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Abstract

In combinatorics on words, a word w of length n over an alphabet of size ¢ is
said to be privileged if n < 1, or if n > 2 and w has a privileged border that occurs
exactly twice in w. Forsyth, Jayakumar and Shallit proved that there exist at least
2779 /n? privileged binary words of length n. Using the work of Guibas and Odlyzko,
we prove that there are constants ¢ and ng such that for n > ng, there are at least
n(l%:n)? privileged words of length n over an alphabet of size ¢. Thus, for n sufficiently
large, we improve the earlier bound determined by Forsyth, Jayakumar and Shallit,
and generalize it for all q.

1 Introduction

The class of privileged words was recently introduced by Kellendonk, Lenz, and Savinien [6]
and studied further by Peltoméki [7]. This is one of several classes, such as the classes of
closed words and rich words, that are defined based on its members having borders satisfying
certain properties. Recall that a border of a word w is a non-empty word that is both a
prefix and a suffix of w. A word w is privileged if either

e w is a single letter, or
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e w has a privileged border that occurs exactly twice in w.

The first few privileged words (up to length 4) over the alphabet {0,1} are
¢.0,1,00,11,000,010, 101, 111,0000,0110, 1001, 1111

Note that 0101 is not privileged because, although it has a border 01 that occurs exactly
twice, this border is not itself privileged.

If one removes the condition requiring this border to be privileged from the above defi-
nition, one obtains the class of closed words studied by Fici [1]. Similarly, the class of rich
words [3] can be obtained by the following definition: a word is rich if each of its closed
factors whose longest border is a palindrome is itself a palindrome. For each of these classes
of words, it is natural to try to count the number of words of each length in the class for a
given alphabet size. For instance, Guo, Shallit, and Shur [5] gave a superpolynomial lower
bound on the number of binary rich words, and Rukavicka [8] gave a subexponential upper
bound (for any alphabet size).

Forsyth, Jayakumar, Peltoméki, and Shallit [2] looked at the problem of enumerating
privileged words over a binary alphabet. The number of such words of length n is given by
sequence A231208 of the Online Encyclopedia of Integer Sequences. This sequence begins

1,2,2,4,4,8,8, 16,20, 40, 60, 108, . ..

Forsyth et al. proved that there exist at least 2”5 /n? privileged binary words of length n.
In their paper they sketch a method for potentially improving this estimate. In the present
paper we apply some results of Guibas and Odlyzko [4] on the size of prefix-synchronized
codes to carry out this method. We are thus able to obtain the following asymptotic im-
provement to the result of Forsyth, Jayakumar, and Shallit, and also generalize the result to
arbitrary alphabets; since every privileged word is closed, this also gives a lower bound on
the number of closed words of length n.

Theorem 1. Let ¢ > 2. There exist constants ¢ and ng such that for n > ng, there are at
least n(l%:n)? privileged words of length n over an alphabet of size q.

The estimates given in this theorem derive from the asymptotic analysis of maximal
prefix-synchronized codes carried out by Guibas and Odlyzko [4]. Given an alphabet of
size ¢, a block length N and a prefix P of length p < N, a prefiz-synchronized code is a
set of length-N codewords with the property that every codeword starts with a fixed prefix
P = ajay - - - ap, and furthermore, for any codeword ajas - - - a,b1bs - - - by—p,, the prefix P does
not appear as a factor of as - --apby - - -by_pay - - - ap—1. In other words, the border a;as - --a,
of ajag - --ayby -+ - by_paias - - - a, occurs exactly twice in this word.

Next, we define G(N) = Gp(N) as the size of a maximal prefix-synchronized code with
these parameters. In other words, Gp(/N) is the number of g-ary words a; - - - an, such that
ag - Qpyp—1 = P for k =1 and kK = N + 1, and for no other & with 1 <k < N 4 1. If we
take n = N + p where the prefix P of length p is a privileged word, then Gp(N) counts all
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words of length n with a privileged border P that occurs exactly twice in w. All these words
are necessarily privileged words. If we sum up Gp(N) over all privileged P of length p for
some p, then we obtain a lower bound for the number of privileged words of length n.

2 Proof of Theorem 1

To prove Theorem 1 we begin with some lemmas. In all the following lemmas and for the
rest of this document, ¢ is the size of the alphabet and it will be a fixed integer > 2, p is
the size of the prefix P, and Q) = y1y2 - - -y, is the autocorrelation of P, defined as follows.
If P=ay---ap, then for t =1,...,p we define

Ui = ]_7 ifai+1...ap:a1...ap_i;
(A .
0, otherwise.

We also define the polynomial
p .
f(2) = fo(z) = Yy
i=1

The next series of lemmas are Lemmas 3-6 of [4].

Lemma 2. If p is sufficiently large, then 1+ (z —q) f(z) has exactly one zero p that satisfies
lp| > 1.7.

Since there is only one such root p, it follows that this p is real. In what follows, the
quantity p is the p specified by the previous lemma.

Lemma 3. If p is sufficiently large, then

/ 2
Inp=1Ing— ! —f(q) ! +O<p—).
q

Define R by

Lemma 4. G(N) = Rgp"™ + O((1.7)Y)

Lemma 5. If p is sufficiently large, then

ImRg=(p—2)Ing—2In(f(q)) +

3f(a) p—2 P
f@)?  af(q) "o (qu) '

In what follows, ¢’s, d’s and Greek letters denote positive constants.
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Lemma 6. Let p be the unique integer such that

Ingq # <N < Ingq .
q—1 q—1

Let P be a prefix of length p and let n = N + p. There exist constants Ny and d such that
for N > Ny we have
Gp(N) > dg"/n*.

(The constant d may depend on q but not on N.)

Proof. If p = [log, N +log,(q—1) —log,(Inq)], then G(N) = Rop™ +O((1.7)") by applying
Lemma 4. By Lemmas 3 and 5 we have

In(Rgp™) = ImRo+ Nlnp

 (p— N Tnag—20n 3f'(9) _p—2 »
= -2 —2bisie) + B - ko (1)

N Nf(g)g N Np?
NGO T W@y 2q2f(q)2+0<q3p>'
Therefore,
G(N) = Rop™ +O0((1L.7)"Y) = exp(In(Rep™)) + O((1.7)Y)
_ogvr (39 p-2 N Nf(9 N Np* P
= e? TP\T0? T ) ) af(@? 2q2f(Q)2+O<q3p q2”>)
+0((1.7)M)

Since the first digit of Q will always be a 1, f(g) will have the leading term ¢”~'. Let
a, 3,7,0, and Ny be positive constants such that the following inequalities are valid for all
N > N.

3( —1)%¢"? <3 - 1)?
( ) ¢r=2 T g

p-2 _p-2_p

af(q) = & ~ ¢

N N N Nlng

< - )
af(q) = qv ~ gllosaNlos ()l = aqlogqulogq(lnq) Sa—— S B

<2

<1/q

Np—1)?%"* _Np-1? _Np-1)
R G
N N N ON 0N

< < < < —<9
2q2f(q)2 — 2q2p — 2q2|_10gqN—logq(lnq)J — q210gqN - N2 —

<20
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Np?  p? p?
o ()| lo ()] <~

Thus
Gr(N) — gV exp (3f’(Q) _p=2_ N Nfl@_ _ N ., (Np2 p_2>>
f(a)? f@?  af(e) af(e) af(@)® 2¢°f(q)? q*r g
+0((1.71)N)
- dqu+p—2 dqu+p—2 d2qN+p—2 d2qN+p—2
- fler T ((=e)/(1-9q)* T (1—gq)* ~ ¢ —2q* +1
o g™y dsg™ dsq"
- C]2p+ 1 — 2q2p - g T quogqN+logq(q—1)—logq(lnq)j
N N N n—p
Z N—l—logd:())qq—l)—log (ng = jl\?(q _lnlq > il > dag
q e q q q ) N n
- d4qn—(10gq N+log,(g—1)—log,(Ingq)) dsyq"Ing din
- n “nN(g—1) = n?’

We can now complete the proof of Theorem 1.

Proof of Theorem 1. We define the function B(n,q) as the number of privileged words of
length n over an alphabet of size ¢ > 2. Let n = N+p where p = [log, N +log (¢ — 1) —log,(Ingq)].
Let ng be a constant such that whenever n > ny we have p > Ny, where N, is the constant
mentioned in Lemma 6. Then for n > ng, we have

P privileged
|Pl=p

ﬁ) B(|log, N +log,(q — 1) — log,(Ing) |, q)

dqn> < Cqulogq N+log,(g—1)—log,(Ing)] )
([log, N +log,(q¢ — 1) — log,(Inq)|)?

vV

qlogq N-+log,(¢—1)—log,(Ing) >

n) ((logqN +log, (¢ — 1) —log,(Inq))?
i) (s Fo )
)

)
(logq q +log, N)?

v

v

vV
S~ N 77 N7 N 7 NN
s [@
o | KR
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= (55) (o)

— \n? ) \(log,¢N)?

= (5F) (e~ ma)

o\ (log, qn)*  (log, qn)?

() (1)

-\ n* ) \(log,qn)*  (log,qn)*  (log,qn)?

- ( c3q" )((logqn)2 ~ (loggn)® (logqn)2)
- n(logqn)2 (logqqn)2 n(logqqn)2 n(logqqn)2
> °q”

— n(log,n)?’

since

is positive and increases for n > 2. This completes the proof.

(log, n)? (log, n)? (log, n)?
(log,qn)?  n(log,qn)*  n(log,qn)?
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