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Abstract
Recently, Farhi showed that every natural number N # 2 (mod 24) can be written

as the sum of three numbers of the form {%ZJ (n € N). He conjectured that this

result remains true even if N = 2 (mod 24). In this note, we prove this statement.

1 Introduction

Throughout this note, we let N and Z, respectively, denote the set of the non-negative integers
and the set of the integers. We let |-| and (-) denote the integer-part and the fractional-part
functions. Let X be a set. We denote the cardinality of X by #X. We also recall that ()
is the Jacobi symbol.
Recently, Farhi [1] showed that every natural number N # 2 (mod 24) can be written
7’L2

as the sum of three numbers of the form L;J (n € N). He conjectured that this result

remains true even if N = 2 (mod 24). We recall his conjecture.
Conjecture 1. Every natural number can be written as the sum of three numbers of the
form {%QJ (n € N).

In fact, he proposed a more general conjecture.
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Conjecture 2. Let £ > 2 be an integer. There then exists a positive integer a(k) that
satisfies the following property: every natural number can be written as the sum of £ + 1

numbers of the form L%J (n € N).

In this note, we prove Conjecture 1.

2 Proof of Conjecture 1

We recall Legendre’s theorem [3, pp. 331-339], which is a necessary tool for our proof:

Theorem 3. Every natural number not of the form 4"(8k +7)(h,k € N) can be represented
as the sum of three squares of natural numbers.

We note that since 4"(8k + 7) is congruent to 0,4 or 7 modulo 8, every natural number
not congruent to 0,4 or 7 modulo 8 can be represented as the sum of three squares of natural
numbers. We will use this result later.

Let r3(n) be the number of representations of the positive integer n as the sum of three
squares of integers. The following theorem provides an interesting formula for r3(n), which
can be proven using the theory of modular functions.

Theorem 4 (see [2]). For any positive integer n, we have

r3(n) = 17T—6\/5X2(H)K(—4n) 11 (1 b % T ib (1 - (—p2bn> 1) 1) ’

in p ptp

where b = b(p) is the largest integer such that p*° | n,

K= 3 () 1

m=1

and if 4% is the highest power of 4 dividing n, then

0, if 47%n =7 (mod 8);
x2(n) = < = if 47 = 3 (mod 8);
sor, if47°n=1,2,5,6 (mod 8).

We will require the following technical lemma.

Lemma 5. For any positive integer n = 1 (mod 8), we have

r3(9n) > g r3(n).



Proof. We have
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where b = b'(p) denotes the largest integer for which p2b/ | 9n. Since n = 1(mod?8), it
follows that 4° = 1 is the highest power of 4 dividing n. This result implies that ya(n) = %
Similarly, we have 9n = 1 (mod 8). Thus, 4° = 1 is the highest power of 4 dividing 9n, which
gives x2(9n) = xa(n) = 2. Conversely, it follows from [2, p. 84] that

K(—36n) = K(—4 x 3% xn) = (1 - (%“”) %) K(—4n).

Since n = 1 (mod 8), it follows from Legendre’s theorem that n can be represented as
the sum of three squares of natural numbers. Thus, r3(n) # 0. Dividing through by r3(n)
then yields an identity equivalent to
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Let p # 3 with p? | n. Thus, b = b (p) is the largest integer for which prI | n. Therefore,
one obtains b = b (p) = b(p) = b. Furthermore, we have

()= () (2] - () - (5

, 1
Foreveryp#3withp2|n,wethenhave1+%+---+ ! +%(1—<_9pp2b")%) =

) (1= (50)5)

/
pb —1 pb

_ —1
1+ % +---+ z% + z% <1 — <_’+fb"> %) . Thus, two cases are evident: if 3% | n, then
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Otherwise, 32 does not divide n, so
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We now show that in all cases, r3(9n) > 2 rs(n).

e If 32 does not divide n, b = b'(3) = 1 is implied to be the largest integer for which
3% | 9n. One obtains

ORI ETrE (l =50-(5) é)) |

We have (1 — (%4") %) = 1,% or ‘51 and so

r3(9n) > % r3(n).

e If 3% | n, then b (respectively b') is the largest integer for which 3% | n (respectively
32 1 9n). Hence,
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We have (1 — (ﬁ) %) = 1,% or %. One obtains the following in all cases:
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result, 73(9n) > 5 r3(n).

N

Thus, we obtain the desired

O
Theorem 6. Every natural number N = 2 (mod 24) can be written as the sum of three
numbers of the form L%QJ (n € N).

Proof. We may write N = 2 4 24k with k£ € N. Thus, 3N + 3 = 9(1 + 8k). We now define
two sets S; and Sy as follows:

Sy = {(a,b,c) 623:a2+62+02:1+8k},

Sy = {(a,b,c) €L’ a®+b+* = 9(1+8k)}.



By the definition of r3, we have #S; = r3(9(1 + 8k)) and #S5; = r3(1 + 8k). Since
1+ 8k =1 (mod8), we apply Lemma 5 to obtain r5(9(1 4 8k)) > 2 r3(1 4 8k) > r5(1 + 8k).
One obtains r3(9(1 4+ 8k)) > r3(1 + 8k), which is equivalent to #Ss > #5;. We note that
this last result is the key to the proof. Let us define the map

f: Sl — Sg
(a,b,¢) +—— (3a,3b,3c).

We see easily that f is well defined and injective. Since #S5 > #5;, we can find (a,b,c) € Sy
such that (a,b,c) ¢ f(S;). Furthermore, we have a* + b* + ¢* = 9(1 + 8k) = 0 (mod 3),
then either a? = b = ¢ = 1 (mod 3) or a® = b* = ¢* = 0 (mod 3). The last case cannot
hold because one of the elements, a, b and ¢, is not divisible by 3 ((a,b,c) ¢ f(S1)). Thus,

a> =0 =c* =1 (mod 3) and we have
N +1=3(1+8k)
a2 62 02
- 3 §
B a’ n c? a’ n b N c?
IRE 3 3 3 3/
b? 2 1 1 1
Since a? = b* = ¢ = 1 (mod 3), then % +(3)+ <%> =Stz +t3= 1, which gives
a’ b? c?
N = ng + {gJ + LgJ We replace (a,b,c) € Z* by (|al,|b],|c|]) € N* to obtain the
desired solution. The conjecture is proven. O]
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