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Abstract

In this paper, we give a new short proof of the dual of Spivey’s Bell number identity
due to Mező. Our approach follows from basic manipulations involving a fundamental
identity representing factorials in the Zeon algebra. This work, along with a previous
one due to the author and dos Anjos, shows that Spivey’s and Mező’s identities have
at their root a common underlying algebraic origin.

1 Introduction

In this paper, we will give a new, simple, and short proof of the dual of Spivey’s Bell number
identity obtained by Mező [5, Chap. 3], [6]. We mention that the original proofs of the
identities due to Spivey and Mező are combinatorial in nature [3, 6, 11]. Indeed, the proof
given by Mező is constructed by considering the enumeration of the permutations of m+ n
elements in terms of the number of k-permutations of n and the number of permutations
of m with j disjoint cycles. This work, along with a previous work concerning the proof of
Spivey’s identity from Zeons [7], adds another point of view in the origin of Spivey’s and
Mező’s results which is algebraic in nature, as a direct consequence of the use of the Zeon
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Brazil) under grant 307211/2015-0.
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algebra [5, Chap. 5], [7], [10, Chap. 2]. Throughout this work we let R denote the real
numbers and N the positive integers.

More precisely, if m, n ∈ N, we will show that

(m+ n)! =
n
∑

k=0

m
∑

j=0

mn−k

[

m

j

](

n

k

)

k! (1)

using the Zeon algebra. In Eq. (1) an = a(a+ 1) · · · (a+ n− 1) is the Pochhammer symbol
with a ∈ R,

(

n

k

)

= n!/(k!(n − k)!) is the binomial coefficient, and
[

m

j

]

are the unsigned

Stirling numbers of the first kind [4, Chap. 6], [12, Eq. (3.5.3)].
For completeness, in the next section, we introduce the tools needed to give the proof

of Eq. (1). More precisely, we give the definition of the Zeon algebra and the Grassmann-
Berezin integral in the Zeon algebra.

2 Brief review of the Zeon algebra and Grassmann-

Berezin integral in the Zeon algebra

Definition 1. The Zeon algebra Zn ⊃ R is defined as the associative and commutative
algebra generated by the collection {εi}ni=1 (n < ∞) of nilpotent elements and the scalar
1 ∈ R, which is the identity of the algebra.

For {i, j, . . . , k} ⊂ {1, 2, . . . , n} and εij···k ≡ εiεj · · · εk the most general element with n
generators εi can be written with the convention of sum over repeated indices implicit and
taking ε∅ = 1 as

ϑn = a+ aiεi + aijεij + · · ·+ a12···nε12···n =
∑

i∈2[n]

aiεi,

with a, ai, aij, . . ., a12···n ∈ R, 2[n] being the power set of [n] := {1, 2, . . . , n}, and 1 ≤ i <
j < · · · ≤ n. We refer to a as the body of ϑn and write b(ϑn) := a and to ϑn − a as the soul
such that s(ϑn) := ϑn − a. Note that sn+1(ϑn) = 0.

As described in previous work [7] a real analytic function f can be extended to the realm
of the Zeon algebra taking

f(ϑn) :=
n
∑

i=0

f (i)
(

b
(

ϑn

))

i!
si
(

ϑn

)

=
n
∑

i=0

f (i)
(

a
)

i!
si
(

ϑn

)

, (2)

where f (i)(a) = dif(x)/dxi|x=a is the i-th ordinary derivative of f(x) at a. Note that f
(

a+
s
(

ϑn

))

|s(ϑn)=0 = f(a) and f
(

a+ s
(

ϑn

))

∈ Zn, because sn+1(ϑn) = 0.
We consider specific examples of Eq. (2) important for this work. If a 6= 0, then ϑn is

invertible and the inverse is given by

ϑ−1
n :=

1

a

(

1− s(ϑn)

a
+

s2(ϑn)

a2
+ · · ·+ (−1)n

sn(ϑn)

an

)

. (3)
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Next, we will need

eϑn := ea
n
∑

m=0

sm (ϑn)

m!
. (4)

As a final example, for ϑn = 1 + s(ϑn), we consider

ln (1 + s (ϑn)) :=
n
∑

m=1

(−1)m+1 s
m(ϑn)

m
, (5)

where the right-hand side of Eq. (5) is the solution of the equation

eln(1+s(ϑn)) ≡ 1 + s(ϑn).

We give some examples of the functions considered in Eqs. (3), (4), and (5) for n = 3.
We have

1

1 + 1
2
ε2 +

√
3ε13 − 5ε123

= 1− 1

2
ε2 −

√
3ε13 +

(

5 +
√
3
)

ε123,

e1+
1
2
ε2+

√
3ε13−5ε123 = e

(

1 +
1

2
ε2 +

√
3ε13 +

(√
3

2
− 5

)

ε123

)

,

and

ln

(

1 +
1

2
ε2 +

√
3ε13 − 5ε123

)

=
1

2
ε2 +

√
3ε13 −

(

5 +

√
3

2

)

ε123.

Note that e
1
2
ε2+

√
3ε13−

(

5+
√

3
2

)

ε123 = 1 + 1
2
ε2 +

√
3ε13 − 5ε123.

Definition 2. The Grassmann-Berezin integral on Zn, denoted by
∫

, is the linear functional
∫

: Zn → R such that

dεidεj = dεjdεi,

∫

ϑn

(

ε̂i
)

dεi = 0, and

∫

ϑn

(

ε̂i
)

εidεi = ϑn

(

ε̂i
)

,

where ϑn

(

ε̂i
)

means any element of Zn with no dependence on εi. We use throughout this
work the compact notation dνn := dεn · · · dε1. Multiple integrals are iterated integrals, i.e.,

∫

f(ϑn)dνn =

∫

· · ·
(
∫
(
∫

f(ϑn)dεn

)

dεn−1

)

· · · dε1.

The standard literature on Grassmann algebra comprises, e.g., the work of Berezin [1,
Chap. 1], DeWitt [2, Chap. 1], and Rogers [9, Chap. 3].

Some examples of the integration in Definition 2 are given below. We have

∫

1

1 + 1
2
ε2 +

√
3ε13 − 5ε123

dε1 = −
√
3ε3 +

(

5 +
√
3
)

ε23
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and
∫

e1+
1
2
ε2+

√
3ε13−5ε123dε1dε3 = e

(

√
3 +

(√
3

2
− 5

)

ε2

)

.

A particularly simple result which follows from the multinomial theorem is
∫

ϕn
ndνn = n! (6)

with ϑn = ϕn := ε1 + · · ·+ εn.

3 Proof of Eq. (1)

We are now ready to prove Eq. (1). Let us take φm = ǫ1 + · · · + ǫm with ǫi := εn+i,
i = 1, . . . ,m, such that ϕn+m = φm + ϕn ∈ Zm+n. We start with the following identity

(m+ n)! =

∫

(φm + ϕn)
m+ndµmdνn =

∫ m+n
∑

k=0

(φm + ϕn)
kdµmdνn =

∫

1

1− φm − ϕn

dµmdνn,

(7)
using Eqs. (3) and (6). Next, we observe that

(m+ n)! =

∫

1

1− ϕn

1

1− φm

1−ϕn

dµmdνn

=
n
∑

k=0

∫

ϕk
n

1

1− φm

1−ϕn

dµmdνn

=

∫

1

1− φm

1−ϕn

dµmdνn +
n
∑

k=1

∑

1≤j1<···<jk≤n

k!

∫

εj1···jk
1

1− φm

1−ϕn

dµmdνn

=
n
∑

k=0

(

n

k

)

k!

∫

1

1− φm

1−ϕn−k

dµmdνn−k

=
n
∑

k=0

(

n

k

)

k!

∫

1− ϕn−k

1− φm − ϕn−k

dµmdνn−k

=
n
∑

k=0

(

n

k

)

k!

(
∫

1

1− φm − ϕn−k

dµmdνn−k −
∫

n− k

1− φm − ϕn−k−1

dµmdνn−k−1

)

=
n
∑

k=0

(

n

k

)

k! ((m+ n− k)!− (n− k) (m+ n− k − 1)!)

=
n
∑

k=0

(

n

k

)

k!m (m+ n− k − 1)!,

using Eq. (7). Finally, recalling the definition of mn−k in Eq. (1), we obtain

(m+ n)! = m!
n
∑

k=0

(

n

k

)

k!mn−k. (8)
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Now, we consider the unsigned Stirling numbers of the first kind
[

n

j

]

given by the gener-

ating function [12, Eq. (3.5.3)]

1

j!

(

ln
1

1− x

)j

=
∞
∑

n=j

[

n

j

]

xn

n!
. (9)

Using Eqs. (5) and (6) we arrive at

[

m

j

]

=
1

j!

∫
(

ln
1

1− φm

)j

dµm,

extending Eq. (9) to the context of Zeons by following previous work [7, 8]. Note that

m
∑

j=0

[

m

j

]

=

∫

eln(
1

1−φm
)dµm =

∫

1

1− φm

dµm = m!, (10)

using Eqs. (3), (4), (5), and (6).
Finally, from Eqs. (8) and (10), we arrive at Eq. (1).
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