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Abstract

We derive numerous identities for multivariate q-Euler polynomials by using the

umbral calculus.
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1 Preliminaries

Throughout this paper, we use the following notation, where C denotes the set of com-
plex numbers, F denotes the set of all formal power series in the variable t over C with

F =
{

f(t) =
∑∞

k=0 ak
tk

k!
| ak ∈ C

}

, P = C[x] and P∗ denotes the vector space of all linear

functional on P , 〈L | p(x)〉 denotes the action of the linear functional L on the polynomial
p(x), and it is well-known that the vector space operation on P∗ is defined by

〈L+M | p(x)〉 = 〈L | p(x)〉+ 〈M | p(x)〉 ,

〈cL | p(x)〉 = c 〈L | p(x)〉 ,

where c is some constant in C (for details, see [5, 6, 8, 11]).
The formal power series are known by the rule

f(t) =
∞
∑

k=0

ak
tk

k!
∈ F

which defines a linear functional on P as 〈f(t) | xn〉 = an for all n ≥ 0 (for details, see
[5, 6, 8, 11]]). Additionally,

〈

tk | xn
〉

= n!δn,k, (1)

where δn,k is the Kronecker symbol. When we take fL(t) =
∑∞

k=0

〈

L | xk
〉

tk

k!
, then we obtain

〈fL(t) | x
n〉 = 〈L | xn〉 and so as linear functionals L = fL(t) (see [5, 6, 8, 11]). Additionally,

the map L → fL(t) is a vector space isomorphism from P∗ onto F . Henceforth, F denotes
both the algebra of the formal power series in t and the vector space of all linear functionals
on P , and so an element f(t) of F can be thought of as both a formal power series and a
linear functional. The algebra F is called the umbral algebra (see [5, 6, 8, 11]).

Also, the evaluation functional for y in C is defined to be power series eyt. We can write
that 〈eyt | xn〉 = yn and so 〈eyt | p(x)〉 = p(y) (see [5, 6, 8, 11]). We note that for all f(t) in
F

f(t) =
∞
∑

k=0

〈

f(t) | xk
〉 tk

k!
(2)

and for all polynomials p(x),

p(x) =
∞
∑

k=0

〈

tk | p(x)
〉 xk

k!
, (3)

(for details, see [5, 6, 8, 11]). The order o(f(t)) of the power series f(t) 6= 0 is the smallest
integer k for which ak does not vanish. It is considered o(f(t)) = ∞ if f(t) = 0. We see that
o(f(t)g(t)) = o(f(t)) + o(g(t)) and o(f(t) + g(t)) ≥ min {o(f(t)), o(g(t))}. The series f(t)
has a multiplicative inverse, denoted by f(t)−1 or 1

f(t)
, if and only if o(f(t)) = 0. Such series
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is called an invertible series. A series f(t) for which o(f(t)) = 1 is called a delta series (see
[5, 6, 8, 11]). For f(t), g(t) ∈ F , we have 〈f(t)g(t) | p(x)〉 = 〈f(t) | g(t)p(x)〉.

A delta series f(t) has a compositional inverse f(t) such that f
(

f(t)
)

= f (f(t)) = t.
For f(t), g(t) ∈ F , we have 〈f(t)g(t) | p(x)〉 = 〈f(t) | g(t)p(x)〉. By (3), we have

p(k) (x) =
dkp(x)

dxk
=

∞
∑

l=k

〈

tl | p(x)
〉

l!
l (l − 1) · · · (l − k + 1) xl−k. (4)

Thus, we see that
p(k) (0) =

〈

tk | p(x)
〉

=
〈

1 | p(k) (x)
〉

. (5)

By (4), we get

tkp(x) = p(k) (x) =
dkp(x)

dxk
. (6)

So, we have
eytp(x) = p (x+ y) . (7)

Let f(t) be a delta series and let g(t) be an invertible series. Then there exists a unique
sequence Sn(x) of polynomials, with degSn(x) = n, such that

〈

g(t)f(t)k | Sn(x)
〉

= n!δn,k
for all n, k ≥ 0. The sequence Sn(x) is called the Sheffer sequence for (g(t), f(t)) or that
Sn(t) is Sheffer for (g(t), f(t)).

The Sheffer sequence for (1, f(t)) is called the associated sequence for f(t); we also say
Sn(x) is associated with f(t). The Sheffer sequence for (g(t), t) is called the Appell sequence
for g(t); we also say Sn(x) is Appell for g(t).

Let p(x) ∈ P . Then we have

〈

eyt − 1

t
| p(x)

〉

=

∫ y

0

p(u)du,

〈f(t) | xp(x)〉 = 〈∂tf(t) | p(x)〉 = 〈f́(t) | p(x)〉 , (8)
〈

eyt − 1 | p(x)
〉

= p(y)− p(0), (see [5, 6, 8, 11]).

Let Sn (x) be Sheffer for (g (t) , f (t)). Then the following results are known in [11]:

h (t) =
∞
∑

k=0

〈h (t) | Sk (x)〉

k!
g (t) f (t)k , h (t) ∈ F

p(x) =
∞
∑

k=0

〈

g (t) f(t)k | p(x)
〉

k!
Sk (x) , p(x) ∈ P ,

1

g
(

f (t)
)eyf(t) =

∞
∑

k=0

Sk (y)
tk

k!
, for all y ∈ C, (9)

f(t)Sn (x) = nSn−1(x).
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Let a1, . . . , ar, b1, . . . , br be positive integers. Kim and Rim [1] defined the generating
function for multivariate q-Euler polynomials as follows:

Fq(t, x | a1, . . . , ar; b1, . . . , br) =
∞
∑

n=0

En,q (x | a1, . . . , ar; b1, . . . , br)
tn

n!
(10)

=
2r

(qb1ea1t + 1) · · · (qbreart + 1)
ext.

Note that

E0,q (x | a1, . . . , ar; b1, . . . , br) =
2r

[2]qb1 [2]qb2 · · · [2]qbr
,

where [x]q is q-extension of x defined by

[x]q =
qx − 1

q − 1
= 1 + q + q2 + · · ·+ qx−1.

We assume that q ∈ C with |q| < 1. Also, we note that limq→1 [x]q = x (see [1]–[11]). In
the special case, x = 0, En,q (0 | a1, . . . , ar; b1, . . . , br) := En,q (a1, . . . , ar; b1, . . . , br) are called
multivariate q-Euler numbers. By (10), we obtain the following:

En,q (x | a1, . . . , ar; b1, . . . , br) =
n
∑

k=0

(

n

k

)

xkEn−k,q (a1, . . . , ar; b1, . . . , br) . (11)

Kim and Kim [5] studied some interesting identities for Frobenius-Euler polynomials
arising from umbral calculus. They derived not only new but also fascinating identities in
modern classical umbral calculus.

By the same motivation, we also get numerous identities for multivariate q-Euler poly-
nomials by utilizing from the umbral calculus.

2 On the multivariate q-Euler polynomials arising from

umbral calculus

Assume that Sn (x) is an Appell sequence for g (t). By (9), we have

1

g(t)
xn = Sn(x) if and only if xn = g(t)Sn(x), (n ≥ 0) . (12)

Let us take

g (t | a1, . . . , ar; b1, . . . , br) =

(

qb1ea1t + 1
)

· · ·
(

qbreart + 1
)

2r
∈ F .
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Then we readily see that g (t | a1, . . . , ar; b1, . . . , br) is an invertible series. By (12), we
have

∞
∑

n=0

En,q (x | a1, . . . , ar; b1, . . . , br)
tn

n!
=

1

g (t | a1, . . . , ar; b1, . . . , br)
ext. (13)

By (13), we obtain the following

1

g (t | a1, . . . , ar; b1, . . . , br)
xn = En,q (x | a1, . . . , ar; b1, . . . , br) . (14)

Also, by (6), we have

tEn,q (x | a1, . . . , ar; b1, . . . , br) = Én,q (x | a1, . . . , ar; b1, . . . , br) (15)

= nEn−1,q (x | a1, . . . , ar; b1, . . . , br) .

By (14) and (15), we have the following proposition.

Proposition 1. For n ≥ 0, En,q (x | a1, . . . , ar; b1, . . . , br) is an Appell sequence for

g (t | a1, . . . , ar; b1, . . . , br) =

(

qb1ea1t + 1
)

· · ·
(

qbreart + 1
)

2r
.

By (10), we see that

∞
∑

n=1

En+1,q (x | a1, . . . , ar; b1, . . . , br)
tn

n!
=

xgext − ǵext

g2
(16)

=
∞
∑

n=0

(

x
1

g
xn −

ǵ

g

1

g
xn

)

tn

n!

where we used g := g (t | a1, . . . , ar; b1, . . . , br). Because of (14) and (16), we discover the
following:

En+1,q (x | a1, . . . , ar; b1, . . . , br) (17)

= xEn,q (x | a1, . . . , ar; b1, . . . , br)−
ǵ

g
En,q (x | a1, . . . , ar; b1, . . . , br) .

Therefore, we deduce the following theorem.

Theorem 2. Let g := g (t | a1, . . . , ar; b1, . . . , br) =
(qb1ea1t+1)···(qbr eart+1)

2r
∈ F . Then we have

for n ≥ 0 :

En+1,q (x | a1, . . . , ar; b1, . . . , br) =

(

x−
ǵ

g

)

En,q (x | a1, . . . , ar; b1, . . . , br) . (18)
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From (10), we derive that

∞
∑

n=0

(

qbrEn,q (x+ ar | a1, . . . , ar; b1, . . . , br) + En,q (x | a1, . . . , ar; b1, . . . , br)
) tn

n!
(19)

= 2
∞
∑

n=0

En,q (x | a1, . . . , ar−1; b1, . . . , br−1)
tn

n!
.

By comparing the coefficients in the both sides of tn

n!
on the above, we obtain the following

2En,q (x | a1, . . . , ar−1; b1, . . . , br−1) = qbrEn,q (x+ ar | a1, . . . , ar; b1, . . . , br) (20)

+En,q (x | a1, . . . , ar; b1, . . . , br) .

From Theorem 2, we get the following equation

gEn+1,q (x | a1, . . . , ar; b1, . . . , br) (21)

= gxEn,q (x | a1, . . . , ar; b1, . . . , br)− ǵEn,q (x | a1, . . . , ar; b1, . . . , br) .

By using (20) and (21), we arrive at the desired theorem.

Theorem 3. For n ≥ 0, we have

2En,q (x | a1, . . . , ar−1; b1, . . . , br−1) = qbrEn,q (x+ ar | a1, . . . , ar; b1, . . . , br) (22)

+En,q (x | a1, . . . , ar; b1, . . . , br) .

Now, we consider that

∫ x+y

x

En,q (u | a1, . . . , ar; b1, . . . , br) du

=
1

n+ 1
(En+1,q (x+ y | a1, . . . , ar; b1, . . . , br)− En+1,q (x | a1, . . . , ar; b1, . . . , br))

=
1

n+ 1

∞
∑

j=1

(

n+ 1

j

)

En+1−j,q (x | a1, . . . , ar; b1, . . . , br) y
j

=
∞
∑

j=1

n (n− 1) (n− 2) · · · (n− j + 2)

j!
En+1−j,q (x | a1, . . . , ar; b1, . . . , br) y

j

=
1

t

(

∞
∑

j=0

yjtj

j!
− 1

)

En,q (x | a1, . . . , ar; b1, . . . , br)

=
eyt − 1

t
En,q (x | a1, . . . , ar; b1, . . . , br) .

Therefore, we discover the following theorem:
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Theorem 4. For n ≥ 0, we have

∫ x+y

x

En,q (u | a1, . . . , ar; b1, . . . , br) du =
eyt − 1

t
En,q (x | a1, . . . , ar; b1, . . . , br) . (23)

By (15) and Proposition 1, we have

t

{

1

n+ 1
En+1,q (x | a1, . . . , ar; b1, . . . , br)

}

= En,q (x | a1, . . . , ar; b1, . . . , br) . (24)

Thanks to (24), we readily derive the following:

〈

eyt − 1 |
En+1,q (x | a1, . . . , ar; b1, . . . , br)

n+ 1

〉

(25)

=

〈

eyt − 1

t
| t

{

En+1,q (x | a1, . . . , ar; b1, . . . , br)

n+ 1

}〉

=

〈

eyt − 1

t
| En,q (x | a1, . . . , ar; b1, . . . , br)

〉

.

On account of (8) and (24), we get

〈

eyt − 1

t
| En,q (x | a1, . . . , ar; b1, . . . , br)

〉

=

〈

eyt − 1 |
En+1,q (x | a1, . . . , ar; b1, . . . , br)

n+ 1

〉

=
1

n+ 1
{En+1,q (y | a1, . . . , ar; b1, . . . , br)− En+1,q (a1, . . . , ar; b1, . . . , br)}

=

∫ y

0

En,q (u | a1, . . . , ar; b1, . . . , br) du.

Consequently, we obtain the following theorem.

Theorem 5. For n ≥ 0, we have

〈

eyt − 1

t
| En,q (x | a1, . . . , ar; b1, . . . , br)

〉

=

∫ y

0

En,q (u | a1, . . . , ar; b1, . . . , br) du. (26)

Assume that

P (q | a1, . . . , ar; b1, . . . , br) = {p(x) ∈ Q (q | a1, . . . , ar; b1, . . . , br) [x] | deg p(x) ≤ n}

is a vector space over Q (q | a1, . . . , ar; b1, . . . , br) which are the space of all polynomials
including coefficients q, a1, . . . , ar, b1, . . . , br.

For p(x) ∈ P (q | a1, . . . , ar; b1, . . . , br), let us consider

p(x) =
n
∑

k=0

bkEk,q (x | a1, . . . , ar; b1, . . . , br) . (27)
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By Proposition 1, En,q (u | a1, . . . , ar; b1, . . . , br) is an Appell sequence for

g := g (t | a1, . . . , ar; b1, . . . , br) =

(

qb1ea1t + 1
)

· · ·
(

qbreart + 1
)

2r
.

Thus we have
〈

g (t | a1, . . . , ar; b1, . . . , br) t
k | En,q (x | a1, . . . , ar; b1, . . . , br)

〉

= n!δn,k. (28)

From (27) and (28), we compute

〈

g (t | a1, . . . , ar; b1, . . . , br) t
k | p(x)

〉

=
n
∑

l=0

bl
〈

gtk | El,q (x | a1, . . . , ar; b1, . . . , br)
〉

(29)

=
n
∑

l=0

bll!δl,k = k!bk.

Thus, by (29), we derive

bk =
1

k!

〈

gtk | p(x)
〉

(30)

=
1

2rk!

〈(

qb1ea1t + 1
)

· · ·
(

qbreart + 1
)

| p(k) (x)
〉

.

It is not difficult to show the following
(

qb1ea1t + 1
)

· · ·
(

qbreart + 1
)

=
∑

k1,...,kr≥0
k1+k2+...+kr=1

q
∑r

l=1
blklet

∑r
j=1

ajkj . (31)

Via the results (30) and (31), we easily see that

bk =
1

2rk!

∑

k1,...,kr≥0
k1+k2+...+kr=1

q
∑r

l=1
blkl

〈

et
∑r

j=1
ajkj | p(k) (x)

〉

=
1

2rk!

∑

k1,...,kr≥0
k1+k2+...+kr=1

q
∑r

l=1
blklp(k)

(

r
∑

j=1

ajkj

)

.

As a result, we state the following theorem.

Theorem 6. For p(x) ∈ P (q | a1, . . . , ar; b1, . . . , br), when we consider

p(x) =
n
∑

k=0

bkEk,q (x | a1, . . . , ar; b1, . . . , br) ,

we obtain

bk =
1

2rk!

∑

k1,...,kr≥0
k1+k2+...+kr=1

q
∑r

l=1
blklp(k)

(

r
∑

j=1

ajkj

)

.
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