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Abstract

We study the distribution of the extended binomial coefficients by deriving a com-

plete asymptotic expansion with uniform error terms. We obtain the expansion from

a local central limit theorem and we state all coefficients explicitly as sums of Hermite

polynomials and Bernoulli numbers.

1 Introduction

The extended binomial coefficients, occasionally called polynomial coefficients [5, p. 77], are
defined as the coefficients in the expansion

∞
∑

k=0

(

n

k

)(q)

xk =
(

1 + x+ x2 + · · ·+ xq
)n

, n, q ∈ N = {1, 2, . . .}. (1)

In written form, they presumably appeared for the first time in the work by De Moivre [6,
p. 41] and later they also were addressed by Euler [9]. Since then, the extended binomial
coefficients played a role mainly in the theory of compositions of integers, as the number
c(k, n, q) of compositions of k with n parts not exceeding q is given by [10, p. 45]

c(k, n, q) =

(

n

k − n

)(q−1)

.
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Thus, the extended binomial coefficients and their modifications have been studied in various
papers and from different perspectives [1, 2, 3, 4, 7, 8, 12, 13, 15], and among the properties
their distribution is of particular interest. Recently, Eger [8] showed (using slightly different
notation) that

(

n

nq/2

)(q)

∼ (q + 1)n
√

2πn q(q+2)
12

,

as n → ∞, meaning that the quotient of both sides tends to unity. Moreover, based upon
numerical simulations [8] the question arises how well those coefficients can be approximated
by “normal approximations” in general. It is the aim of this note to give a precise and
comprehensive answer to this question by establishing a complete asymptotic expansion for
the extended binomial coefficients with error terms holding uniformly with respect to all
integer k. More precisely, we show the following.

Theorem 1. For all integers N ≥ 2 we have
√

q(q + 2)n

12

1

(1 + q)n

(

n

k

)(q)

=
1√
2π

e−x2/2 +

⌊(N−2)/2⌋
∑

ν=1

q2ν(x)

nν
+ o

(

1

n(N−2)/2

)

,

as n → ∞, uniformly with respect to all k ∈ Z, with

x =

√
12

√

q(q + 2)n

(

k − q

2
n
)

,

where the functions q2ν(x) are given explicitly as sums of Hermite polynomials and Bernoulli
numbers (see Theorem 5 below for the exact formulas).

Although we only deal with the very basic situation of the extended binomial coefficients
in (1) here, the presented approach is a general one, which admits the derivation of (complete)
asymptotic expansions in many applications. However, usually it is not possible to obtain the
involved quantities in a very explicit form, which is an instance making the case of extended
binomial coefficients especially interesting.

A general overview of the analytic theory of compositions can be found in Flajolet and
Sedgewick’s standard book [10], where essentially two asymptotic results on restricted com-

positions are given [10, pp. 43–44]. The first one states that the numbers C
{1,...,q}
k of compo-

sitions of k with parts restricted to {1, . . . , q} asymptotically behave like

C
{1,...,q}
k ∼ cqρ

−k
q ,

as k → ∞, for fixed q ≥ 2. Here, cq > 0 is some constant and ρq is the singularity of the
associated generating function located in the interval

(

1
2
, 1
)

. The second result deals with

the number C
(n)
k of compositions of k having n parts. As these numbers are given explicitly

by

C
(n)
k =

(

k − 1

n− 1

)

,
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we immediately obtain the asymptotic formula

C
(n)
k ∼ kn−1

(n− 1)!
,

as k → ∞, for fixed n. Interpreting the extended binomial coefficients as numbers of
restricted compositions, in the present paper we are concerned with the numbers c(k, n, q)
counting compositions of k with n parts restricted to {1, . . . , q}, which can be considered as
a mixed type of restricted compositions in the above sense. For fixed integer q, the result
in Theorem 5 gives a complete and explicit description of the behavior of c(k, n, q) for large
values of n, valid uniformly in k, meaning that with n growing to infinity it is not necessary
to specify the way k tends to infinity. This feature usually is not available by methods in
the context of singularity analysis.

2 Proof of the main result

Our approach is based on an application of a local central limit theorem. To this end, we
choose a sequence of independent random variables with common uniform distribution on
the integers {0, . . . , q}. This way, the extended binomial coefficients can be represented (up
to a normalization) as certain probabilities for the sums of the random variables. Before
stating the details, we will fix some notation following Petrov [14]. For a (real) random
variable X we denote its characteristic function by

ϕX(t) = EeitX , t ∈ R,

where, as usual, E means the mathematical expectation with respect to the underlying
probability distribution. If X has finite moments up to k-th order, then ϕX is k times
continuously differentiable on R and we have

dk

dtk
ϕX(t)

∣

∣

∣

t=0
=

1

ik
EXk.

Moreover, in this case we define the cumulants of order k by

γk =
1

ik
dk

dtk
logϕX(t)

∣

∣

∣

t=0
,

where the logarithm takes its principal branch. Now, let (Xn) be a sequence of independent
integer-valued random variables having a common distribution and suppose that for all
positive integer values of k we have

E|X1|k < ∞

and
EX1 = µ, V arX1 = σ2 > 0.
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Thus, for the sum given by

Sn =
n
∑

ν=1

Xν

we obtain
ESn = nµ, V arSn = nσ2,

and for integer k we define the probabilities

pn(k) = P (Sn = k) .

Furthermore, we introduce the Hermite polynomials (in the probabilist’s version)

Hm(x) = (−1)mex
2/2 dm

dxm
e−x2/2,

and for positive integers ν we define the functions

qν(x) =
1√
2π

e−x2/2
∑

k1,...,kν≥0

k1+2k2+···+νkν=ν

Hν+2s(x)
ν
∏

m=1

1

km!

(

γm+2

(m+ 2)!σm+2

)km

, (2)

where s = k1 + · · ·+ kν and γm+2 denotes the cumulant of order m+ 2 of X1.
Finally, we demand (for convenience) that the maximal span of the distribution of X1

is equal to one. This means that there are no numbers a and h > 1 such that the values
taken on by X1 with probability one can be expressed in the form a + hk (k ∈ Z). Under
all these assumptions we have the following complete asymptotic expansion in the sense of
a local central limit theorem [14, p. 205].

Theorem 2. For all integers N ≥ 2 we have

σ
√
npn(k) =

1√
2π

e−x2/2 +
N−2
∑

ν=1

qν(x)

nν/2
+ o

(

1

n(N−2)/2

)

, (3)

as n → ∞, uniformly with respect to all k ∈ Z, where we have

x =
k − nµ

σ
√
n

.

In the following we choose X1 to take the integer values {0, . . . , q} with

P (X1 = k) =
1

q + 1
, k ∈ {0, . . . , q}.

Hence, we obtain

pn(k) = P (Sn = k) =
1

(1 + q)n

(

n

k

)(q)

, k ∈ Z. (4)

It is our aim to apply Theorem 2 in full generality and we want to compute all cumulants
as explicitly as possible.
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Lemma 3. For the k-th order cumulant γk of X1 we have

γk =











q
2
, if k = 1;

0, if k odd and k > 1;
B2l

2l

(

(q + 1)2l − 1
)

, if k = 2l, l ≥ 1,

(5)

where Bν , ν ≥ 0, denotes the Bernoulli numbers [11, p. 22].

Proof. First, we observe that the characteristic function of X1 is given by

ϕX1
(t) =

1 + eit + · · ·+ eqit

1 + q
.

According to the definition of the cumulants we obtain for a positive integer k

γk =
1

ik
dk

dtk
logϕX1

(t)
∣

∣

∣

t=0

=
1

ik
dk

dtk
{

log
(

1 + eit + · · ·+ eqit
)

− log(1 + q)
}

∣

∣

∣

t=0

=
1

ik
dk

dtk
log

(

e(q+1)it − 1

eit − 1

)

∣

∣

∣

t=0

=
1

ik
dk

dtk

{

q

2
it+ log

(

sin q+1
2
t

sin t
2

)}

∣

∣

∣

t=0

=
q

2
δk,1 +

1

ik
dk

dtk

{

log

(

sin q+1
2
t

q+1
2
t

)

− log

(

sin t
2

t
2

)

}

∣

∣

∣

t=0
,

where δk,1 denotes the Kronecker delta. Using

d

dz
log

(

sin z

z

)

= cotan z − 1

z

yields

γk =
q

2
δk,1 +

1

ik
dk−1

dtk−1

{

q + 1

2

(

cotan
q + 1

2
t− 2

(q + 1)t

)

− 1

2

(

cotan
t

2
− 2

t

)}

∣

∣

∣

t=0
.

Now, making use of the following expansion [11, p. 35]

cotan z − 1

z
=

∞
∑

m=1

(−1)m
4m

(2m)!
B2mz

2m−1 , 0 < |z| < π,

after some algebra we obtain

γk =
q

2
δk,1 +

1

ik
dk−1

dtk−1

∞
∑

m=1

(−1)m
B2m

(2m)!

(

(q + 1)2m − 1
)

t2m−1
∣

∣

∣

t=0
.

Carrying out the differentiation under the summation sign immediately gives us (5).
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Remark 4. As an immediate consequence of Lemma 3 we obtain

EX1 = µ = γ1 =
q

2

and, as we know B2 =
1
6
,

V arX1 = σ2 = γ2 =
B2

2

(

(q + 1)2 − 1
)

=
q(q + 2)

12
.

We now are ready to state the main theorem in form of a complete asymptotic expansion

with explicit coefficients for the extended binomial coefficients
(

n
k

)(q)
.

Theorem 5. For all integers N ≥ 2 we have

√

q(q + 2)n

12

1

(1 + q)n

(

n

k

)(q)

=
1√
2π

e−x2/2 +

⌊(N−2)/2⌋
∑

ν=1

q2ν(x)

nν
+ o

(

1

n(N−2)/2

)

,

as n → ∞, uniformly with respect to all k ∈ Z, with

x =

√
12

√

q(q + 2)n

(

k − q

2
n
)

,

and

q2ν(x) =
1√
2π

(

12

q(q + 2)

)ν

e−x2/2 (6)

×
∑

k2,k4,...,k2ν≥0

k2+2k4+···+νk2ν=ν

H2(ν+s)(x)

(

6

q(q + 2)

)s ν
∏

m=1

1

k2m!

(B2(m+1) ((q + 1)2m+2 − 1)

(2m+ 2)!(m+ 1)

)k2m

,

where s = k2 + k4 + · · ·+ k2ν.

Proof. The proof is based on an application of Theorem 2 to the probabilities defined in (4).
First we observe that in our situation the functions given in (2) vanish identically for odd
indices, which turns out to be a consequence of (5). Indeed, if ν = 2l+1 for an integer l ≥ 0,
then in every solution k1, . . . , k2l+1 ≥ 0 of the equation

k1 + 2k2 + · · ·+ (2l + 1)k2l+1 = 2l + 1

there is at least one odd index i with ki > 0. Consequently, using (5) we have

2l+1
∏

m=1

1

km!

(

γm+2

(m+ 2)!σm+2

)km

= 0,
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from which follows that q2l+1(x) vanishes identically. Thus, only the functions q2ν(x) appear
in (3) and here we have

q2ν(x) =
1√
2π

e−x2/2
∑

k1,...,k2ν≥0

k1+2k2+···+2νk2ν=2ν

H2(ν+s)(x)
2ν
∏

m=1

1

km!

(

γm+2

(m+ 2)!σm+2

)km

,

where s = k1 + · · · + k2ν . An analogous argument as in the odd case above shows that a
solution k1, . . . , k2ν of the equation

k1 + 2k2 + · · ·+ 2νk2ν = 2ν

with a positive entry at an odd index does not give any contribution to the whole sum, so
that we can write

q2ν(x) =
1√
2π

e−x2/2
∑

k2,k4,...,k2ν≥0

k2+2k4+···+νk2ν=ν

H2(ν+s)(x)
ν
∏

m=1

1

k2m!

(

γ2m+2

(2m+ 2)!σ2m+2

)k2m

,

where s = k2 + k4 + · · · + k2ν . Now, taking the explicit form of the cumulants in (5) into
account, after some elementary computation we obtain (6).

For the purpose of illustration we state Theorem 5 for N = 5 explicitly.

Example 6. Using the known facts

H4(x) = x4 − 6x2 + 3, B4 = − 1

30
,

we obtain
√

q(q + 2)n

12

1

(1 + q)n

(

n

k

)(q)

=
1√
2π

e−x2/2

{

1− ((q + 1)4 − 1) (x4 − 6x2 + 3)

20nq2(q + 2)2

}

+ o

(

1

n3/2

)

,

as n → ∞, uniformly with respect to all k ∈ Z, where we have

x =

√
12

√

q(q + 2)n

(

k − q

2
n
)

.
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