theorem 25.

Proof. Proposition 18 and the previous Algorithm GDE(—b) imply that parallel addition
is possible over the alphabet Ay = {0,1,...,b}. Moreover, Algorithm GDE(—b) applied
to the infinite sequence u = “h e h*¥ gives the infinite sequence p(u) = “h e h*¥ for any
h € {0,1,...,b}. Therefore, d and b — d are fixed by ¢ for any d € {0,1,2,...,b}. Corollary
24 gives that parallel addition is possible on any alphabet A_; = {—d,...,b — d} for d €
{0,1,2,...,b}. The minimality of the alphabet A_; follows from Theorem 9. O

5.3 Base Vb, b integer, |b| > 2

Here we will use that /3 is a zero of the polynomial X* —b, but this not in general the minimal
polynomial.

Proposition 26. Let § = /b, b in Z, |b| > 2 and k > 1 integer. Any alphabet A of
contiguous integers containing 0 with cardinality #A = b+ 1 allows parallel addition.
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The proof follows from the fact that v = ¥ = b and the results of Sections 5.1 and 5.2
applied to base 7.
For the sake of completeness we give below the algorithms for the greatest digit elimina-

tion in base 8 = v/b, b > 2 and in base 8 = /—b, b > 2.

Algorithm GDE(V/b): Base § = V/b, b € Z, b > 2, parallel conversion (greatest digit
elimination) from {0,...,b+ 1} to {0,...,b}.

Input: a finite sequence of digits (z;) of {0,...,b+ 1}, with z =" 2;47.
Output: a finite sequence of digits {0, ...,b}, with z = 2, 47.

for each j in parallel do

1. case{zj:b and 2, > b } then ¢; :=1

else qgj =0
2. zj = zj — bg; + qj—

Algorithm GDE(~/—b): Base = +/—b, b € Z, b > 2, parallel conversion (greatest digit
elimination) from {0,...,b+ 1} to {0,...,b}.

Input: a finite sequence of digits (z;) of {0,...,b+ 1}, with z =" 2;47.
Output: a finite sequence of digits (z;) of {0,...,b}, with z = z; 4.

for each j in parallel do

1. case{zj:b and 2, = 0 } then ¢; :=1

if 2; =0 and zj_p >0 then ¢; :== —1
else qj =10
2. Zji=Z5 — bq] —qj—k

Note that in general, we cannot say that the minimal cardinality of an alphabet for
parallel addition is equal to b+ 1, since the polynomial X* — b might be reducible. But we
have the following result. We say that 8 = V/b is written in the minimal form if b # &
where k' > 2 divides k. Otherwise, 3 could be written as 8 = */c with k = k'k".

Lemma 27. Let 3 = v/b, withb € N, b > 2 and k positive integer, be written in the minimal
form. Then the polynomial X* — b is minimal for /3.

Proof. Let us suppose the opposite fact, i.e., that the polynomial

k-1 2mil
X’“—sz(X—e " \’“/5)
/=0

is reducible. One can write X*—b = f(X)g(X), where f(X) and g(X) are monic polynomials
belonging to Z[X], the polynomial f(X) is irreducible and its degree m satisfies 1 < m < k.
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Let f(X)= X"+ fru 1 X™ 4o+ f1X + fo. All m zeros of f are zeros of X* — b as well,
i.c., of the form /b times a complex unit. The product of zeros of f(X) is equal to (—1)™ fo,

so we have " )
fol = (%) —bF =

where 7+ = 7% and m' and k" are coprime. Let |fo| = p{" ---p" be the decomposition into
product of distinct primes pq,...,p.. Then

bm :pllcal ~'-pffaT
and thus m' divides k'« for all j = 1,2,...,r. Since k" and m’ are coprime, m’ divides o

and therefore a; = m/ 049. We can write

’ ’ K ’
-

As 1> 72 = ’]:‘—,/ the number &' > 2 and k' divides k — a contradiction with the minimal form
of . m

Corollary 28. Let = /b, b in N, b > 2 and k > 1 integer, written in the minimal form.
Parallel addition is possible on any alphabet (of contiguous integers) of cardinality b + 1
containing 0, and this cardinality is the smallest possible.

Proof. Since f(X) = X* — b is the minimal polynomial of 3, the lower bound of Theorem 9
is equal to |f(1)| +2=0b+ 1. O

We now present several cases of complex bases of the form 8= /—b, bin N, b > 2.

The complex base 8 = —1 + 1 satisfies 3* = —4. Its minimal polynomial is f(X) =
X2 +2X + 2, and the lower bound on the cardinality of the alphabet allowing parallel
addition (from Theorem 9) is |f(1)| = 5. It has been proved in [10] by indirect methods
that parallel addition on alphabet A = {—2,...,2} is possible; and, due to Theorem 9, this
alphabet is minimal.

Corollary 29. In base f = —1+41, parallel addition is possible on any alphabet of cardinality
5 containing 0, and this cardinality is the smallest possible.

Remark 30. With a more general concept of parallelism (k-block p-local function, see [19]),
there is a result by Herreros [15] saying that addition in this base is realizable on {—1,0,1}
by a 4-block p-local function.

The complex base 3 = 21 has X? + 4 for minimal polynomial, so the lower bound given
by Theorem 9, equal to 5, is attained.

Corollary 31. In base B = 21, parallel addition is possible on any alphabet of cardinality 5
containing 0, and this cardinality is the smallest possible.

Similarly the complex base f = /2 has X2 + 2 for minimal polynomial, so the lower
bound given by Theorem 9, equal to 3, is attained.

Corollary 32. In base = 12, parallel addition is possible on any alphabet of minimal
cardinality 3 containing 0.
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6 Quadratic Pisot units bases

6.1 Base 3 root of X? =aX — 1

Among the quadratic Pisot units, we firstly take as base [ the greater zero of the polynomial
f(X)=X? —aX + 1 with a in N, a > 3. Here, the canonical alphabet of the numeration
system related to this base by means of the Rényi expansion (greedy algorithm) is the set
C =10,...,a— 1} of cardinality #C = a.

The numeration system given by this base 3, alphabet C, and the Rényi expansions is
restricted only to representations z = ) ; x;/37, where not only the digits must be from the
alphabet C, but also the representations must avoid any string of the form (a—1)(a—2)"(a—1)
for any n € N. With this admissibility condition, the numeration system has no redundancy.
In order to enable parallel addition, we always have to introduce some level of redundancy
into the numeration system. In this case, we prove that it is sufficient to stay in the same
alphabet A :=C = {0,...,a — 1}, we only need to cancel the restricting condition given by
the Rényi expansion, so that all the strings on C are allowed.

The lower bound on the cardinality of the alphabet for parallel addition given by The-
orem 9 for this base is equal to |f(1)] + 2 = a, which is just equal to the cardinality of
C. We show below that the canonical alphabet C = {0,...,a — 1} already allows parallel
addition. At the same time, the cardinality of this alphabet C is equal to [#] = a, and thus
this example demonstrates that also the lower bound given by Theorem 6 cannot be further
improved in general.

According to Proposition 18, we know that, for parallel addition over the alphabet A =
{0,...,a—1}, it is enough to show that parallel conversion (greatest digit elimination) from
{0,...,a} to Ais possible. To perform conversion from A+.4 to A, we then use several times
greatest digit elimination (GDE). However, the repetition of GDE may increase the width
p of the sliding window in the resulting p-local function. To illustrate this phenomenon, we
provide below the complete algorithm for parallel addition, which uses GDE just once and
then in Remark 34 we compare the value of the width p for both approaches.

Algorithm A: Base 3 satisfying 5% = a3 — 1, with a in N, a > 3, parallel conversion from
{0,...,2a — 2} to {0,...,a}.

Input: a finite sequence of digits (z;) of {0,...,2a — 2}, with z = > z;47.
Output: a finite sequence of digits (z;) of {0,...,a}, with z = > ;7.

for each j in parallel do

Zi = a
1. case J = then ¢; =1
{ zi=a—1 and 241 > a and z;_; > a 4

else qj =0
2. zji=zp—ag;+ g+ g

Proof. For correctness of Algorithm A, we have to show that the value 27" = z; — aq; +
¢j+1 + gj—1 belongs to the alphabet {0,1,...,a} for each j. Let us denote w; := z; — ag;,

1.e., Zjnew = wj + qj+1 + qj—1-
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o If 2; €{0,...,a -2} U{q,...,2a — 2}, then w; € {0,...a — 2}, and therefore 27 =
wj + i1+ g1 €{0,. .. a}.

e When z; = a — 1 and both its neighbors z;4+1 > a, then w; = —1 and ¢;41 = ¢j—1 = 1.
Thus 27 = 1.

e lfz,=a—1,and z;_1 < aor 24 <a, then w; =a—1 and gj4; or gj_1 = 0. Now
2 € {a—1,a}.

The output value z equals the input value z thanks to the fact that 7+2 — B/t + 37 = 0 for
any j € Z. Besides, it is to be noted that z; = 0 implies ¢; = 0, and therefore, the algorithm
cannot assign a string of non-zeros to a string of zeros. O

We then realize the greatest digit elimination in parallel. Let us denote by S~ the root
larger than 1 of the equation X2 = aX — 1, a > 3.

Algorithm GDE(7): Base = 3~ satisfying 82 = a8 — 1, with a in N, a > 3, parallel
conversion (greatest digit elimination) from {0,...,a} to {0,...,a — 1} = A.

Input: a finite sequence of digits (z;) of {0,...,a}, with z =" z; 4.
Output: a finite sequence of digits (z;) of {0,...,a — 1}, with z =" z;47.

for each j in parallel do
( Zi=a

zj=a—1 and (zj+1>a—1 orzj_1>a—1)

1. case ! Zj=a—2 and z;;1 =a and z;_1 =a \
2j=a—2 and zjy1 =a and z;_1 =a—1 and z;_o > a—1
2j=a—2 and zj_1=a and zj;1 =a—1 and 240 2 a—1
(| zj=a—2 and 241 =a—1 and zj40 2 a—1 )
then ¢; :=1
else q; :=0

2. zji=zj—ag;t+ g+ g

Proof. Let us denote again w; := z; — agy, i.e., 27 = w; + qj+1 + ¢j-1.

o If 2; €{0,...,a -3} U{a}, then w; € {0,...a — 3}, and therefore 27 = w; + qj41 +
qj—1 6{0,...&—1}:./4.

e When z; =a—1,and z,_1 > a—1lor zj4; > a—1, thenw; = —1 and ¢;+1+q;-1 € {1,2}.
Thus 27 € {0,1} C A.

e When z; = a — 1 and both its neighbors z;11 < a — 1, then w; = a — 1 and gj1; =
¢j-1=0. Now 27** =a—1¢€ A

e Ifz; = a—2and ¢; = 1, then necessarily ¢;4+1 = 1. Since w; = =2, we get 27" =0 € A.

o Ifz; = a—2 and ¢; = 0, then necessarily ¢;_; or ¢;+1 equal 0, and therefore ¢;1+¢;_1 €
10,1}, As w; = a — 2, the resulting 27** € {a — 2,a — 1} C A.
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Again, the equation 372 — af’*! + 3/ = 0 for any j € Z ensures that the output value z
equals the input value z. For z; = 0 we always have ¢; = 0, so the algorithm cannot assign
a string of non-zeros to a string of zeros. m

Now we can proceed by summarizing the algorithm for parallel addition:

Algorithm I: Base 3 satisfying 3> = af — 1, with a in N, a > 3, parallel addition on
alphabet A ={0,...,a —1}.

Input: two finite sequences of digits (z;) and (y;) of {0,...,a — 1}, with z = > z,;47 and
Y=y ,
Output: a finite sequence of digits (z;) of {0,...,a — 1} such that z =z +y =) z;47.

for each j in parallel do

0. vj = x5 + Y

1. use Algorithm A with input (v;) and denote its output (w,)

2. use Algorithm GDE(S™) with input (w;) and denote its output (z;)

Theorem 33. Let 5 > 1 be a root of X? = aX — 1, witha > 3, a € N, and let A be the
canonical alphabet A ={0,... a — 1} associated with this base 5. Addition in Finy(B) is a
p-local function with p = 11. The alphabet A is the smallest one for parallel addition.

Proof. In Algorithm A, the output digit 27*” depends on input digits (Zj42, -, 2j—2), so it
is a (2,2)-local function. In Algorithm GDE(37) the output digit 27 depends on input
digits (zj43,...,2j-3), and thus it is a (3, 3)-local function. Algorithm I is a composition
of Algorithms A and GDE(37), so the resulting function is a composition of the two local
functions, (2,2)-local and (3, 3)-local. Overall, the addition in base 3, fulfilling 8* = a8 — 1
for a > 3, as performed by Algorithm I, is a (5, 5)-local function, i.e., 11-local. ]

Remark 34. According to Proposition 18, we need only Algorithm GDE(S™) for performing
parallel addition on A = {0,...,a — 1} in the base 3* = a8 — 1, with a > 3. In order
to obtain the sum z + y, we would apply Algorithm GDE(5™) repeatedly (a — 1)-times.
The function performing parallel addition in this way would then be (3a — 3,3a — 3)-local.
On the other hand, Algorithm I, exploiting firstly Algorithm A and then only once the
Algorithm GDE(S7), reduces the size of the sliding window, i.e., the parameters of the local
function are only (5,5).

Now we will show that parallel addition for base 3% = a8 — 1, with a > 3, a € N, is
feasible also on any alphabet of contiguous integers of cardinality a containing {—1,0,1}, of
the foom A 4 ={—d,...,0,...,a—1—d}, for1 <d<a-—2.

Let us observe that Algorithm GDE(S™) applied to the bi-infinite sequence v = “h e h*
gives the bi-infinite sequence p(u) = “heh* = u for any h € {0,...,a—2}, and thus for any
de{l,...,a—2}, both letters d and a — 1 — d are fixed by . Corollary 24 therefore implies
that the alphabet A_; ={—d,...,a — 1 — d} allows parallelization of addition for any such
d € {l,...,a —2}. This fact, together with Theorem 9, Proposition 20, and Theorem 33
enable us to conclude this section with the following theorem.
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Theorem 35. Let 3 satisfy 3? = a3 — 1, with a € N,a > 3. Parallel addition is possible
on any alphabet of contiguous integers containing 0 of cardinality a, and this cardinality is
manimal.

6.2 Base  root of X?=aX +1

Let us now study the numeration systems with base a quadratic Pisot unit with minimal
polynomial f(X) = X? —aX — 1, with a in N, @ > 1. The canonical alphabet of the nu-
meration system related with this base by means of the Rényi expansion (greedy algorithm)
is C ={0,...,a}, of cardinality #C = a + 1. The numeration system given by this type of
quadratic base 3, alphabet C, and the Rényi expansions is restricted only to such represen-
tations x = ) ;T (37, where the digits are from the alphabet C, but the representations must
avoid any string of the form al. This admissibility condition makes the numeration system
non-redundant.

It is known, for bases 3 satisfying 3? = a8 + 1 with a > 1, that the set of real numbers
with finite greedy expansion (z)s is closed under addition and subtraction [4]. Therefore,

{r > 0] (z)g is finite } = Finy(f) forany ACN, ADC

and
{z € R | (Jz|)p is finite } = Fina(B) forany ACZ, ADCU{-1}.

In order to obtain an algorithm for parallel addition, we must have some redundancy in
the numeration system. As shown in Section 6.1, for the cases of base 3 satisfying 4% = a8—1,
it was sufficient to drop the one admissibility condition (given by the Rényi expansion), and
parallelization was already possible (without adding any more elements into the alphabet C).
The situation is not that simple for the bases satisfying 3% = a8 + 1. Nevertheless, addition
in these two families of quadratic units is connected.

Proposition 36. Let > 1 be a zero of the polynomial X?> —aX —1 witha in N, a > 1, and
let v > 1 be a zero of the polynomial X? — (a®>+2)X + 1. If there exists an alphabet A and a
p-local function performing in Fing(vy) addition in parallel, then there ezists a (2p — 1)-local
function performing in Fina(B8) addition in parallel.

Proof. Tt is enough to realize that v = 32, and to apply Theorem 1 from [10]. ]

Remark 37. According to the previous Section 6.1, we know that addition in base v, the zero
of the polynomial X?— (a?+2)X +1, can be performed in parallel on alphabet {—d, ... a*+
1 —d} for any d € {0,...,a?}. Therefore, we immediately obtain an upper bound a® + 2 on
the cardinality of the alphabet allowing parallel addition in base 3, the zero of the polynomial
X2 —aX — 1.

In general, the upper bound given in Remark 37 is too rough. But for a = 1, i.e., for the
base the golden ratio, it gives the precise value of cardinality of the minimal alphabet for
parallel addition in this base, namely the cardinality #.4 = 3.

Corollary 38. Let § = %5 be the golden ratio, zero of X2 — X —1. Addition in this base 3
can be performed in parallel on alphabet A = {0,1,2}, and also on alphabet A = {—1,0,1}.
Both these alphabets are minimal.

25



Let us mention that this result for the alphabet {—1,0,1} was previously stated in [12].
Non-sufficiency of the alphabet {0, 1} for parallel addition was stated in [10].

In the sequel, we will consider only parameters a > 2. The lower bound on the cardinality
of the alphabet of contiguous integers allowing parallel addition, given by Theorem 9 for bases
3 being zeros of polynomials X% —aX — 1, is equal to |f(1)| +2 = a + 2. We show that, in
these cases, parallel addition is doable on any alphabet of contiguous integers containing 0
of cardinality a + 2.

For short, the positive zero of X2 — aX — 1 is denoted by 3+.

Algorithm GDE(S"): Base f = (7 satisfying 82 = af + 1, a > 2, a € N, parallel
conversion (greatest digit elimination) from {0,...,a+ 2} to A={0,...,a + 1}.

Input: a finite sequence of digits (z;) of {0,...,a+ 2}, with z =" z;47.
Output: a finite sequence of digits (z;) of {0,...,a+ 1}, with 2 =" z;47.

for each j in parallel do

zj=a+2
1. case ¢ zj=a+1 and (zj41 =0 or z;_; > a+1) then ¢;:=1
2j=a and zj;1 =0 and 2;_; 2 a+1
if z2j=0and zj4; 2a+1land z;_; < a then ¢; :=—1
else qgj =0
2. Zj =z —aqj — qj+1 + ¢j—1
Proof. Let us denote again w; = z; — agj, and z*" = w; — ¢j41 + ¢j-1.

o If z; = a+ 2, then w; = 2. Since ¢j11 > 0, we have —g; 41 +¢j—1 € {—2,...,1}, and
consequently, 27 € {0,...,3} C {0,...,a + 1} = A, using the fact that a > 2.

e For z; =a+1and 2, =0, we get w; = 1. As ¢;;1 = 0, then ¥ € {0,1,2} C A.

o For z; = a+1 and 2,1 > a+ 1, we obtain again w; = 1. Since ¢j—; = 0, then
—@j+1+¢qi—1 € {—1,...,2}, and consequently, 27 € {0,...,3} C{0,...,a+1} = A,
as a = 2.

o If z; =a+1and z4; > 1 and 2,1 < a, then w; = a+1, ¢j—1 < 0 and ¢;41 > 0.
Therefore, 27" € {a — 1,a,a + 1} C A.

e In the case of z; = a and z;4; = 0 and z;_; > a + 1, we obtain w; = 0. Since gj41; <0
and ¢;_1 > 0, the resulting 27 € {0,1,2} C A.

e When z; = @ and z;4; > 1, then w; = a. Since ¢;y; = 0 and ¢;—; > 0, we obtain
2t €{a—1a,a+1} C A,

e When z; = a and z;_; < a, then again w; = a. This time, ¢;_; = 0, so consequently,
2 e{a—1a,a+1} C A

o If z; =0and z;;; > a+1and 2z;_; < a, then w; = a. Since gj1; = 0 and ¢;_; = 0, we
obtain 27 € {a — 1,a,a + 1} C A.
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e For z; = 0 and 241 < a, we get w; = 0, ¢j41 < 0, and ¢;_; > 0. Therefore, the
resulting 27 € {0, 1,2} C A.

e Ifz; =0and 2, > a+1, then w; =0 and g;—; = 1. Consequently, 2/ € {0,1,2} C
A.

e For the cases when z; € {1,...,a — 1}, we have ¢; = 0 and ¢;_1 > 0, so consequently,
220 e {0,...,a+1} = A

Note that, for z; = 0, we can only obtain g; # 0 when its neighbor z;;, is greater than zero.
Therefore, it is ensured that the algorithm cannot assign a string of non-zeros to a string of
zeros. The output value z is equal to the input value z thanks to the fact that the base
satisfies the equation 37+? = af’*" 4 7 for any j € Z. The output digit 27 depends on
input digits (2j12,...,2j_2), so this conversion from {0,...,a+2} to A ={0,...,a+ 1} is
a (2, 2)-local function. O

Using Proposition 18 we can conclude that addition in Fing(f) can be performed in
parallel over the alphabet {0,1,...,a + 1}.

Let us now consider alphabet containing positive and negative digits. For any d €
{1,...,a}, denote
A_d:{—d,...,O,...,a—d+1}.

The previous Algorithm GDE(S") applied to the infinite sequence u = “h @ h* gives the
infinite sequence p(u) =“h e h¥ = u for any h € {0,...,a}. Thus, for any d € {1,2,...,a},
both letters d and a + 1 — d are fixed by ¢. According to Corollary 24, the alphabet
A_, allows parallelism of addition. Summarizing this reasoning, together with Algorithm
GDE(51), Corollary 38, and Proposition 20, we obtain the following result.

Theorem 39. Let 3 satisfy 32 = a3 + 1, with a > 1,a € N. Parallel addition is possible
on any alphabet of contiguous integers containing 0, such that its cardinality is a + 2. The
cardinality a + 2 1is minimal.

7 Rational bases

Let us now consider the base = +a/b, with a, b being co-prime positive integers fulfilling
a>b>1. When b= 1, we obtain the case of positive integer base f =a € N, a > 2, or the
case of negative integer base § = —a € N, a > 2 with the minimal cardinality of the alphabet
for parallel addition being equal to a+ 1, see Sections 5.1 and 5.2. For b > 2, the base 3 is an
algebraic number which is not an algebraic integer, so Theorem 9 cannot be applied here to
establish a lower bound on the cardinality of the alphabet for parallel addition. Theorem 6
can be used for 8 = a/b, however it is not very useful here either; the lower bound given
there is equal to [a/b], which is too small for parallel addition, as is shown below.

In general, an alphabet A allows parallel addition only if the numbers with finite rep-
resentation are closed under addition, in particular, any non-negative integer must have a
finite representation. This requirement already forces the alphabet to be big enough. By a
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modification of the Euclidean division algorithm, any non-negative integer can be given a
unique finite expansion in base f = a/b, and any integer has a unique finite expansion in
base f = —a/b, over the alphabet C = {0,...,a — 1}, see [11] and [1].

As we shall see, even this alphabet is too small. For both positive base § = a/b and
negative base f = —a/b, the cardinality of the alphabet actually needed for parallel addition
is at least a +b. On the alphabet A = {0,1,...,a+b— 1}, we can perform parallel addition
in the base f = a/b and f = —a/b as well.

But surprisingly, these two types of bases differ substantially if we consider alphabets
containing {—1,0, 1}.

7.1 Positive rational base

Proposition 40. Parallel addition in base B = a/b, with a and b co-prime positive integers
such that a > b > 1, is possible on A ={0,...,a+b— 1}.

Proof. We give a parallel algorithm Algorithm GDE(a/b): {0,...,a+b} —{0,...,a+b—1}
for greatest digit elimination.

Algorithm GDE(a/b): Base 5 = a/b, with a > b > 1, a and b co-prime positive integers,
parallel conversion (greatest digit elimination) from {0,...,a + b} to {0,...,a + b — 1}.

Input: a finite sequence of digits (z;) of {0,...,a+ b}, with z =" z; 4.
Output: a finite sequence of digits (z;) of {0,...,a+b— 1}, with z =" z;47.
for each j in parallel do
1. ifa<z;<a+b then ¢; ;=1

else qj =0
2. 2j = zj — aq; + bgj_1

Denoting w; := z; — agj, we clearly obtain 0 < w; < a — 1. Thus, after Step 2 of the
algorithm, 27 = w; + bg; 1 belongs to {0,...,a +b— 1}. This algorithm assigns ¢; # 0
only in the cases of z; # 0, so it cannot produce a string of non-zeros from a string of zeros.
The output value z equals the input value z thanks to the fact that v5/*! — a3’ = 0 for any
J € Z. So the algorithm is correct.

Thus the result follows from Algorithm GDE(a/b) and Proposition 18. O

Proposition 41. In base = a/b, with a and b co-prime positive integers such that a > b >
1, parallel addition is possible on any alphabet of cardinality a+b A_y = {—d,...,0,...,a+
b—d—1} withb<d<a-—1.

Proof. Algorithm GDE(a/b) applied to the bi-infinite sequence u = “h e h* gives the bi-
infinite sequence ¢(u) = “h @ h* for any h € {0,...,a — 1}. Thus for any d € {b,b +
1,...,a— 1}, both letters d and a + b — 1 — d are fixed by ¢. According to Corollary 24, the
alphabet A_,; allows parallelism of addition. m

So the question is now: what happens for alphabets A_; when d > a or d < b— 17 First
recall a well known fact.
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Fact 1. Let “Ocg---coo@c_y---c_,0¥ and “Ody,---dyed_q---d_,0° k, ¢ > 0, be two repre-
sentations in base 8 = a/b of the same number in Z[3]. Then the polynomial (c; — dy) X* +
vt (cg—dp)+ -+ (c_g—d_g) X" is a multiple of bX — a in Z[X, X!]. Thus there exist
Sk—1sS8k—2y-580,5_1,--.,5_¢ € Z such that

Cr — dk = bSk,1 s (19)
Cj—dj:—CLSj—Fij,l for anyk—l}g}—f—i—l, (20)
C_yp — d_g = —asS_y. (21)

Lemma 42. Let D = {m,...,0,..., M} withm < —1 and M > 1, be an alphabet. If M < b
then the greatest digit elimination from DU{M + 1} to D is not a local function; if m > —b,
then the smallest digit elimination from {m — 1} UD to D is not a local function either.

Proof. Suppose that M < b and that the greatest digit elimination from DU{M + 1} to D is
a p-local function ¢. Consider the digit M + 1, and suppose that M + 1 has a representation
on D, of the form “0dy, - - - dped_1 - - - d_,0¢, with 0 < k, 0 < ¢ (the values dj, = 0and d_, = 0
are not excluded). By Fact 1, there exist integers s; such that

o dy=M+1+asy—bs_,

o for 1< j<k—1,d; =as; —bs;_

o di = —bsp_1

e for1<y<l—1,dj=as_;—bs_j
e d s=as_y.

Since d, = —bs,_1 € D and M < b, s,_1 > 0. Then dy_; = as_1 — bsp_o = —bs_o € D
implies that sy_o > 0. Similarly, sp_3 > 0, ..., sg = 0. Since M > dy = M + 1+ asg —
bs_1 > M + 1 — bs_1, we must have 1 — bs_; < 0, hence s_; > 1. On the other hand,
b>d_,=as_, €D implies that sy < 0. Then b > d_y.1 =as_y 1 —bs_y > as_yyq implies
S_pr1 < 0. Similarly, s_p10 <0, ..., s_; <0, a contradiction.

The case m < —b is analogous. O

Corollary 43. In base 5 = a/b, with a and b co-prime positive integers such that a > b > 1,
parallel addition is not possible on alphabets of positive and negative digits not containing

{=b,...,0,...,b}.
Note that in [12] we have given an alphabet of the form {—d,...,0,...,d} on which
parallel addition in base a/b is possible, with d = [%51] + b.

Proposition 44. Let a and b be co-prime positive integers such that a > b > 1. The minimal
alphabet of contiguous non-negative integers containing 0 allowing parallel addition in base

B=a/bis A=A{0,...,a+b—1}.
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Proof. Let us suppose that this statement is not valid, it means that there exists a p-local
function ¢ : A% — BZ which performs conversion in base 3 from A to B, where B =
{0,...,a+0b—2}.

Let us fix n € N and ¢ € N such that n > p and (%)q > Z—J_FZ Then the image of
“0(a — 1)" @ 0 by ¢ can be written in the form

©(*0(a—1)" 0¥) = “0wpwy_1wo ® wW_1w_o ... w_0%, (22)

where wy, >0, w_, > 0 and ¢ > 1.

Consider now the string “0(a—1)" e (a+b—1)(a+b—2)70“. Since ¢ is a p-local function
and n > p, the image of this string coincides on the positions j > p with the image of the
string “O(a — 1)™  0¢. Therefore we can write

©(“0(a—1)"e(a+b—1)(a+b—2)0%) = “0vavp_1U) ® V_1V_5 ... V_;, 07, (23)

where w, = v, >0, v_,, > 0and m > q+ 1.
We will discuss the value of the index h in the above equalities.

Case h > n At first we focus on the equality (22) and apply Fact 1 to the string “0(a—1)"e
0 in the role of “Ocy, - - - co®c_1 - - - ¢_,0¥ and to the string “O0wpwy,_woew_1w_o - - - w_,0%
in the role of “Odj, ---dy @ d_y ---d_,0¥ with k = h. As both strings belong to B%, we
obtain 0 > —wy, = bs;,_; which gives s;,_; < —1. By the same reason, we have for all
j such that —¢ +1 < 7 < h — 1 the inequality

a—1>c¢;—d;j =—as; +bs;_4
which gives the following implication
s5;<—1 = s.,<-1, for —/4+1<j<h—1.
In particular, s_, < —1. Together with (21), we have

0>—d_y=—as_y > a - a contradiction.

Case h <n—1 Now we focus on the equality (23) and apply Fact 1 to the string “0(a —
1)"e(a+b—1)(a+b—2)90% in the role of “Ocy---coec_1---c_,0¥ and to the string
“OUpVp—1V0@V_1V_9 - - - U_,,, 0¥ in the role of “Ody, - - - dyed_; - - - d_,0° with k = n—1 and
¢ =m > g+ 1. For the index j = n — 1, Equality (19) implies —b+1<a—1—d, 1 =
bs,_2 and thus s,_o > 0. For indices j, where n — 2 > j > 0, Equality (20) gives

—b+1<a—-1—-d;j=—as;+bs;_1 <a—1.
From the above inequality, we can derive the implication

5520 = 5,120, for 0<j<n—2.
In particular, s_; > 0. For the index j = —1, Equality (20) gives

l1<a+b—-1—-—d_y=—as_; +bs_5 andthus s_,>1.
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For indices —2 > j > —q — 1, we obtain

0<a+b—2—dj:—asj+bsj_1 — Sj_1>%8j.

In particular,
a2 (8) 50> ()" (24)

On the other hand, for the index —¢ < —q — 1, Equality (21) sounds —as_, = —d_, >
—a—b+2, and thus s_, < 1. For indices j with —¢/+1 < j < —q — 2, one can deduce

—a—b<—dj:—asj—|—bsj,1<0 — Sj<1+§+§5jfl-
The last inequality enables us to show by induction that

55 < Z—J_rz for all j satisfying — /¢ <j < —q—2. (25)

Indeed, s,g<1<%Ijandforallj:—€+1,—€+2,...,—q—2, we have

b b b b a+b b
§;<14+24205, | <1424 2002 = ob

aa—b ~ a—-b"

Combining (25) for j = —¢ — 2 and (24), we get

Z—J_”Z > S 422 (%)q . a contradiction with the choice of q.

Both cases lead to a contradiction, and therefore a p-local function ¢ converting in base 3
from the alphabet A to B cannot exist. m

Proposition 45. In base = a/b, with a and b co-prime positive integers such that a >
b > 1, parallel addition is not possible on any alphabet {—d,...,0,...;a+b—d — 2} for
1<d<a+b—3, of cardinality a +b — 1.

Proof. If parallel addition were possible on {—d,...,0,...,a+b— 2 —d}, then, by Proposi-
tion 18, the conversion ¢ from {—d—1,...,0,...,a+b—1—d} to {—d,...,0,...,a+b—2—d}
would be a p-local function for some p. The proof is then analogous to that of Proposition 44,
by considering the words “0(a—1—d)"e(a+b—1—d)(a+b—2—d)?0* and “0(a—1—d)"e0*. [

Summarizing the results for both the cases of alphabets, either with non-negative digits
only, or with positive as well as negative digits, we have proved the following result:

Theorem 46. Let § = a/b be the base, with a and b co-prime positive integers such that
a>b>=1, and let A be an alphabet (of contiguous integers containing 0) of the minimal
cardinality allowing parallel addition in base [3.

Then, A has cardinality a + b, and A has the form

e A={0,...,a+b—1}, or A={—a—-b+1,...,0}, or
e A={—d,...,0,...,a+b—1—d} containing a subset {—b,...,0,...,b}.

When b = 1, we recover the classical case of a positive integer base; see Section 5.1.
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7.2 Negative rational base

Proposition 47. Parallel addition in base 5 = —a/b, with a and b co-prime positive integers
such that a > b > 1, is possible on any alphabet (of contiguous integers) of the form A_, =
{=d,...,0,...,a+b—1—d} with cardinality #A_4 = a + b, where d € {0,...,a +b— 1}.

Proof. First, we show that parallel addition is possible on the alphabet Ay = {0, ..., a+b—1},
by providing an algorithm for the greatest digit elimination GDE(—a/b): {0,...,a + b} —
{0,...,a+0b—1}:

Algorithm GDE(—a/b): Base f = —a/b, with a > b > 1, a and b co-prime positive
integers, parallel conversion (greatest digit elimination) from {0,...,a+b} to {0,...,a+b—

1.

Input: a finite sequence of digits (z;) of {0,...,a+ b}, with z = >_ 2;47.
Output: a finite sequence of digits (z;) of {0,...,a+b— 1}, with 2 =" z;47.

for each j in parallel do

Zj:Cl+b o
1. Case{a<2j<a+b—1 andOSzjlgb—l}then g =1

if 0<z<b—1land a<z1<a+b then g¢;:=—1
else qgj =10
2. Zj = Zj —aq; — bqul
Using our familiar notion of w; = z; —ag;, and z}*" = w; — bg;_1, we describe the various

cases that can occur during the course of this algorithm:

e If z; = a + b, we obtain w; = b, and then 27 € b—b-{-1,0,1} = {0,b,2b} C
{07...,a+b—1}:./4().

e Forz; € {a,...,a+b—1} and z;_, € {0,...,b— 1}, we have ¢; = 1, and consequently
w; € {0,...,0—1}. As gy € {—1,0}, we finally get 2} € {0,...,b—1}—b-{—1,0} =
{0,...,20—1} C{0,...,a+b—2} C A,.

e For z; € {a,...,a+0b—1} and z;_1 € {b,...,a + b}, we have ¢; = 0, so we keep
w; € {a,...,a+b—1}. Now ¢;_; € {0,1}, and thus 27 € {a,...,a+b—1}-0-{0,1} =
{a—0b,...,a+b—1}C{l,...,a+b—1} C A,.

e In the case of z; € {b,...,a— 1}, simply ¢; =0, w; € {b,...,a— 1}, and the resulting
22 edb,...,a—1} =b-{-1,0,1} C{0,...,a+b— 1} = A,.

e When z; € {0,...,b— 1} and z;_y € {0,...,a — 1}, we have ¢; = 0, so we keep
w; € {0,...,b—1}, and ¢;_; € {—1,0}. Therefore, we obtain 2} € {0,...,b— 1} —
b-{-1,0} ={0,...,2b -1} C{0,...,a+b—2} C A,.

e Lastly, when z; € {0,...,b—1} and z;_1 € {a,...,a+ b}, by means of ¢; = —1 we get
w; € {a,...,a+b—1}. As gy € {0,1}, then 27 € {a,...,a+b—1} —=b-{0,1} =
{a—b,...,a+b—1}CA0.
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Again, we must not forget to mention that the digit z; = 0 is transformed by this
algorithm onto another digit (by means of ¢; # 0) only if its neighbour z;_; is non-zero,
namely from the set {a,...,a + b}; thereby, it is ensured that the algorithm cannot assign
a string of non-zeros to a string of zeros. The output value z is equal to the input value z,
since the base 3 fulfils the equality b3/t + a8’ = 0 for any j € Z. Thus, we see that this
algorithm is correct for the greatest digit elimination from the alphabet Ag U {a + b} into
.A(): {0,...,a+b—1}.

Now let us point out that all the elements d € {0,...,a + b — 1} are fixed by the p-
local function ¢ given by this algorithm, in the sense that ¢(“d e d¥) = (“d e d¥). This
fact, together with Corollary 24, implies that parallel addition in the negative rational base
B = —a/bis possible on any alphabet of the form A, ={—d,...,0,...,a+b—1—d}, with
cardinality #A4_4 =a+ b. O

Also in the negative case f = —a/b, for b = 1 we recover the classical case of a (negative)
integer base; see Section 5.2.

Since we do not have any lower bound for this base, we must find one directly.

Proposition 48. Let A = {m,...,0,..., M} withm <0 < M be an alphabet of contiguous
integers which enables parallel addition in base f = —a/b, with a and b co-prime positive
integers, a >b>1. Then #A > a + .

Proof. Without loss of generality, we may assume that 1 < M. Let ¢ be a p-local function
realizing parallel conversion from AU{M +1} into A using the mapping ® : (AU{M +1})? —
A. Put x =M + 1 and y = ®(aP). According to Claim 10, we have

n

y—x = (—%—1)ch(—%)k for some n € Nand ¢; € Z. (26)
k=0
Multiplying the previous equation by —b""!, one gets

n

(x —y)b"™ = (a+b) Z cr(—a)k b F,

k=0

and consequently, the number a + b divides (z —y)b"™!. As a and b are co-prime, necessarily
a+ b divides x — y. Since z — y > 0, there exists k € N such that x —y = k(a+b) > a +b.
But simultaneously, z —y < M + 1 —m = #.A. Putting these two inequalities together, we
obtain a + b < #A. O

We can summarize this section in the following theorem.

Theorem 49. In base = —a/b, with a and b co-prime positive integers, a > b > 1,
parallel addition can be performed in any alphabet A of contiguous integers containing 0 with
cardinality #A = a + b. This cardinality cannot be reduced.
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8 Conclusions and comments

Here is a summary of the numeration systems studied in this paper. We have considered
only alphabets of contiguous integers containing 0.

Base Canonical alphabet | Minimal alphabet for parallel ad-
dition

b > 2 integer {0,...,b—1} All alphabets of size b+ 1

—b, b > 2 integer | {0,...,b—1} All alphabets of size b+ 1

\k/l_9, b > 2 integer

All alphabets of size b+ 1

-1+

{0,1}

All alphabets of size 5

2 {0,...,3} All alphabets of size 5

12 {0,1} All alphabets of size 3

B2 =aB —1 {0,...,a—1} All alphabets of size a

B2 =aB+1 {0,...,a} All alphabets of size a + 2

a/b {0,...,a—1} {0,...,a +b—1}, {—a — b+

1,...,0}, and all alphabets of size
a+b containing {—b,...,0,...,b}
All alphabets of size a + b

—a/b {0,...,a—1}

Generalization of these results to other bases remains an open problem. The cases of
the Tribonacci numeration system with basis satisfying the equation X? = X? + X + 1, or
quadratic bases satisfying the equation X? = aX £ b, b > 2, are not so straightforward. The
reason is that we have only two tools so far, namely Theorems 9 and 6, which provide us
with lower bounds on the cardinality of the alphabet. For the bases listed in the summary
table, the bounds given in these theorems were attained, with the only exception being the
rational bases § = 4a/b, for which we had to refine our methods specifically in order to
prove minimality of the alphabets. These examples show that, for attacking the question of
minimality of alphabet for other bases, we need to find stronger versions of Theorems 9 and
6.

The positive rational base f = a/b is exceptional among our results for another property
as well. Contrary to the other bases, not all alphabets of contiguous integers (containing 0)
with sufficiently large cardinality allow parallel addition.

As mentioned in Remark 30, for alphabets which are too small to allow parallel addition
in a given base, one can consider a more general concept of the so-called k-block p-local
functions. It means that, instead of a base  and an alphabet A, we consider addition in
base 3% and over the alphabet A;, = {Zf;é a;f3 |a; € A}. Our interest in addition in base /3
can be extended to the question: what is the minimal size of an alphabet A and the minimal
size k of the blocks such that addition can be performed by a k-block p-local function? This
question was not tackled here at all. In [19], the precise definition of k-block p-local function
and a relation between A and k can be found.
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