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Abstract

Lengyel introduced a sequence of numbers Zn, defined combinatorially, that satisfy
a recurrence where the coefficients are Stirling numbers of the second kind. He proved
some 2-adic properties of these numbers. In this paper, we give another recurrence for
the sequence Zn, where the coefficients are Stirling numbers of the first kind. Using
this formula, we give another proof of Lengyel’s lower bound on the 2-adic valuation
of the Zn. We also resolve some conjectures of Lengyel about the sequence Zn.

We also define

(a) A new sequence Yn analogous to Zn, exchanging the role of Stirling numbers of
the first and second kind. We study its 2-adic properties.

(b) Another sequence similar to Lengyel’s sequence, and we study its p-adic properties
for p ≥ 3.

1 Introduction and notation

In the text |.| denotes the p-adic absolute value on Q, and vp denotes the corresponding p-
adic valuation. Let Qp be the p-adic completion of Q and let Cp be the p-adic completion of
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an algebraic closure of Qp. For all the p-adic background, we refer to Amice [1]; in particular
for a polynomial P (x) ∈ Cp[x] and for r ∈ R+, we write |P |(r) := supx∈Cp

|x|≤r

|P (x)|.

For an integer n, let Sp(n) be the sum of the digits of the p-adic expansion of n. Through-
out this article, we use the following well-known formula (cf. Amice [1, p. 102]):

vp(n!) =
n− Sp(n)

p− 1
. (1)

Lengyel [4] studied the 2-adic properties of the sequence defined by Z1 = 1 and

Zn =
n−1
∑

k=1

S(n, k)Zk (2)

for n ≥ 2, where the S(n, k) are Stirling numbers of the second kind. (See Lengyel [4] for
the combinatorial properties of the Zn). This sequence appears in Sloane’s database [5] as
A005121. In particular Lengyel showed the following results:

Theorem 1. The Zn satisfy

(a) v2(Z2n+L) ≥ n for n ≥ 1 and L ≥ 0;

(b) v2(Zk) ≥ ⌊log2(k)⌋ − 1 for k ≥ 1.

Lengyel also proposed some conjectures about these numbers; first [4, Conjecture 2]:

Conjecture 2. For n ≥ 3, let Zn be given by (2). Then v2(Z2n) = n.

He also proposed [4, Conjecture 4]:

Conjecture 3. For all n ≥ 2 we have

max{k | v2(Zk) = n} = 3 · 2n−1 .

2 The results

In this paper, we reprove the results of Lengyel by another method. This method allows us
to prove the above two conjectures. More precisely we get the following theorems:

Theorem 4. The lower bound
v2(Zn) ≥ log2(n)− 1

holds for all n ≥ 1.

Remark 5. The inequality in Theorem 4 implies the assertion (a) of Theorem 1 when L ≥ 1,
and the assertion (b) of Theorem 1.
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Theorem 6. If t ≥ 3, then
v2(Z2t) = t .

Remark 7. This theorem proves Conjecture 2; in addition, it completes the assertion (a) of
Theorem 1, by showing that the case L = 0 of the assertion (a) holds.

Theorem 8. For all t ≥ 2, we have

max{k | v2(Zk) = t} = 3 · 2t−1

which proves Conjecture 3.

We also introduce a new sequence Yn by permuting the Stirling numbers of the first and
second kind. More precisely, let Yn be the sequence of integers defined by Y1 = 1 and

Yn =
n−1
∑

m=1

s(n,m)Ym .

for n ≥ 2. Let s(n, k) be, as usual, s(n, k) the Stirling numbers of the first kind. For
properties of the Stirling numbers, we refer to Comtet [2, Chapter 5.5, pp. 212–219].

We prove the following theorem for the sequence Yn:

Theorem 9. Let Yn be as above. Then

(a) All the Yn are odd;

(b) For n ≥ 1, we have v2(Yn + 1) = 1 if and only if n is congruent to 0 or 1 modulo 3.

We also get some results for a sequence similar to Lengyel’s sequence for primes p ≥ 3.
Define the sequence Z

〈p〉
n by Z

〈p〉
0 = 0, Z

〈p〉
1 = 1, and

(p− 1)Z〈p〉
n =

n−1
∑

k=1

S(n, k)Z
〈p〉
k

or

pZ〈p〉
n =

n
∑

k=1

S(n, k)Z
〈p〉
k

for n ≥ 2. (Note that Z
〈p〉
n is not an integer, but only a p-integer).

We prove the following result below:

Theorem 10. The p-adic valuation of the Z
〈p〉
n satisfies

(a) vp(Z
〈p〉
n ) ≥ logp(n)− 1 for n ≥ 1;

(b) vp(Z
〈p〉
n ) = t− 1 for n = pt;

(c) vp(Z
〈p〉
n ) ≥ t for n ≥ pt + 1.

Remark 11. Note that property (c) is an immediate consequence of property (a). Hence we
have only to show that (a) and (b) hold.
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3 Use of the Stirling numbers of the first kind

We now show that the Zn satisfy another recurrence relation:

Proposition 12. The Zn satisfy

Zn = s(n, 1)− 2
n−1
∑

m=1

s(n,m)Zm, n ≥ 2 ; (3)

Zn = −s(n, 1)− 2
n−1
∑

m=2

s(n,m)Zm, n ≥ 3 . (4)

Proof. According to Comtet [2, Formula (6f), p. 144], the Stirling numbers of the first and
second kind satisfy the formulae

n
∑

k=0

S(n, k)s(k,m) = δm,n , and
n

∑

k=0

s(n, k)S(k,m) = δm,n ,

where δm,n is the usual Kronecker symbol. These relations are equivalent to the following
Stirling inversion formula:

∀n ∈ N

(

fn =
n

∑

m=1

s(n,m)gm ⇐⇒ gn =
n

∑

m=1

S(n,m)fm

)

. (5)

Applying this inversion formula to the recurrence relation for the Zn, we obtain

Zn =
n−1
∑

k=1

S(n, k)Zk ⇔ 2Zn =
n

∑

m=1

S(n,m)Zm +
n

∑

m=1

S(n,m)s(m, 1) ,

which can also be written

Zn =
n

∑

m=1

S(n,m)
Zm + s(n, 1)

2
.

Next, by Stirling inversion we get

Zn + s(n, 1)

2
=

n
∑

m=1

s(n,m)Zm ⇔
−Zn + s(n, 1)

2
=

n−1
∑

m=1

s(n,m)Zm ,

which is the desired result.

Remark 13. Actually using exactly the same method, we get the following relation for the
sequence Z

〈p〉
n and n ≥ 2:

Z〈p〉
n = s(n, 1)−

p

p− 1

n−1
∑

m=1

s(n,m)Zm . (6)

Since s(n, 1) = (−1)n−1(n − 1)! is a p-adic unit for n = 1, . . . , p, we get as an immediate

consequence that Z
〈p〉
n is a p-adic unit for the same values of n.
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4 Some p-adic properties of Stirling numbers of the

first kind

In this section, we prove some lemmas for the Stirling numbers of the first kind.

Lemma 14. For n ≥ m ≥ 1, we get the lower bound

vp(s(n,m)) ≥
⌊n− 1

p

⌋

+ 1−m.

Proof. Note that the inequality is trivial if
⌊n− 1

p

⌋

+ 1 −m ≤ 0. The Stirling numbers of

the first kind (cf. [2, Formula (5e), p. 213]) are defined as follows:

Pn(x) = (x)n :=
n

∑

m=1

s(n,m)xm .

Take x ∈ Cp with |x| = r with
1

p
< r < 1. Then |x − k| = 1 if k is not divisible by p

and |x − k| = r otherwise. This shows that |Pn|(r) = max{|s(n,m)|rm} is equal to rM ,

where M =
⌊n− 1

p

⌋

+ 1 is the number of k, 0 ≤ k ≤ n − 1, that are divisible by p. Hence

|s(n,m)|rm ≤ rM , and |s(n,m)| ≤ rM−m.

The continuity of the map r 7→ |Pn|(r), [1, Cor. 4.2.7, p. 122], allows us to choose r =
1

p
in the previous inequality, which gives the desired lower bound.

Lemma 15. If t ≥ 2, and n = pt, it follows that

Pn(x) ≡ xpt−1

(xp−1 − 1)p
t−1

(mod p) .

Therefore s(n,m) is divisible by p if m ≤ pt−1 − 1, and s(pt, pt−1) is not divisible by p.

Proof. By hypothesis, we have n ≥ p2. Let r ∈ {0, · · · , p−1}. The number of integers k such

that 0 ≤ k ≤ n − 1 and k ≡ r (mod p) is
⌊n− 1− r

p

⌋

+ 1 = pt−1. Hence it is independent

of r. It follows that

Pn(x) ≡

p−1
∏

r=0

(x− r)p
t−1

mod p .

But

p−1
∏

r=0

(x − r) ≡ xp − x = x(xp−1 − 1) (mod p). The proof is now complete (the last two

assertions are clear).

Now, we examine the value of s(n, k) modulo 4, for specific values of n.
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Lemma 16. Let t ≥ 5, and n = 2t. Then

n
∑

k=0

s(n, k)xk = Pn(x) = x2t−1

(x2 − 1)2
t−2

(mod 4) .

Proof. We know that Pn(x) = x(x− 1) · · · (x− n+ 1). Let r be such that 0 ≤ r ≤ 3. There

are Mr =
⌊n− r − 1

4

⌋

+ 1 values k, 0 ≤ k ≤ n − 1 such that k ≡ r (mod 4). Since n = 2t,

we immediately see that Mr is in fact independent of r. Hence Mr is equal to 2t−2. Thus,

modulo 4, the polynomial Pn is congruent to
3
∏

r=0

(x− r)2
t−2

.

We first consider the factor (x − 2)2
t−2

. Since (x − 2)2 ≡ x2 (mod 4), and t ≥ 5, or
equivalently t− 2 ≥ 3, we see that

(x− 2)2
t−2

≡ x2t−2

(mod 4) .

Since 3 is congruent to −1 modulo 4, we have

Pn(x) ≡ x2t−1

(x2 − 1)2
t−2

(mod 4) .

The proof of the lemma is complete.

Lemma 17. Let n = 2t with t ≥ 5. Then, for all m, 1 ≤ m ≤ 2t − 1, m 6= 3 · 2t−2 and
m 6= 2t−1, it follows that

s(2t,m) ≡ 0 (mod 4) .

In addition, s(2t, 2t−1 + 2t−2) ≡ 0 (mod 2), and s(2t, 2t−1) ≡ 1 (mod 4).

Proof. From Formula (1) it follows that

v2

((

2t−2

j

))

= S2(j) + S2(2
t−2 − j)− 1 .

If j 6= 0 and not equal to 2t−2, then S2(j) + S2(2
t−2 − j) ≥ 2. If S2(j) + S2(2

t−2 − j) = 2
then j = 2t−3, because it implies that both j and 2t−2 − j are powers of 2 and hence equal
(their sum is 2t−2). Using the modulo 4 formula given above for the polynomial Pn(x), and
the binomial theorem for the factor (x2 − 1)2

t−2

, we obtain

Pn(x) ≡ x2t −

(

2t−2

2t−3

)

x2t−1+2t−2

+ x2t−1

(mod 4) .

Since the 2-adic valuation of

(

2t−2

2t−3

)

is equal to 1, the lemma is proved.
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Lemma 18. Let t ≥ 5, and n = 3 · 2t. The following congruence holds:

Pn(x) ≡
n

∑

k=0

s(n, k)xk = x3·2t−1

(x2 − 1)3·2
t−2

(mod 4) .

Proof. Let r ∈ {0, · · · , 3}. The number of k such that 0 ≤ k ≤ n− 1 and k ≡ r (mod 4) is
⌊n− 1− r

4

⌋

+ 1 which is 3 · 2t−2 for all r. Hence

Pn(x) ≡
3
∏

r=0

(x− r)3·2
t−2

≡ (
3
∏

r=0

(x− r)2
t−2

)3 (mod 4) .

From the proof of Lemma 16 it follows that

3
∏

r=0

(x− r)2
t−2

≡ x2t−1

(x2 − 1)2
t−2

(mod 4) .

The proof is now complete.

Lemma 19. Let t ≥ 5, n = 3 · 2t, and 1 ≤ m ≤ n. Then

(a) s(n,m) is divisible by 4 for m 6∈ {2t+1+2t−1, 2t+1, 3·2t−1, 3·2t−1+2t−2, 3·2t−2t−2, 3·2t};

(b) s(n,m) is even, but not divisible by 4, for m = 3 · 2t − 2t−2 and m = 3 · 2t−1 + 2t−2;

(c) s(n,m) is odd for m = 2t+1 + 2t−1, m = 2t+1, m = 3 · 2t−1 and m = 3 · 2t.

In particular, s(n, 3 · 2t−1) is odd, and s(n, 3 · 2t − 1), s(n, 3 · 2t − 2), and all the s(n, j) for
j ≤ 3 · 2t−1 − 1 are divisible by 4.

Proof. We know that Pn(x) ≡ x3·2t−1

(x2 − 1)3·2
t−2

(mod 4) by Lemma 18. By the binomial
theorem we get

(x2 − 1)3·2
t−2

=
3·2t−2

∑

j=0

(−1)j
(

3 · 2t−2

j

)

x2(3·2t−2−j) .

From Formula (1) we know that the 2-adic valuation of

(

q

j

)

is S2(j) + S2(q − j) − S2(q).

We have 3 · 2t−2 = 2t−1 + 2t−2, and hence S2(3 · 2
t−2) = 2. To prove the lemma it suffices

(1) To find all the integers j such that

0 ≤ j ≤ 3 · 2t−2, and T := S2(j) + S2(3 · 2
t−2 − j)− 2 =

{

0;

1.
(7)
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(2) To show that they are precisely the integers given in (b) and (c).

First suppose that T = 0. We have the trivial solutions of equation (7) j = 0 and
j = 3 · 2t−2. Now we can assume 1 ≤ j ≤ 3 · 2t−2 − 1. Hence S2(j) = S2(3 · 2

t−2 − j) = 1
(because S2(n) ≥ 1), It follows that j and 3 ·2t−2−j are powers of 2, say 2α and 2β. Equality
3 · 2t−2 = 2α + 2β immediately shows that α = t− 2 and β = t − 1, or vice-versa. We have
found 4 values of j:

j = 0, j = 2t−2, j = 2t−1 and j = 3 · 2t−2 .

After multiplying by x3·2t−1

, we see that they are the values given in assertion (c).
Now suppose that T = 1. From the first case we know that 1 ≤ j ≤ 3 · 2t−2 − 1. From

equation (7) it follows that S(j) = 1 or S(3 · 2t−2 − j) = 2 or vice-versa. This leads to
study a relation of the form 2α + (2β + 2γ) = 3 · 2t−2, with β < γ. We leave to the reader
to show that it implies α = β = t− 3 and γ = t− 1. Hence the two solutions j = 2t−3 and
j = 3 ·2t−2−2t−3. After multiplying by x3·2t−1

we see that these values are exactly the values
in assertion (b).

For all other values of 1 ≤ m ≤ 3 · 2t s(n,m) ≡ 0 (mod 4). The lemma is proved.

5 A lemma about sums of binomial coefficients

We also need a lemma about sums of binomials.

Lemma 20. Let j be a primitive third root of unity, r ∈ {0, 1, 2}, and n = 3k + r.
For s ∈ {0, 1, 2} define

Γs,r,k =
∑

0≤l≤n;
l≡s (mod 3)

(

n

l

)

.

It follows that
3Γs,r,k = 2n + (−1)n(js+r + j2(s+r)) .

As a consequence, we get

• If r + s is not divisible by 3, then

3Γs,r,k = 2n + (−1)n+1 .

• If r + s is divisible by 3, then

3Γs,r,k = 2n + 2(−1)n .

Proof. Write

(1 + x)n =
n

∑

l=0

(

n

l

)

xl ,
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and choose successively x = 1, x = j, and x = j2. It follows that

Γ0,r,k + Γ1,r,k + Γ2,r,k = 2n , (L1)

Γ0,r,k + jΓ1,r,k + j2Γ2,r,k = (1 + j)n , (L2)

Γ0,r,k + j2Γ1,r,k + jΓ2,r,k = (1 + j2)n . (L3)

Since 1+j+j2 = 0, we get, when computing the quantities L1+L2+L3, L1+j2L2+jL3,
and L1 + jL2 + j2L3,

3Γ0,r,k = 2n + (1 + j)n + (1 + j2)n = 2n + (−1)n(jr + j2r) ,

3Γ1,r,k = 2n + j2(1 + j)n + j(1 + j2)n = 2n + (−1)n(j1+r + j2r+2) ,

3Γ2,r,k = 2n + j(1 + j)n + j2(1 + j2)n = 2n + (−1)n(jr+2 + j2r+1) .

The general formula follows.

Remark 21. Analogous results exist in, e.g., [3].

6 Proof of Theorem 4

We show the result by induction on n. For n ≤ 7, we check that the lower bound holds using
the explicit numerical values of the Zn, cf. [4, p. 179]. Hence our induction hypothesis will
be

(

n ≥ 7 ⇒ v2(Zm) ≥ log2(m)− 1, 1 ≤ m ≤ n− 1
)

. H(n)

We use Formula (4), valid for n ≥ 3:

Zn = −s(n, 1)− 2
n−1
∑

m=2

s(n,m)Zm . (4)

We will show that all the terms in the last expression have 2-adic absolute value ≤ 2− log2(n)+1;
this will imply that this is also the case for Zn, and the result will be proved. We consider
many different cases.

6.1 Let m be such that 2 ≤ m ≤
⌊n− 1

2

⌋

+ 1. Using Lemma 14 and the induction

hypothesis, we get
∣

∣s(n,m)Zm

∣

∣ ≤ 2− log2(m)+1−
⌊

n−1

2

⌋

−1+m .

We want to show that this last term is bounded by 2− log2(n)+2 (we have taken into
account the factor 2 in Formula (4)). This is equivalent to showing that

m− log2(m) ≤
⌊n− 1

2

⌋

− log2(n) + 2 .

There are two cases, n even or odd.
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First case: n even. Let n = 2h. As n ≥ 7, we have h ≥ 4. We also have
⌊n− 1

2

⌋

=

h− 1; hence m ≤ h. Since log2(2h) = 1 + log2(h), we have to show that

m− log2(m) ≤ h− log2(h) ,

which holds because the function x− log2(x) is increasing for x ≥ 2.

Second case: n odd. Let n = 2h + 1 (hence h ≥ 3). We get
⌊n− 1

2

⌋

= h; hence

2 ≤ m ≤ h+ 1. First, suppose that m = h+ 1. We have to show

h+ 1− log2(h+ 1) ≤ h− log2(2h+ 1) + 2

or log2(2h+ 1) ≤ log2(h+ 1) + 1 which is equivalent to showing 2h+ 1 ≤ 2h+ 2
and hence is true.

Now we can suppose that 2 ≤ m ≤ h. Since h ≥ 3, we have 1 +
1

2h
≤

7

6
, and

hence

1− log2(1 +
1

2h
) ≥ 1− log2(

7

6
) =

log(12)− log(7)

log 2
> 0 .

It suffices to show that

m− log2(m) ≤ h− log2(h) ,

which holds because the function x− log2(x) is increasing for x ≥ 2, and 2 ≤ m ≤
h.

6.2 Now suppose that m verify
⌊n− 1

2

⌋

+ 2 ≤ m ≤ n − 1. We have only at our disposal

the induction hypothesis.

We have to show, taking into account the factor 2, that 2− log2(m)+1 ≤ 2− log2(n)+2, or
log2(n) ≤ log2(m) + 1. This is equivalent to showing n ≤ 2m. There are two cases:

(a) If n is even, n = 2h, we have m ≥
⌊n− 1

2

⌋

+2 = h+1; hence 2m ≥ 2h+2 = n+2.

(b) If n is odd, n = 2h+1, we havem ≥
⌊n− 1

2

⌋

+2 = h+2; hence 2m ≥ 2h+4 = n+3.

6.3 The only remaining term, s(n, 1), is equal to (−1)n−1(n − 1)!, cf. [2, Formula (6b),
p. 214]. We want to show that, for all n ≥ 7,

|(n− 1)!| = 2−n+1+S2(n−1) ≤ 2− log2(n)+1 .

This is equivalent to showing that

S2(n− 1) + log2(n) ≤ n .

For m ≥ 1, we have S2(m) ≤ 1+log2(m), it suffices then to show that 1+log2(n−1)+
log2(n) ≤ n. This is equivalent to showing n(n− 1) ≤ 2n−1. We prove this inequality
by noticing that it holds for n = 6 and using an easy induction argument.

Now the proof of Theorem 4 is complete.
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7 Proof of Theorem 6

We also use induction. Looking at the numerical values of Zn, we check the equality for
t = 3 and t = 4. So suppose that equality v2(Z2h) = h holds for 3 ≤ h ≤ t − 1, and prove
that v2(Z2t) = t. We can suppose t ≥ 5.

Again using Formula (4) with n = 2t, we get

Z2t = −s(2t, 1)− 2
2t−1
∑

m=2

s(2t,m)Zm .

We will prove that all terms in Eq. (4), with the exception of the term corresponding to
m = 2t−1, (note that t− 1 ≥ 4; hence m 6= 4) have 2-adic valuation ≥ t+ 1.

7.1 First, consider the valuation of the term s(2t, 1) = (−1)2
t−1(2t − 1)!. From Formula

(1) it follows that

v2
(

s(2t, 1)
)

= 2t − 1− S2(2
t − 1) = 2t − 1− t .

We want to prove that 2t − 1− t ≥ t+1 or, replacing t by t− 1, 2t−1 ≥ 1+ t; this last
inequality holds for t = 3, and also for t ≥ 3 by an easy induction.

7.2 Now take the term 2s(2t,m)Zm with 2 ≤ m ≤ 2t−1 − 3. Its valuation satisfies

v2
(

2s(2t,m)Zm

)

≥ 1 +
⌊2t − 1

2

⌋

+ 1−m+ log2(m)− 1 = 2t−1 −m+ log2(m) .

As we want to prove that v2(2s(2
t,m)Zm) ≥ t+ 1, it suffices to prove that

m− log2(m) ≤ 2t−1 − 1− t .

Since the function x − log2(x) is increasing for x ≥ 2, we only have to prove the
inequality for m = 2t−1 − 3. This is equivalent to showing that log2(2

t−1 − 3) ≥ t− 2,
or 2t−2 ≥ 3. This last inequality holds by the hypothesis on t.

7.3 Now take a term 2s(2t,m)Zm with m = 2t−1 − 1 or 2t−1 − 2. We have to prove

v2
(

2s(2t,m)Zm

)

= 1 + v2
(

s(2t,m)
)

+ v2(Zm) ≥ t+ 1 .

It follows from Lemma 17 that s(2t, 2t−1 − 1) and s(2t, 2t−1 − 2) are divisible by 4,
and, since, for these two values, we have m = 2t−2 + L with L ≥ 1, we know that
v2(Zm) ≥ t− 2. Hence

v2
(

2s(2t,m)Zm

)

≥ 1 + 2 + t− 2 = t+ 1 .
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7.4 Now examine 2s(2t,m)Zm with 2t−1 + 1 ≤ m ≤ 2t − 1 and m 6= 2t−1 + 2t−2 = 3 · 2t−2.
By Lemma 17, s(2t,m) is divisible by 4 for these values of m. Hence

v2
(

2s(2t,m)Zm

)

≥ 3 + v2(Zm) ≥ 2 + log2(m) .

It suffices to prove that log2(m) ≥ t− 1, or m ≥ 2t−1, which is true.

7.5 Now consider the term 2s(2t,m)Zm with m = 2t−1 + 2t−2. By Lemma 17, we know
that s(2t,m) is divisible by 2 and that

v2(Zm) ≥ log2(m)− 1 = log2(3 · 2
t−2)− 1 = log2(3) + t− 2− 1 > t− 2 ,

hence v2(Zm) ≥ t− 1. Therefore

v2
(

2s(2t,m)Zm) ≥ 1 + 1 + t− 1 = t+ 1 .

7.6 We are only left with the term 2s(2t,m)Zm with m = 2t−1. By the induction hypothe-
sis, we have v2(Zm) = t− 1, and we know that s(2t, 2t−1) is odd by Lemma 17. Hence
the 2-adic valuation of this term is exactly t.

We have proved that, in the expression (4) of Z2t , only one term has valuation t , all the
others having valuation ≥ t+ 1; hence v2

(

Z2t
)

= t. The proof is complete.

8 Proof of Theorem 8

First we show that the conjecture holds for 3·2h, with 2 ≤ h ≤ 4, by numerical computations;
then we proceed by induction. Suppose the result true for 2 ≤ h ≤ t− 1; let us prove it for
t. By the above, we can suppose that t ≥ 5. We have to prove two facts:

(a) For m = 3 · 2t, v2(Zm) = t+ 1;

(b) For m′ > 3 · 2t, v2(Zm′) ≥ t+ 2.

First, let us prove assertion (a). Of course we use Formula (4):

Zn = −s(n, 1)− 2
n−1
∑

m=2

s(n,m)Zm .

Take n = 3 · 2t. We will prove that all the terms in this expression are of 2-adic valuation
≥ t+ 2, with the exception of only one term.

8.1 First, look at s(3 · 2t, 1). Its 2-adic valuation is 3 · 2t − 1 − S2(3 · 2t − 1). Since
3 · 2t − 1 = 2t+1 + 2t−1 + · · · + 1 we get S2(3 · 2

t − 1) = t + 1. We have to show that
3 · 2t − 1− t− 1 ≥ t+ 2. This inequality holds for t = 1. The general case follows by
an easy induction.

12



8.2 Now consider 2s(3 ·2t,m)Zm, with 2 ≤ m ≤ 3 ·2t−1−2. Using Lemma 14 and Theorem
4, we easily see that its 2-adic valuation is ≥ 3 ·2t−1−m+log2(m). Hence we have only
to prove that 3 ·2t−1− t−2 ≥ m− log2(m). The function x− log2(x) being increasing it
suffices to prove this last inequality for m = 3 · 2t−1 − 2. This is equivalent to showing
that log2

(

3 · 2t−1 − 2
)

≥ t, which is obvious since 3 · 2t−1 − 2 = 2t + (2t−1 − 2) ≥ 2t.

8.3 Now take m = 3 · 2t−1 − 1 = 2t + (2t−1 − 1). By Theorem 4, v2(Zm) > t− 1, therefore
v2(Zm) ≥ t. By Lemma 19, v2(s(3 · 2

t,m)) ≥ 2, and we are done.

8.4 Now suppose that 3 · 2t−1 + 1 ≤ m ≤ 3 · 2t − 1, and m 6∈ {2t+1, 2t+1 + 2t−1, 3 · 2t−1, 3 ·
2t − 2t−2, 3 · 2t−1 + 2t−2}. By Lemma 19 it follows that v2(s(3 · 2

t,m)) ≥ 2. On the
other hand, m = 3 · 2t−1 + L = 2t + L′ with L′ > 0. Then v2(Zm) ≥ t and this ends
the case.

8.5 Now examine the two cases m1 = 3 · 2t − 2t−2 and m2 = 3 · 2t−1 + 2t−2. By Lemma 19,
we know that v2(s(3 · 2

t,m)) = 1 for these values of m. Since m1 = 2t+1 + (2t − 2t−2),
v2(Zm1

) ≥ t + 1 by Theorem 4, and v2(Zm2
) ≥ t + 1 by the induction hypothesis,

because m2 > 3 · 2t−1, and this ends the case.

8.6 Now consider the two cases m3 = 2t+1 and m4 = 2t+1 + 2t−1. By Lemma 19 we know
that s(3 · 2t,mj) is odd for j = 3, 4. We have already proved that v2(Zm3

) = t + 1;
hence v2(2s(n,m3)Zm3

) = t+2. It follows that v2(Zm4
) ≥ t+1, because m4 = 2t+1+L

with L ≥ 1, and we get v2
(

2s(3 · 2t,m4)Zm4

)

≥ t+ 2.

8.7 Only one value of m remains, namely, m = 3 · 2t−1. We know that s
(

3 · 2t, 3 · 2t−1
)

is odd, and by the induction hypothesis we know that that v2(Zm) = t. The 2-adic
valuation of this term is t + 1 and this is the only term with this property, all other
terms having 2-adic valuation ≥ t+ 2.

Hence v2
(

Z3·2t
)

= t+ 1, and this ends the first part of the proof of Theorem 8.

Now let us prove the second part of Theorem 8.
Let n be such that n ≥ 3 · 2t + 1. We want to prove that v2(Zn) ≥ t + 2. We use the

recurrence formula (4) again:

Zn = −s(n, 1)− 2
n−1
∑

m=2

s(n,m)Zm .

It is enough to show that all the terms in this formula have 2-adic valuation ≥ t+ 2.

8.8 First, consider the term s(n, 1). Its 2-adic valuation is n − 1 − S2(n − 1). Since
S2(n − 1) ≤ 1 + log2(n − 1), we have to prove that (n − 1) − log2(n − 1) ≥ t + 3. It
suffices to prove that 3 ·2t− log2(3 ·2

t) ≥ t+3, and since log2(3) < 2, that 3 ·2t ≥ 2t+5,
or 3 · 2t−1 ≥ t+ 3. This last inequality holds for t = 2, and hence for t ≥ 2 by an easy
induction.
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8.9 Next, consider the case 2 ≤ m ≤ 3 · 2t−1 − 2. Apply Lemma 14 and Theorem 4. Using

the following inequality, valid for n ≥ 3 · 2t + 1,
⌊n− 1

2

⌋

≥ 3 · 2t−1, we have to prove

3 · 2t−1 + 1−m+ log2(m) ≥ t+ 2 ,

or

3 · 2t−1 − t− 1 ≥ m− log2(m) .

It suffices to prove this inequality for m = 3 · 2t−1 − 2. It is equivalent to showing that
log(3 · 2t−1 − 2) ≥ t− 1, or 3 · 2t−1 − 2 ≥ 2t−1, which is clear.

8.10 Now consider the case m = 3 · 2t−1 − 1. We have v2(s(n,m)) ≥
⌊n− 1

2

⌋

+ 1 − m ≥

3 · 2t−1 + 1−m. Hence it suffices to prove

1 + 3 · 2t−1 + 1− 3 · 2t−1 + 1 + v2(Zm) ≥ t+ 2 ,

i.e., 3 + v2(Zm) ≥ t + 2. Since m = 2t + (2t−1 − 1) it follows that v2(Zm) ≥ t. The
assertion is proved.

8.11 Consider the case m = 3 · 2t−1. By the induction hypothesis v2(Zm) = t hence

v2(s(n,m)) ≥
⌊n− 1

2

⌋

+1−m ≥ 3 ·2t−1+1−m = 1. It follows that v2(2s(n,m)Zm) ≥

1 + 1 + t = t+ 2.

8.12 Consider the last case, where 3 · 2t−1 + 1 ≤ m < n. By the induction hypothesis we
have v2(Zm) ≥ t+ 1. Hence v2(2s(n,m)Zm) ≥ t+ 2.

We have proved that all the terms in the formula giving Zn have 2-adic valuation ≥ t + 2
therefore v2(Zn) ≥ t+ 2 for n ≥ 3 · 2t + 1. The proof of Theorem 8 is now complete.

9 Proof of Theorem 9

(a) With exactly the same proof as in Proposition 12, we prove another recurrence formula
for the Yn:

Yn = −S(n, 1) + 2
n

∑

m=1

S(n,m)Ym .

Since S(n, 1) = 1, this gives

Yn = 1− 2
n−1
∑

m=1

S(n,m)Ym .

Hence all the Yn are odd.
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(b) We can suppose that n ≥ 2. By the Stirling inversion formula (5), it follows that

2Yn =
n

∑

m=1

s(n,m)Ym .

Taking x = 1 in the formula

x(x− 1) · · · (x− n+ 1) =
n

∑

m=1

s(n,m)xm ,

we get that
n

∑

m=1

s(n,m) = 0. Hence it follows that

2Yn =
n

∑

m=1

s(n,m)(Ym + 1) .

By the above equalityHj =
Yj + 1

2
is an integer. Hence we have

Yn = 2Hn − 1 =
n

∑

m=1

s(n,m)Hm

and so

Hn ≡ 1 +
n−1
∑

m=1

s(n,m)Hm (mod 2) .

Now we will prove by induction that Hn is odd, for n congruent to 0 or 1 modulo 3, and
even for n congruent to 2 modulo 3. Clearly this will prove the result. We easily check that
the preceding assertion holds for the first few values of the sequence Hn.

By Lemma 14 we know that v2(s(n,m)) ≥ M −m, where M =
⌊n− 1

2

⌋

+ 1. Therefore

Hn ≡ 1 +
n−1
∑

m=M

s(n,m)Hm (mod 2) .

We also have
x(x− 1) · · · (x− n+ 1) ≡ xM(x− 1)n−M (mod 2) .

This implies that s(n,M + j) ≡

(

n−M

j

)

(mod 2). We therefore have

Hn ≡ 1 +
n−M−1
∑

j=0

(

n−M

j

)

Hj+M (mod 2) .
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By the induction hypothesis, Hj+M is zero modulo 2 if j +M is congruent to 2 modulo 3.
Hence

Hn ≡ 1 +
∑

0≤j≤n−M−1
M+j≡0 (mod 3)

(

n−M

j

)

+
∑

0≤j≤n−M−1
M+j≡1 (mod 3)

(

n−M

j

)

(mod 2) .

Now write n = 6k + s, s ∈ {0, 1, 2, 3, 4, 5}, and check each case.

Case s=1: We have M = 3k, n−M = 3k. Hence

Hn = 1 +
∑

0≤j≤3k−1
j≡0 (mod 3)

(

3k

j

)

+
∑

0≤j≤3k−1
j≡1 (mod 3)

(

3k

j

)

(mod 2) ,

which can be written as follows:

Hn ≡ Γ0,0,k + Γ1,0,k (mod 2) .

From case (b) of Lemma 20 it follows that

3(Γ0,0,k + Γ1,0,k) = 23k+1 + (−1)3k ,

hence Hn is odd.

Case s=2: It follows that M = 3k + 1 and n−M = 3k. Hence

Hn ≡ 1 +
∑

0≤j≤3k−1
j≡2 (mod 3)

(

3k

j

)

+
∑

0≤j≤3k−1
j≡0 (mod 3)

(

3k

j

)

(mod 2) ,

which can be written as follows:

Hn ≡ Γ2,1,k + Γ0,1,k (mod 2) .

By Lemma 20, we have

3(Γ2,1,k + Γ0,1,k) = 23k+2 + (−1)3k+1 ,

and hence Hn is odd.

Case s=3: It follows that M = 3k + 1 and n−M = 3k + 1. Hence

Hn ≡ 1 +
∑

0≤j≤3k
j≡2 (mod 3)

(

3k + 1

j

)

+
∑

0≤j≤3k
j≡0 (mod 3)

(

3k + 1

j

)

(mod 2) ,
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which can be written as follows:

Hn ≡ 1 + Γ2,1,k + Γ0,1,k (mod 2) .

By Lemma 20
3(Γ2,1,k + Γ0,1,k) = 23k+2 + (−1)3k+1

hence Hn is even.

Case s=4: It follows that M = 3k + 2 and n−M = 3k + 1. Hence

Hn ≡ 1 +
∑

0≤j≤3k
j≡1 (mod 3)

(

3k + 1

j

)

+
∑

0≤j≤3k
j≡2 (mod 3)

(

3k + 1

j

)

(mod 2) ,

which can be written as follows:

Hn ≡ Γ1,1,k + Γ2,1,k (mod 2) .

By Lemma 20 we have

3(Γ1,1,k + Γ2,1,k) = 23k+2 + (−1)3k+1 ,

and hence Hn is odd.

Case s=5: It follows that M = 3k + 2 and n−M = 3k + 2. Hence

Hn ≡ 1 +
∑

0≤j≤3k+1
j≡1 (mod 3)

(

3k + 2

j

)

+
∑

0≤j≤3k+1
j≡2 (mod 3)

(

3k + 2

j

)

(mod 2) ,

which can be written as follows:

Hn ≡ 1 + Γ1,2,k + Γ2,2,k (mod 2) .

By Lemma 20
3(Γ2,1,k + Γ0,1,k) = 23k+3 + (−1)3k+2 ,

and hence Hn is odd.

Case s=6: It follows that M = 3k + 3 and n−M = 3k + 2. Hence

Hn ≡ 1 +
∑

0≤j≤3k+1;
j≡0 (mod 3)

(

3k + 2

j

)

+
∑

0≤j≤3k+1;
j≡1 (mod 3)

(

3k + 2

j

)

(mod 2) ,

which can be written as follows:

Hn ≡ 1 + Γ0,2,k + Γ1,2,k (mod 2) .

By Lemma 20 we have

3(Γ0,2,k + Γ1,2,k) = 23k+3 + (−1)3k+2 ,

and hence Hn is even.

The proof of Theorem 9 is now complete.
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10 Proof of property (a) of Theorem 10

We use induction on n. For 1 ≤ n ≤ p, the property holds, because logp(n) − 1 ≤ 0. Now
suppose the property holds for m ≤ n−1, we have to show the property for n. By the above,
one can suppose that n ≥ p+ 1.

It is enough to prove that all the terms in Formula (6)

Z〈p〉
n = s(n, 1)−

p

p− 1

n−1
∑

m=1

s(n,m)Z〈p〉
m

have a p-adic valuation ≥ logp(n)− 1.

10.1 Begin with s(n, 1) = (−1)n−1(n − 1)!. Its p-adic valuation is
n− 1− Sp(n− 1)

p− 1
. We

have to prove that this quantity is ≥ logp(n)− 1. Write n− 1 = a0+ a1p+ · · ·+ amp
m,

with ak ∈ {0, · · · , p−1} and am 6= 0. We have n ≤ 1+(p−1)(1+p+ · · ·+pm) = pm+1;
hence logp(n) ≤ m+ 1. It suffices to prove

a1 + a2(1 + p) + · · ·+ am(1 + p+ · · ·+ pm−1) ≥ m.

But in the sum 1 + p + · · · + pm−1, all terms are ≥ 1, the second term is ≥ 3, and
am ≥ 1, and we are done.

10.2 Now let m be such that 1 ≤ m ≤
⌊n− 1

p

⌋

+ 1. One can neglect the factor
1

p− 1
. We

have hence to prove

vp(ps(n,m)Z〈p〉
m ) = 1 + vp(s(n,m)) + vp(Z

〈p〉
m ) ≥ logp(n)− 1 .

Using Lemma 14 and the induction hypothesis, it suffices to prove

1 +
⌊n− 1

p

⌋

+ 1−m+ logp(m)− 1 ≥ logp(n)− 1 ,

or

⌊n− 1

p

⌋

+ 2− logp(n) ≥ m− logp(m) . (8)

There are two cases

{

(a): n divisible by p;

b): n not divisible by p.
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(a) Suppose that n is divisible by p. Let n = kp. It follows that
⌊n− 1

p

⌋

= k − 1;

hence 1 ≤ m ≤ k. We then have to prove

k − logp(k) ≥ m− logp(m) ,

which holds because the function x− logp(x) is increasing for x ≥ 1.

(b) Suppose that n is not divisible by p Let n = kp+ r, with 1 ≤ r ≤ p− 1. it follows
that 1 ≤ m ≤ k + 1. First examine the case m = k + 1; we have to prove that

k + 2− logp(kp+ r) ≥ k + 1− logp(k + 1) ,

or p(k + 1) ≥ kp+ r, which is true.

Hence we can suppose m ≤ k. Since k+1− logp(k+1) ≥ m− logp(m), It follows
that relation (8) is also satisfied in this case .

10.3 Now suppose that
⌊n− 1

p

⌋

+ 2 ≤ m ≤ n − 1. Using the induction hypothesis again,

vp(Z
〈p〉
m ) ≥ logp(m)− 1, we get

vp(ps(n,m)Z〈p〉
m ) ≥ 1 + vp(Z

〈p〉
m ) ≥ logp(m) .

We want to prove that logp(m) ≥ logp(n) − 1, or p ·m ≥ n. Suppose on the contrary

that p · m ≤ n − 1. It follows that m ≤
⌊n− 1

p

⌋

, in contradiction with hypothesis:

m ≥
⌊n− 1

p

⌋

+ 2.

The proof of property (a) of Theorem 10 is now complete.

11 Proof of property (b) of Theorem 10

We proceed by induction. We have seen (cf. Remark 13) that Z
〈p〉
p is a p-adic unit; hence

vp(Z
〈p〉
p ) = 0, which is property (b) for t = 1.
Now suppose property (b) satisfied for n = pk, with 1 ≤ k ≤ t− 1. We want to prove it

for n = pt. One can suppose that t ≥ 2. We use formula (6) again:

Z〈p〉
n = s(n, 1)−

p

p− 1

n−1
∑

m=1

s(n,m)Z〈p〉
m .

We will prove that all terms in the above formula have p-adic valuation greater than t, with
the only exception of the term with index m = pt−1, which has p-adic valuation t− 1.
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11.1 First, consider the term s(n, 1) = (−1)n−1(n− 1)!. Its p-adic valuation is

n− 1− Sp(n− 1)

p− 1
= 1 + p+ · · ·+ pt−1 − t = (p− 1) + · · ·+ (pt−1 − 1) .

All the terms in this sum are ≥ 1, and for example the first one is ≥ 2 and hence the
sum is ≥ t.

11.2 Now suppose that 1 ≤ m ≤ pt−1 − 2. It follows that

vp(ps(n,m)Z〈p〉
m ) ≥ 1 +

⌊n− 1

p

⌋

+ 1−m+ logp(m)− 1 .

It suffices to show that
⌊n− 1

p

⌋

+ 1− t ≥ m− logp(m) .

Since
⌊n− 1

p

⌋

+ 1 = pt−1, we have to prove

pt−1 − t ≥ m− logp(m) .

Since the function x− logp(x) is increasing for x ≥ 1, it suffices to show

pt−1 − t ≥ pt−1 − 2− logp(p
t−1 − 2) ,

or pt−1 − 2 ≥ pt−2, which is obvious.

11.3 Now consider the term of index m = pt−1 − 1. By Lemma 15, we know that s(n,m) =
s
(

pt, pt−1 − 1
)

is divisible by p. It follows that

vp(p · s
(

n,m
)

Z〈p〉
m ) ≥ 1 + 1 + vp(Z

〈p〉
m ) ≥ 2 + vp(Z

〈p〉
m ) .

Since m > pt−2, it also follows that vp(Z
〈p〉
m ) > t − 3 by property (a) of Theorem 10.

Hence vp(Z
〈p〉
m ) ≥ t− 2 and we are done.

11.4 Now take m such that pt−1+1 ≤ m ≤ 2t−1. By property (a) of Theorem 10, we know

that vp(Z
〈p〉
m ) ≥ t− 1 for such m. It follows that

vp(p · s(2
t,m)Z〈p〉

m ) ≥ t ,

and we are done for this case also.

11.5 Now consider the value m = pt−1. By the induction hypothesis, it follows that
vp(Z

〈p〉
m ) = t − 2. By Lemma 15, s(n,m) = s

(

2t, 2t−1
)

) is not divisible by p. It

follows that the p-adic valuation of ps(n,m)Z
〈p〉
m is exactly t − 1, and this is the only

term in the sum with this valuation, all the others have valuation ≥ t.

Hence vp(Z
〈p〉
pt

) = t− 1. The proof of Theorem 10 is now complete.
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