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Abstract

In this paper we establish new upper and lower bounds for the nth prime number
Pn, which improve several existing bounds of similar shape. As the main tool, we use
some explicit estimates recently obtained for the prime counting function. A further
main tool is the use of estimates concerning the reciprocal of log p,,. As an application,
we derive new estimates for J(p,,), where ¥(z) is Chebyshev’s ¥-function.

1 Introduction

Let p,, denote the nth prime number and let 7(x) be the number of primes not exceeding .
In 1896, Hadamard [10] and de la Vallée-Poussin [19] independently proved the asymptotic
formula 7(z) ~ z/logx as © — oo, which is known as the prime number theorem. (Here
log z is the natural logarithm of z.) As a consequence of the prime number theorem, one
gets the asymptotic expression

pn ~ nlogn (n — 00). (1.1)

Here p,, is the nth prime. Cipolla [5] found a more precise result. He showed that for every
positive integer m there exist unique monic polynomials 77, ..., T}, with rational coefficients

and deg (7)) = k with

= (=1 T (loglog n) (n(log log n)m“)
n =n | logn +loglogn — 1+ + 0 o (1.2
P ( ° 508 ; klog" n log™ ™ n (1.2)
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The polynomials T} can be computed explicitly. In particular, T}(x) = x — 2 and Ty(z) =
x? — 62 + 11 (see Cipolla [5] or Salvy [18] for further details). Since the computation of the
nth prime number is difficult for large n, we are interested in explicit estimates for p,. The
asymptotic formula (1.2) yields

pn > nlogn, (1.3)
pn < n(logn + loglogn),
pn > n(logn + loglogn — 1) (1.5)

for all sufficiently large values of n. The first result concerning a lower bound for the nth
prime number is due to Rosser [15, Theorem 1]. He showed that the inequality (1.3) holds
for every positive integer n. In the literature, this result is often called Rosser’s theorem.
Moreover, he proved [15, Theorem 2] that

pn < n(logn + 2loglogn) (1.6)

for every n > 4. The next results concerning the upper and lower bounds that correspond
to the first three terms of (1.2) are due to Rosser and Schoenfeld [16, Theorem 3]. They
refined Rosser’s theorem and the inequality (1.6) by showing that

pn > n(logn + loglogn — 1.5)
for every n > 2 and that the inequality
pn < n(logn + loglogn — 0.5) (1.7)

holds for every n > 20. The inequality (1.7) implies that (1.4) is fulfilled for every n > 6.
Based on their estimates for the Chebyshev functions ¢ (z) and ¥(z), Rosser and Schoenfeld
[17] announced to have new estimates for the nth prime number p, but they have never
published the details. In the direction of (1.5), Robin [14, Lemme 3, Théoreme 8] showed
that

pn > n(logn + loglogn — 1.0072629) (1.8)

for every n > 2, and that the inequality (1.5) holds for every integer n such that 2 < n <
7(10"). Massias and Robin [11, Théoreme A] gave a series of improvements of (1.7) and
(1.8). For instance, they have found that p,, > n(logn+loglogn—1.002872) for every n > 2.
Dusart [6, p. 54] showed that the inequality
log1 —1.8
Pn <N (logn+ loglogn — 1+ M)

1.9
logn (19)

holds for every n > 27076. Further, he [7, Theorem 3] made a breakthrough concerning
the inequality (1.5) by showing that this inequality holds for every n > 2. The current best
estimates for the nth prime, which correspond to the first terms in (1.2), are also given by
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Dusart [8, Propositions 5.15 and 5.16]. He used explicit estimates for Chebyshev’s ¥-function
to show that the inequality

log 1 -2
Pn <N (logn—f—loglogn—l—kw),

1.10
logn ( )

which corresponds to the first four terms of (1.2), holds for every n > 688 383 and that

loglogn — 2.1)

1.11
logn ( )

Pn >N (logn—l—loglogn— 1+

for every n > 3. The goal of this paper is to improve the inequalities (1.10) and (1.11) with
regard to Cipolla’s asymptotic expansion (1.2). For this purpose, we use estimates for the
quantity 1/log p, and some estimates [3] for the prime counting function 7(x) to obtain the
following refinement of (1.10).

Theorem 1. For every integer n > 46 254 381, we have

loglogn —2  (loglogn)? — 6loglogn + 10.667) (112)

pn <n | logn+loglogn — 1+ 5
logn 2log”n

Under the assumption that the Riemann hypothesis is true, Dusart [9, Theorem 3.4]
found that

loglogn —2  (loglogn)® — 6loglog n) (1.13)

pn < n (logn+loglogn — 1+ 5
logn 2log”n

for every integer n > 3468. Using Theorem 1 and a computer for smaller values of n, we get
Corollary 2. The inequality (1.13) holds unconditionally for every n > 3468.

In the other direction, we find the following result which yields a lower bound for the nth
prime number in a bounded range.

Theorem 3. For every integer n satisfying 2 < n < 7(10') = 234 057 667 276 344 607, we
have

log 1 -2  (logl 2 —6logl 11.25
pn > n | logn +loglogn — 1+ 08081 _(og og ) ogg ogn + .
logn 2log™n
Finally, we use Theorem 3 to give the following improvement of (1.11).
Theorem 4. For every integer n > 2, we have

loglogn —2  (loglogn)? — 6loglogn + 11.321

) . (1.14)

pn > 1 | logn +loglogn — 1 + 5
logn 2log"n



We get the following corollary which was already known under the assumption that the
Riemann hypothesis is true (see Dusart [9, Theorem 3.4]).

Corollary 5. For every n > 2, we have

log1 -9 log1 2
pn>n<logn—i—loglogn—1+ oglogn _(og ogn) )

logn 2log*n
In Section 6 we apply the Theorems 1 and 4 to find some refined estimates for 9(p,,),
where 9(x) = > _ logp is Chebyshev’s ¥-function.

Notation 6. Throughout this paper, let n denote a positive integer. For better readability,
in the majority of the proofs we use the notation

p<w

w =loglogn, y=Ilogn, z=Ilogp,.

2 Effective estimates for the reciprocal of logp,

Let m be a positive integer. Using Panaitopol’s asymptotic formula for the prime counting
function m(x) — see [12] — we see that

1 3 ko, n
o —n(logp, —1 — . ot Vo —2 ), 2.1
P ( &p logpn,  log®p, log pn) (log’”“n) 1)

where the positive integers kq, ..., k,, are given by the recurrence formula

km 4+ Uk + 2k o+ -+ (m — 1)lky = m - ml.

So, in order to prove Theorems 1 and 4, we first use some results of [3] concerning effective
estimates for 7(x) which imply estimates for the nth prime number p,, in the direction of
(2.1). Then we apply the estimates for the quantity 1/ log p,, obtained in this section. Cipolla

[5, p. 139] showed that
1 1 log logn 1
= - 35— 1+ 0 3 .
logp, logn log”n log“n

Concerning this asymptotic formula, we give the following inequality involving 1/log p,,
where the polynomials P, ..., P, € Z[x| are given by




Proposition 7. For every integer n > 688 383, we have

1 - 1 loglogn N (loglogn)? — loglogn + 1 N 1 (—1)**1 P (loglogn)
logp, — logn log®n log® nlog p,, log p, — k(k+1) log"*t?n

Proof. We just give a sketch of the proof. For details, see [2, Proposition 2. 2] We write w =
loglogn, y = logn, and z = log p,,. By (1.10), the inequality log(1+z) < 37, (—1)¥ 12k /k,
which holds for every z > —1, and the fact that (w —1)/y + (w — 2)/y* > —1, we see that

T ()R S — w9\ *
P we s o) 3 ) (R 122

2
1 Y Y

Finally, we extend the right-hand side of the last inequality to complete the proof. O
Corollary 8. For every integer n > 456 914, we have
1 - 1 loglogn  (loglogn)? —loglogn+1  Py(loglogn) Py(loglogn)

logp, — logn logn log® nlog p,, 2log®nlogp, 6log*nlogp,
Proof. See [2, Korollar 2.6]. O
Corollary 9. For every integer n > 71, we have

1 - 1 loglogn N (loglogn)? — loglogn + 1

logp, — logn log2 n log nlogp,
Proof. Since the inequality

Pi(loglogn)  Py(loglogn)
2logn 6logn

>0 (2.2)
holds for every n > 3, Corollary 8 implies the validity of the required inequality for every
n > 456 914. We finish by checking the remaining cases with a computer. O]

Using a similar method as in the proof of Proposition 7, we find the following inequality
involving the reciprocal of log p,,. Here, we have

Ps(z) = 32* — 62 4 5.2,

Ps(z) = 2° — 627 + 1142 — 4.2,

Pr(x) = 22 — 7.22% + 8.4x — 4.41,
)=

Py(r) = 2° — 4.20% + 4.41x.

Proposition 10. For every integer n > 2, we have

1 - 1 loglogn N (loglogn)? —loglogn +1  Ps(loglogn) B i Prio(loglogn)

logp, ~ logn log®n log® nlog p,, 21og® nlog p, 1 2 log* nlogp,
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Proof. First, we consider the case where n > 33. We write again w = loglogn, y = logn,
and z = log p,. Notice that log(1 +1t) >t — /2 for every t > 0. If we combine the last fact
with (1.11) and (w —1)/y + (w — 2.1)/y* > 0, we obtain the inequality

2 k
—1)k+l -1 —2.1
—y2+(y—w)22—w2+(y—w)§ ( k) (wy +wy2 )
k=1

which implies the required inequality. A computer check completes the proof. O
Proposition 10 implies the following both corollaries.

Corollary 11. For every integer n > 2, we have

1 - 1 loglogn N (loglogn)? —loglogn +1  Ps(loglogn) 25: Pri2(loglogn)

logp, ~ logn  log’n log® nlog pn 21og® nlog p,

- :
— 2log" nlogp,
Proof. See |2, Korollar 2.20]. O
Corollary 12. For every integer n > 2, we have

1 - 1 loglogn N (loglogn)? —loglogn + 1 N P5(loglogn)  Ps(loglogn)

logp, ~ logn  log*n log® n log p,, 2log® nlogp, 2log*nlogp,
Proof. See [2, Korollar 2.21]. O

3 Proof of Theorem 1

First, we introduce the following notation. Let the polynomials Py, ..., Py € Z|x] are given
as in the beginning of Section 2. Let Ay be a real number with 0.75 < Ay < 1 and let
Fy: IN — R be defined by

Fy(n) =logn — Aglog p,.

From (1.1), it follows that Fy(n) is nonnegative for all sufficiently large values of n. Let Ny
be a positive integer so that Fy(n) > 0 for every n > Ny. Furthermore, let A; be a real
number with 0 < A; < 458.7275, and for w = loglogn let F} : INso — R be given by

Fi(n) = Ay N (w? — 3.85w + 14.15) (w? — w + 1) 2.85P; (w) 2.85P; (w)
: log® py, log* nlog p,, 2log®nlogp,  2log*nlogp,
N (13.15(11)2 —w+1) 707w ) ( 1 N 1 )  Py(w)
log® nlog? p, log® nlog? p, logn ~ logp, 6log* nlogp,

Then Fj(n) is nonnegative for all sufficiently large values of n, and we can define N; to be a
positive integer so that Fy(n) > 0 for every n > N;. Further we set Ay = (458.7275 — A;) A
and Az = 3428.7225A5. To prove Theorem 1, we first use a recently obtained estimate [3]
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for the prime counting function 7(x) and some results from the previous section to construct
a positive integer ny and an arithmetic function by : N>o — R, both depending on some
parameters, with by(n) — 10.7 as n — oo so that

log 1 -2  (logl 2 _6logl b

o < (logn + loglogn — 1 4 281087 =2 (loglogn) % ogn + by(n)
logn 2log"n

for every n > ng. In order to do this, let ap : IN>9 — R be an arithmetic function satisfying

ap(n) > —(loglogn)? + 6log logn, (3.1)

and let Ny be a positive integer depending on the arithmetic function ag so that the inequal-
ities

_ loglogn — 1 N loglogn —2  (loglogn)? — 6loglogn + ag(n)

o <1, 3.2
log n log?n 2log’n - )
log 10g2n -2 (loglogn)? — 6103g logn + ag(n) >0, and (3.3)
log? n 2log”n
loglogn —2  (loglogn)? — 6logl
pn < n | logn +loglogn — 1+ oglogn — (log log ) 02g o+ o) (3.4)
log n 2log"n

hold simultaneously for every n > N;. Now we set

223 — 2122 +82.2x — 98.9  z* — 1423 + 53.422 — 100.6x + 17

6e3 4etw
. 225 — 10z* + 3522 — 11022 + 150z — 42 3z* — 4422 + 15622 — 962 + 64

10e5= 246 ’

GQ(QZ) =

and for w = loglogn we define

2A 2A —1 -2 2uw?-12
bo(n) = 10.7 + 32 N 43 N ap(n) L v w : w w3+ ap(n)
log°n  log"n  logn logn  log“n 4log’n
Ag((5.7A¢ + 8.7)w? — (324, + 38 147.1Ay + 10.7
— 2Go(w)log2n + o(( 0o +8.7Nw” —( %"’ Jw + 0+ )
log”n
2-70.7TA3(w? —w+1)  2-70.7A(w? —w+1
log™n log™n

Then we obtain the following

Proposition 13. For every integer n > max{Ny, N1, No, 841424976}, we have

log1 —2 log1 2 _6logl b
pu <n (logn +loglogn — 1+ —28" "= (loglogn) 0 ogn+bo(n))
logn 2log"n



In order to prove this proposition, we need the following lemma. Its proof is left to the
reader.

Lemma 14. For every x > 2.103, we have

0 < (22 — 3.85z + 14.15) Py () _ 2.85P(x) | Bs(z)
- 2 3 12
_ (2® = 3851 + 14.15) Py(x)  Pu(x) (3.6)
Ge” 20e*

Now we give a proof of Proposition 13.

Proof of Proposition 13. Let n > max{Ny, Ny, N2, 841424 976}. Using [3, Theorem 3] with
T = p,, we see that

1 2.85 13.15 70.7  458.7275  3428.7225
pn <n|logp, —1— - 3 - 3 - 1 - 5 - 6 :
logp, log”p, log”p, log"p,  log”p, log” pn,

(3.7)
For convenience, we write w = loglogn, y = logn, and z = log p,,. By Corollary 8, we have
1 1w  w-w+1l P((w) P(w)

- _ v . . 3.8
22 T yz Y3z i Y222 + 2322 Gytz? (38)

1 1 w w—-—w+l Pw) P(w)
yz y2 oy Y3z 2y'z 6yPz

1
= = ®y(n), (3.10)
where
1 W w w—w+1 w—w+1 Pi(w Po(w 1 1
Oy(n)=— — — — —+ + + 1()— () —+ ).
AR y3z Y222 232 Gytz y 2
Now (2.2) implies that
1 1w w  w-—w+1 w-w+1
— >0 = — - — — — ) 3.11
2 = 3(n) 2o oyd g2z + Y3z + Y222 ( )
We assumed n > Ny. Hence Fy(n) > 0, which is equivalent to
A 1
=< (3.12)
Y z

0]



From (3.12) and the fact that 2.852% — 16z + 73.55 > 0 for every x > 0, it follows

2 2 _
2.85w? — 16w + 73.55 . Ao(5. 7w 232w +147.1) (3.13)
yz

22

Let f(z) = (5.TAg + 8.7)x? — (3240 + 38)x + 147.1Ag + 10.7. Since 0.75 < Ay < 1, we get
f(x) > 12.97522 — 70x + 121.025 > 0 for every x > 0. Using (3.12) and (3.13), we get

2.85w? — 16w + 73.55  8.7w? — 38w + 10.7 _ Agf(w)
+ > :
22 2z 22

(3.14)

We recall that Ay = (458.7275 — A;) A and Az = 3428.7225A%. Hence (3.12) implies that

Ay Ay TOTAD  TOTAL 4587275 — A, 34287225  70.7  70.7
— 4+ + < + -

v ys Y6 s = -5 56 Y38 | y2h (3.15)
Now we apply (3.14) and (3.15) to (3.5) and see that
107~ bo(n) | 285(u? —w+1) 1315w 707  8.7w? — 38w+ 10.7
22 Y222 Y222 Y222 232
458.7275 — A, 34287225  70.7(w? —w+1) (1 1
- 5 - 6 T 2.3 I
z z Y2z y oz
ao(n) w—1 w—2 2w?—12w+ ay(n)
> G - —= (1= — . 3.16
ofe2) 2y° ( y o 4y? (316)
The inequality (2.2) tells us that
13.15 (Py(w) Py(w)) (1 1
— —+-—]>0. 3.17
z ( 23z 6ytz Y i z) (3.17)

Adding the left-hand side of (3.17) and the right-hand side of (3.6) with x = w to the
left-hand side of (3.16), we get

535 bo(n) | 285w’ —w+1) 1315w 707 87w’ —38w+10.7 | 4B8.7275 — Ay

y? 2y? Y222 222 Y222 2932 5
34287225  70.7(w? —w+1) (1 1\ 1315 (P(w) Pe(w)\ (1 1
+ + S+ )+ - Sz
28 Y223 y oz z 23z 6ytz y oz

_ 2.85Py(w)  2.85P(w) N (w? — 3.85w + 14.15) P (w) ~ P3(w) _ Py(w)

6y>z 6ytz? 25z 12952 20y52z

(w? — 3.85w + 14.15) Py (w)
6152
> Gyl )_ao(n) 1_w—1_w—2+2w2—12w+a0(n) '
2y° Y y? 4y?



Since n > Ny, we have Fi(n) > 0. Now we add Fj(n) to the left-hand side of the last
inequality, use the identity 8.7w? — 38w +10.7 = P;(w)+2-2.85(w? —w+1) —2-13.15w, and
collect all terms containing the number 70.7 and the term w? — 3.85w + 14.15, respectively,
to get

535 bo(n) , 285(w’ —w+1) 1315w , 70.7 458.7275 | 34287225

d3(n) +

Y2 22 Y222 Y222 52 55 6
2.85(w? —w+1 13.15w 13.15 P (w Py(w 1 1
1 285 . ) _ - +(2.85+ >< 1(3)— 2(4>> <—+—)
Y3z Yoz z 293z 6y*z y oz
w? — 3.85w + 14.15 Pl(w) Pw) Py(w) Pylw)
+ Pu(n) + - g 5, 6
Y 293z 6ytz 12y°2  20y4z
13.15(w? —w+1) (1 1 2.85w
_l’_ — — J—
Y222 y oz e
Za;(w)_ao(n) 1_w—1_w—2+2w2—12w+a0(n) ’
2y° y y? 4y

where ®;(n) and ®3(n) are given as in (3.9) and (3.11), respectively, and

x> —3.85x +14.15 2% —3.8522 +14.15x  2.85x
e3z B 64:1: - e3z :

Go(z) = Go(z) +

Now we use (3.9) and (3.11) and collect all terms containing the numbers 2.85 and 13.15 to
see that

& - bg(n)

13.15 70.7  458.7275 3428.7225 w?—w+1
+ + +
y2 2y2

2. P

* ( 5ot 2 ) 2(n) + 24 25 26 Y2z
Pi(w)  Py(w)  P(w) Pi(w)
23z Gytz 12952 2095z

~ ag(n) (1 w—1 w—2+2w2—12w+a0(n))

2 Go(w) 2y3 Yy y? 493

Applying (3.10) and Proposition 7, we get

2.5 bo(n) N 2.85 N 13.15 N 70.7 N 458.7275 N 34287225 1 w N 1
yQ 2y2 22 23 24 25 26 y y2 z
— 1 —2 2?12
> Gy(w) — 22 (1 _wol w2 2w 1w aoln ) .
2y y y 4y
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A straightforward calculation shows that the last inequality is equivalent to

1 w?—4dw—(4—by(n)) 1 285 1315 70.7 4587275 34287225
+E+ +—+ -

Y 22 z 22 23 z4 25 28
S w? — 6w+ ap(n) 1 w—1+w—2 w?® — 6w + ag(n)\’
- 2y° 2\ vy y? 2y

+1 w—1+w—2 1 fw—1 4+1 w—1Y\"
3\ y? 4\ y s\ v /)
We add (w — 1)/y + (w — 2)/y* to both sides of this inequality. Since log(1 + x) <

SO _ (1) /k for every > —1, g(z) = 2°/3 is increasing, and h(z) = —a*/4 + 2°/5 is
decreasing on the interval [0, 1], we can use (3.1)—(3.3) to get

w—2 w?—6w+b(n) 1 285 1315 707 458.7275  3428.7225
y+w—1+ - + - + +—+ +
Yy 242 22 z3 z4 25 26
1 w-2 w’-
2y+w—1+log(1+w —I—w2 — 6w:a0(n)>'
y y 2y
Finally, we use (3.4) and (3.7) to arrive at the desired result. O

Next we use Proposition 13 and the following both lemmata to prove Theorem 1. In the
first lemma we determine a suitable value of Ny for Aq = 0.87.

Lemma 15. For every integer n > 1338 564 587, we have
logn > 0.87log p,,.

Proof. We set

-1 -2
flz) =e€*—0.87 (e’”+x+log <1+a: +x€2x >)

e:B

Since f'(x) > 0 for every x > 2.5 and f(3.046) > 0.00137, we see that f(z) > 0 for
every x > 3.046. Substituting z = loglogn in f(z) and using (1.10), we see that the
desired inequality holds for every n > exp(exp(3.046)). We check the remaining cases with
a computer. ]

Now we use Lemma 15 to find a suitable value of N; for A; = 155.32.
Lemma 16. Let A; = 155.32. Then Fi(n) > 0 for every n > 100 720 878.
Proof. First, let n > exp(exp(3.05)). We have

_ 155.32 N f(w) n 34.85w?* — 184.8w + 40.55 n 13.15w?* — 83.85w + 13.15

F
1(n) 55 6yiz 2322 Y223
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where f(z) = 62 — 34.123 + 163.652% — 198.3x + 141.65. Since f(x) > 0 for every z > 3.05,
it suffices to show that

155.32 L 6wt — 34. 1w + 268.2w? — 752.7w + 263.3 n 13.15w?* — 83.85w + 13.15 >0

(3.18)

25 6322 Y223
In order to do this, we set

g(z) = (62" — 34.12" 4 268.22° — 752.7x + 263.3)(e" + z)
+ 6¢”(13.152° — 83.852 + 13.15 + 155.32 - 0.877).

It is easy to see that hy(z) = 62* — 10.12° + 244.82? — 561.6x — 208.229752 > 0 for every
x > 2.6 and that ho(x) = 302* — 136.423 + 804.62% — 1505.42 + 263.3 > 0 for every x > 2.2.
Hence ¢'(x) = hy(z)e® + hy(z) > 0 for every z > 2.6. We also have ¢(3.05) > 0.9. Therefore,
g(x) > 0 for every x > 3.05. Since 6x? — 34.123 + 268.22? — 752.7x + 263.3 > 0 for every
x > 3.05, we can use (1.3) to get g(w)/(6y°2®) > 0. Now we apply Lemma 15 to obtain
(3.18). We finish by direct computation. O

Finally, we give a proof of Theorem 1.

Proof of Theorem 1. For convenience, we write w = loglogn and y = logn. Setting Ay =
0.87 and A; = 155.32, we use Lemma 15 and Lemma 16 to get Ny = 1338564587 and
N7 = 100720 878, respectively. The proof of this theorem goes in two steps.

Step 1. We set ag(n) = —w? + 6w. Then N, = 688383 is a suitable choice for N,. By
(3.5), we get

bo(n) > 10.7 + g(n), (3.19)
where
2w3 — 18w? + 64.2w — 98.9  w?* — 12w? + 63.16w? — 203.17w + 258.29
g(”) - = + D)
3Y 2y
2w® — 10w* + 30w?® — 7T0w? + 90w — 1554.24
5y3
Sw?3 — 2137.44w? + 2185.45w — 37836.25
1294 '
We define

g1(z,t) = 3.54e* + 20(182% + 98.9)e® — 20(2t* + 64.2t)e™
+ 30(z* + 63.162% + 258.29)e*” — 30(12t* + 203.17t)e*
+12(102* 4 702% + 1554.24)e” — 12(2t° + 30t> + 90t )e’
+ 5(2137.442% + 37836.25) — 5(8t° + 2185.45¢).
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If to <z < ty, then gy(z,x) > gi1(to,t1). We check with a computer that g;(i - 1072, (i + 1) -
107°) > 0 for every integer i with 0 < i < 699999. Therefore,

g(ww) o g O<w<7). (3.20)

0.059 =

Next we prove that gi(z,z) > 0 for every > 7. For this purpose, let Wi(x) = 3.54e” —
20(223 — 18x2 4 64.2x — 98.9). It is easy to show that Wy (x) > 792 for every x > 7. Hence
we get

g1(z,z) > (792e" + 30(z* — 122° + 63.162% — 203.17z + 258.29))e*”
— 12(22° — 102 + 302° — 702? + 907 — 1554.24)¢"
— 5(82® — 2137.442% + 2185.45x — 37836.25).

Since 792" + 30(t* — 12t + 63.16t* — 203.17t + 258.29) > 875011 for every ¢t > 7, we
obtain g(n) + 0.059 = g;(w,w)/(60y*) > 0 for w > 7. Combined with (3.20), it gives that
g(n) > —0.059 for every n > 3. Applying this to (3.19), we get by(n) > 10.641 for every
n > 3. Hence, by Proposition 13, we get

Y 212

for every n > 1338564 587. For every integer n such that 39529802 < n < 1338564 586 we
check the last inequality with a computer.

Step 2. We set ag(n) = 10.641. Using the first step, we can choose Ny = 39529802. By
(3.5), we have

< w— 2 w2—6w—|—10.641>
Pn<n|ly+w—1+ —

bo(n) > 10.7 + h(n), (3.21)
where h(n) is given by

2w — 21w? + 82.2w — 130.823 L wt — 14w3 + 77.16w? — 236.45w + 279.57

h(n) = —

3y 2y?
2w® — 10w* + 35w® — 110w? + 203.205w — 1660.65
5y
3w* — 44w3 + 2309.28w? — 2568.52w + 38175.947
+ .
1294
We set

hi(x,t) = 1.98¢" 4 20(212% 4 130.823)e3* — 20(2t> 4 82.2t)e™
+30(2* + 77.162% + 279.57)e** — 30(14¢> + 236.45¢t)e*
4+ 12(102* 4 11022 + 1660.65)e” — 12(2t° + 35¢° 4 203.205t )¢’
+ 5(3z* + 2309.2827 + 38175.947) — 5(44t> + 2568.52t).
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Clearly, hy(z,x) > hy(to,t1) for every = such that ¢ty < x < t;. We use a computer to verify
that hy(i- 1075 (i + 1) - 107%) > 0 for every integer i with 0 <7 < 7999999. Therefore,

hl(waw)
———= >0 0<w<8). 3.22

We next show that hy(z,x) > 0 for every x > 8. Since 1.98¢' — 20(2t% — 21¢% + 82.2t —
130.823) > 1766 for every t > 8, we have

h(n) 4 0.033 =

hi(x, ) > 1766€* + 30(z* — 142° + 77.162% — 236.45z + 279.57)e*"
—12(22° — 102* + 352° — 1102 4 203.2052 — 1660.65)e”
+ 5(3z* — 442® + 2309.287% — 2568.527 + 38175.947).

Note that 1766e! + 30(t* — 143 + 77.16t% — 236.45t + 279.57) > 5271998 for every t > 8.
Hence h(n) + 0.033 = hy(w,w)/(60y*) > 0 for w > 8. Combined with (3.22) and (3.21),
this gives by(n) > 10.667 for every n > 3. Applying this to Proposition 13, we complete the
proof of the required inequality for every n > 1338564 587. We verify the remaining cases
with a computer. O

Denoting the right-hand side of (1.10) by D,,(n) and the right-hand side (1.12) by
A,p(n), we use A006988 to compare the error term of the approximation from Theorem 1
with Dusart’s approximation from (1.10) for the 10"th prime number:

n P Dup(n) — pa] [Aup(n) — pu]
1010 252097 800623 20510784 4613984
101 2760727302517 172 884 400 38 768 198
1012 29996 224 275 833 1469932710 311593 524
1013 323 780 508 946 331 12732767 836 2542231421
10 3475385758 524 527 112026 014 682 21049069 521
10%° 37124 508 045 065 437 998 861 791 991 176 995 293 694
1016 394906 913903 735 329 9004 342407 404 1507803850451
1017 4185296 581 467 695 669 81924060077 026 12998 658 322 559
1018 44211790234 832169 331 751154 982 343 786 113204 602 033 556
101 465675465116 607065549 | 6932757 377044 654 994 838 584 902 026
1020 || 4892055594 575155 744 537 | 64346 895915006 577 | 8 812315669 274 243

4 Proof of Theorem 3

In order to do prove Theorem 3, we introduce the logarithmic integral li(x) which is defined
for every real x > 0 as

li(x) tdt /15 dt +/‘” dt
x) = —— = lim — — 0.
' o logt S0 o logt 14 logt
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Proof of Theorem 3. Let xy = 3273361096. First, we verify the required inequality for
every integer n with xo < n < 7(10'%). For > 1, the logarithmic integral li(x) is increasing
with 1i((1,00)) = R. Thus, we can define the inverse function li"' : R — (1,00) by

li(li(z)) = 2. (4.1)

Further, let

loglogz —2  (loglogx)? — 6loglog z + 11.25))

=x—li 1 log1 —1
flx)==x 1($(og$+ oglogx + log 7 o’ s

We show that f(x) > 0 for every x > xy. We have f(x¢) > 0.000001. So it suffices to show
that f'(x) > 0 for every x > xy. Setting

loga — 1 n loga—2 log?b — 6log b + 11‘25)

g1(a,b) = log (1 + , 2 T

and g(z) = ¢1(z, 2), we see that (z +log z + ¢(2)) f'(e*) = h(z), where

logz—1 n log?z —4log 2z +5.25 log®z — Tlog z + 14.25
z 222 23 '

h(z) = g(2)

Since z + log z + g(z) > 0 for every z > 2.1, it suffices to verify that h(z) > 0 for every
z > log xg. We have h(logzy) > 0.000026 and

(=4) 279N (2) = 2* + (41og® 2 — 461og? 2 + 197 log 2 — 323.5)2°
+ (—61log® z 4 60log® z — 175.5log = + 90)2?
+ (—2log* z + 101log® z + 191og? z — 183.5log z + 234.876) 2
+ 61log* » — 82log® » 4 443log” z — 1114.5log z + 1119.375.  (4.2)

In order to show that h/(z) > 0 for every z € J = [log o, 29.8], it suffices to show that the
right-hand side of (4.2) is negative. Since z 4 4log® z — 46log? z + 197log z — 325.5 < 1.43
for every z € J, we get

(—4)27e9 DB (2) < 1.432° 4+ (—61log® z + 60 log® z — 175.5log z + 90) 2>
+ (—2log* z 4+ 101log® z + 191log® z — 183.5log z + 234.876)z
+ 6log? z — 8210g® = + 443 1og?® z — 1114.5log = + 1119.375.

Notice that 1.43z — 6log® 2 + 601log? z — 175.51log z + 90 < —0.444 for every z € J. Hence

(=4)27e9R (2) < —0.4442% 4+ (—2log* 2 + 101og® 2 + 191og? z — 183.5log = + 234.876)2
+ 6log* 2z — 821og® » + 443 1og® z — 1114.51og z + 1119.375.
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We have —0.444z — 21og* 2 +101og® 2 4 191log® z — 183.5 log z + 234.876 < —47.701 for every
z € J. Hence (—4)27e®)n/(z) < 0 for every z € J which yields that h/(z) > 0 for every
z € J. Combined with h(logzg) > 0, it turns out that h(z) > 0 for every z € [log g, 29.8].
Similar, we get h'(z) < 0 for every z > 29.88. Together with lim, ,,, h(z) = 0, we see that
h(z) > 0 for every z > 29.88. It remains to consider the case where z € (29.8,29.88). If
a < z<b, then

logh —1 . log>a — 4loga +5.25 log®b— Tlogh+ 14.25

h(z) > hi(a,b) = gi(a,b) — b 2a? b’

Now we check with a computer that h,(29.8,29.88) > 0. Hence f(x) > 0 for every x > x.
Since li(z) is increasing for x > 1, we can use (4.1) to get

loglogz —2  (loglog r)? —6loglogz + 11.25) <l ()

z | logx +loglogx — 1+
( & 6708 log x 21og” x

for every x > xq. Applying [13, Lemma 7| to the last inequality, we see that the desired
inequality holds for every integer n satisfying 3273361096 < n < m(10'). For every integer
n such that 2 < n < 3273361096 we check the desired inequality with a computer. O

5 Proof of Theorem 4

Compared with the proof of Theorem 3, the proof of Theorem 4 is rather technical and we
need to introduce some notation. First, let

Py(z) = Ps(x) +2-3.15(2* — 2 + 1),
o) = (2% — 2 + 1) Py(x) + (2® — x + 1)Ps(x) — 3.15P;(z) — Pr(x) + 12.85P5(x),
Pii(z) = 3.15P:(z) + 12.85Ps(x),
() =2

x (2 — 2+ 1) Ps(z) — Ps(x)Py(x),

LS
I

~

2

where the polynomials Ps, FPs, P, and Py were defined as in Section 2. Let By,..., Big be
real positive constants satisfying

Bﬁ+B7—|—Bg+Bg+Blo < 3.15. (51)

Writing w = loglogn, y = logn, and z = log p,,, we define H; : N> — R, where 1 <14 < 10,
by

_ Biw  Pypw)  Pu(w) | Poe(w)  12.85P(w)

H =
* Hin) Y3z 2052 + 295 22 + 4y + 2z
Bow 128w T71.3
H = —
° Q(n) y3Z + y2Z2 Z4 )
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_ Bsw  3.15P5(w)  12.85(w® —w+1)

H.
* Hy(n) y3z 2322 Y322 ’
* Hiln)= v 2ytz? ’
Bsw  Ps(w) —3.15P5(w) 12.85(w? —w+1) (w? —w + 1)?
i H5<n) =3 24 - 4 - 4 )
y°z Yz Yz yz
Bﬁw (1285 — Bl — B2 - Bg — B4 — B5)U} 315(11)2 —w + 1)
® Hg(n) = ——+ 3 - 2,2 )
y=z Yoz Y=z
o H7<n) = yQZ - 2y323 ’
Bsw  12.85(w? —w + 1)
Hy(n) = 3% —
o Hy(n) vz Y223 ’
Byw  463.2275
o Hy(n) = g - 5 0
Y2z z
Blo’w 4585
[} Hlo(n) = y2z - zﬁ .

Then H;(n), 1 < i < 10, is nonnegative for all sufficiently large values of n. Let K; be a
positive integer so that H;(n) > 0, 1 < i < 10, for every n > K;. Let a; : Nso — R be
an arithmetic function and let K5 be a positive integer, which depends on a, so that the
inequalities

a;(n) > —(loglogn)? + 6loglogn, (5.2)
- loglogn — 1 N loglogn —2  (loglogn)® — Gloglogn + ai(n)

0

<1, and 5.3
logn log*n 2log* n - N (5:3)

loglogn —2  (loglogn)? — 6loglogn + a;(n) (5.4)
logn 2log*n .

hold simultaneously for every n > K,. Furthermore, we define the function G; : R — R by

315z 1285 N 12850 2 —x+1 N (v* =z + Dz Py(z)  Pola)x

D >N (logn+loglogn— 1+

Gl (.Z') 6338 e3a: e4a: 6333 e4m 264w 2€5m
r—1)? 2?2 —6x ! Dk -1 z—2\" x—2)*
N Ry . L@
26211 2€3x k er eQ:v 46830

In order to prove Theorem 4, we set

ai(n)

logn

B 2./40(315 — <B6 + B7 + Bg + Bg -+ B10)> lOg lOgTL
logn

bi(n) = 11.3 — 2G(loglog n)log® n +

(5.5)

17



and prove the following proposition.

Proposition 17. For every integer n > max{ Ny, K1, Ks,3520}, we have

log 1 -2 log1 2 —6logl b
pn > 1 (logn +loglogn — 1+ oglogn _ (loglogn) o2g ogn+ bi(n) .
logn 2log”n

The following lemma is helpful for the proof of Proposition 17. The proof is left to the
reader.

Lemma 18. Let w = loglogn. For every integer n > 6, we have

12.85Fs(w) 3.15P;(w) Ps(w) _
2log® nlogp, 2log’nlogp, 2log’nlogp, ~

and for every integer n > 17, we have

4log" nlogp, 2log"nlogp, 2log"nlogp, 2log®nlog?p,

(w—2)*
4log®n

>

Now we give a proof of Proposition 17.

Proof of Proposition 17. Let n > max{Ny, K1, K5,3520}. By [3, Theorem 2|, we have

1 3.15 12.85 71.3  463.2275 4585
pn>n | logp, — 1 — —— 7 — = - —5 . (5.6)
logp, log”p, log’p, log'p, log’p,  log”p,

For convenience, we write w = loglogn, y = logn, and 2z = logp,,. From Corollary 12, it
follows that

1 1 w w—-—w+1l Ps(w Fs(w
__Z\Ill(n):__+_2_ 2 - 5(3 : 6(4 ) (5.7)
z Yy oy Y4z 297z 29tz
Similarly to the proof of (3.10), we use Proposition 10 to get
1
- ; > \112(”)7 (58)
where
I w  w 1 1 w—w+1  Ps(w) 1 : Pyis(w)
Uo(n) = —— + o4+ L (242 N )
) 2 (y " 2) ( Pz 2y 2 ,; Y

Using Ps(loglogz) > 0 for every x > 3, P;(loglogx) > 0 for every z > 3520, and Corollary
11, we get

1>\If()— 1_|_w_|_w+ w w—w+l w-wt+l w-w+l
B T PR y'z ye? y2
P P P P, P, 1K P
_ B Pw)  Pw) | Bo(w) | Pw) | Bo(w) | Prw)

2Pz 2yte? 23 26z B2 | 2yt 27z
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By (5.1), 3.15— (Bg+ B; + Bs+ By + Byg) > 0. Since n > Nj is assumed, we have Fy(n) > 0.
Hence, by (3.12) and (5.5), we see that

w) — al(n) 4 (315 - (BG + B7 + Bg + Bg + Bm))w

q
3 = SECAL

d(n) ai(n) 1 w  Ps(w) FPs(w)
7 G1(w) 2 +12.85 | W3(n) + R + N 20522

1 w w—w+1l Pyw) P(w
+3.15 (\1:2(71) ta gt y32+ B 2ey(SZ) B 2;(522))
713 4632275 4585 (w?—w+1)>  Py(w) Ps(w)Py(w)
I yiz 2tz dy7z
Py(w)  Pro(w) N Pu(w) | Po(w)  (w-2)*
2952 2052 295 22 4y 4ys 7

where Uy(n) and W3(n) are given as in (5.8) and (5.9), respectively. Applying the defining
formulas of Pyg, P11, P12, and G to the last inequality, we find

d(n) ai(n)  w?*—w+1 Py(w) (w—1)?
< — -0 - 12.85V¥ —_—
o < )+ S5 5 () + 12850 () +
w? — 6w 71.3  463.2275 4585 1 w—-w+1
— — — — 315 | ¥ —
2y3 A 5 -6 ™ < 2(n) + e + Y3z )
4 k6
—1)* -1 -2 P
_ (1% (w I w 4 Z k+5(w)7
k=2 k Yy Y i 2ykz

where W (n) is given as in (5.7). Note that w? —w+1 and Py(w) are nonnegative. Therefore,
we can apply (5.7) and (5.9) to the last inequality and get

d(n) - ai(n) w*—w+1 Py(w) 12.85 T71.3 463.2275 4585
202 — 298 Y2z 232 23 24 25 26
1

(w—1)%  w?—6w (—1)F fw—=1 w—2\"
* 22 2y3 Z k *

2
2 Y Y

1 w—-w+1 Ny )
+3.15 (\112(71) Tt ya—z) +) e

Since Py(z) = Ps(x) + 2 - 3.15(z* — x + 1) and d(n) = 11.3 — by(n), the last inequality is
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equivalent to

2y2 — 2y3 yQZ 2y2 2y3

5 —by(n) - ai(n) w?—w+1 N (w—1)? w?—6w _243(—1)’C (w—l +w—2>k
k=2
1285 TL3 4632275 4585 Pyw) 5 Py (w)

+3.15Wy(n) — -

z3 z A A 232

Using (5.8) and Proposition 10, we get the inequality
5—by(n) 1 315 1285 71.3 463.2275 4585 1 w (w-— 1)2
D S _ _ — _ + I S

22 Tz 22 23 24 25 25 y Y3 22
w? — 6w i(—l)k w—1+w—2 " a(n)
2y ~ k y y? 2y

which is equivalent to

_|_

w—2 w—1 w—2 w?>—6w+ai(n L(=DF fw—1 w—2\"
) ORSIE PR

y oy y? 2y° —~ k y y?
LW Owhi(n) 135 1285 TL3 4632275 4585 o,
292 z 22 23 24 25 28 '
Since log(1 4 t) > S_p_, (= 1)¥*1*/k for every t > —1 and both g,(z) = —22/2 + 2°/3 and
go(x) = —x/4 are decreasing on the interval [0, 1], we can use (5.2) and (5.3) to see that

the inequality (5.11) implies

w— 2 _w2—6w—|—b1(n) < log 1_i_w—l +w—2 _w2—6w+a1(n) 1 315
y 2y° y y? 2y° z 2
12.85 71.3  463.2275 4585
D P

Now we add y + w — 1 to both sides of the last inequality und use (5.5) to get

w—2  w?—6w+bi(n) - 1 1 315 1285 71.3 463.2275 4585
— <z—-1—---— — — — — .

Yy Y z 22 z3 24 25 25

y+w-—1+

Finally, we multiply the last inequality by n and apply (5.6) to complete the proof. O
Now, we give a proof of Theorem 4.

Proof of Theorem 4. Clearly, Theorem 3 implies the validity of the inequality (1.14) for every
integer n satisfying 2 < n < 7(10'%). Next, we prove the inequality (1.14) for every n > My,
where My = m(10'%) +1 = 234057 667 276 344 608. In order to do this, let Ay = 0.914. Then,
similar to the proof of Lemma 15, we get logn > 0.9141og p,, for every integer n > M,. So
can chose Ny = M. In the following table we give explicit values for B;:
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l 1 2 3 4 5 6 7 8 9 10
B; | 0.132 | 3.021 | 1.11 | 0.023 | 1.993 | 0.055 | 0.0006 | 0.0199 | 0.055 | 0.0125

Then H;(n) > 0 for every n > M, and each integer ¢ satisfying 1 < i < 10. So we can set
Ky = My. The proof that H;(n) > 0 for every n > M, and each integer ¢ with 1 < i < 10
can be found in Section 7. Furthermore, the above table indicates

3.15 — (Bg + By + Bs + By + Byg) = 3.007. (5.12)

Step 1. We set a;(n) = 0.2y — w? + 6w. Then, by (1.11) and (5.2)—(5.5), we can choose
K, = 33. Using (5.5) and (5.12), we obtain

2w — 18w? + 65.390388w — 97.1
3y

bi(n) =11.5 — + p(n),

w* — 12w 4 46.6w? — 112w + 40 L 2wt — 21.3w? + 40.3w? — 41.5w + 12
2y y?
Quw* — 56w + 129w? — 132w + 52 2w* — 14w? + 36w? — 40w + 16
+ + .
3y Y
In this step, we show that by(n) < 11.5 for every n > M. For this purpose, we set

(5.13)

alx,t) = 2(22° + 65.390388z)e** — 2(18% + 97.1)e*
+3(122° + 1122)e® — 3(t* + 46.6t* + 40)e
+6(21.32% + 41.52)e** — 6(2t* + 40.3t* 4 12)e*
+2(562° + 1327)e” — 2(9t* + 129t + 52)e’
+ 6(142® + 402) — 6(2t" 4 36t 4 16).

Note that this function satisfies the identity
a(w,w) = 6(11.5 — by(n))y’. (5.14)

If tg <z < ty, then a(z,x) > alty, t1). We check with a computer that o/(3.6 +i-1073,3.6 +
(i+1)-1073) > 0 for every integer i satisfying 0 < i < 5399. Hence by (5.14),
bi(n) <115 (3.6 <w<9). (5.15)

Next, we show that a(x, z) > 0 for every > 9. Since 2(22°—1822465.390388z—97.1) > 982
for every x > 9, we have

oz, z) > 982e* — 3(x* — 120% + 46.62% — 1122 + 40)e
— 6(22* — 21.32% + 40.32% — 41.52 + 12)e*”
— 2(92* — 562% + 1292% — 1327 + 52)¢”
— 6(22* — 142® + 362 — 40z + 16).
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Note that 982¢® — 3(z* — 1223 + 46.622 — 1122 +40) > 7955 369 for every x > 9. Therefore,
a(x,z) > 0 for every x > 9. Combined with (5.14) and (5.15), it gives by (n) < 11.5 for every
n > My > exp(exp(3.6)). Applying this to Proposition 17, we get

—2_w2—6w—|—11.5)

Dn >N y+w—1—|—w
y 2y?

for every n > M,.
Step 2. We set aj(n) = 11.5. Then Ky = 47 is a suitable choice for K. Combined with
(5.5) and (5.12), it gives
2w? — 21w? + 83.390388w — 131.6
3y

bi(n) =113 — + p(n),

where p(n) is defined as in (5.13). We set

Blx,t) = 0.15¢ 4 2(22° + 83.390388z)e* — 2(21¢* + 131.6)e*
+3(122% + 1122)e* — 3(¢* + 46.6t° + 40)e™
+ 6(21.32% + 41.52)e?* — 6(2t* + 40.3t> 4 12)e*
+ 2(562% + 1327)e” — 2(9t* + 129t + 52)¢
+ 6(142® + 402) — 6(2t" 4 36t 4 16).

Then 8(w,w) = 6(11.325 — by(n))y®. Similarly to the first step, we get
bi(n) < 11325  (3.686 <w < 7).

Therefore, it suffices to verify that 3(z,x) > 0 for every x > 7. Notice that 0.15¢* 4 2(223 —
2122 + 83.390388z — 131.6) > 382 for every x > 7. Thus we get

Blx, ) > 382e* — 3(z* — 122° + 46.62° — 1127 + 40)e*”
— 6(22* — 21.32% + 40.32% — 41.55 + 12)e*
—2(92* — 562% + 1292% — 1327 + 52)e”
— 6(22" — 142° + 362% — 40z + 16).

Since 382¢” — 3(x* — 1223 + 46.622 — 1122 + 40) > 419440 for every x > 7, we conclude that
B(x,x) > 0 for every = > 7. Hence by(n) < 11.325 for every n > My > exp(exp(3.686)). So,
by Proposition 17,

-2 w? — 6w + 11.325>

Pn >N y—i—w—l—I—w
Y 2y?

for every n > M,.
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Step 3. Here we set a;(n) = 11.325. Then we can choose Ky = 47. By (5.5) and (5.12),

2w? — 21w? 4 83.390388w — 131.075 .

b =113 —
1(n) 3y

p(n),

where p(n) is defined as in (5.13). To show that b;(n) < 11.321 for every n > M,, we set

v(z,t) = 0.126€™ + 2(22° 4 83.390388x)e*” — 2(21¢ + 131.075)e*
+3(122% + 1122)e®™ — 3(t* + 46.6t% + 40)e® + 6(21.32° + 41.5z)e>”
— 6(2t* + 40.3t* + 12)e* + 2(562° 4 132x)e” — 2(9t* 4 129t + 52)¢’
+ 6(142% + 402) — 6(2t* + 36t> + 16).

Notice that v(w,w) = 6(11.321 — b1(n))y®. Analogously to the first step, we obtain b;(n) <
11.321 for w satisfying 3.68 < w < 7. Next we find b;(n) < 11.321 for w > 7. Note that
0.126e” + 2(22% — 212% + 83.390388z — 131.075) > 357.491 for every x > 7. Therefore,

Yz, x) > 357e* — 3(2* — 122° 4 46.62% — 1122 + 40)e>”
—6(22% — 21.32% + 40.32° — 41.52 + 12)e**
— 2(92* — 562% + 12927 — 1321 + 52)¢”
— 6(27* — 142* + 362% — 40z + 16).

Since 357¢” — 3(z* — 122% + 46.62% — 1122 +40) > 392 024 for every x > 7, we get y(z,z) > 0
for every © > 7. So by(n) < 11.321 for every n > My > exp(exp(3.68)). Now Proposition 17
implies the required inequality for every n > My which completes the proof. m

Denoting the right-hand side of (1.11) by Djy(n) and the right-hand side of (1.14) by
Ajow(n), we use A006988 to compare the error term of the approximation from Theorem 4
with the approximation from (1.11) for the 10"th prime number:

n Pn [Pn — Diow(n)] [Pn — Atow(n)]
1010 252097800623 22918 665 1553620
10t 2760727302517 221928 766 12203725
1012 29996 224 275 833 2149187973 116712 205
1013 323780508 946 331 20674 500 003 1107237510
10t 3475385758 524 527 198 184 329 536 10418290134
10 37124 508 045 065 437 1896 434 754 032 97120372631
1016 394906 913 903 735 329 18139062 711 550 901415873097
1017 4185296 581 467 695 669 173543 282219 005 8342526 771 836
10'8 44211790234 832169 331 1661592139 340947 77153499 580018
10t 465675465116 607 065 549 | 15924 846 933 652 812 713638559 773813
1020 || 4892055594 575 155 744 537 | 152800 345 036 619 338 | 6606 690 561 425 196
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Remark 19. Compared to Theorem 4, the asymptotic expansion (1.2) implies a better lower
bound for the nth prime number, which corresponds to the first five terms, namely that

loglogn —2  (loglogn)® — 6loglogn + 11) (5.16)

pn > n | logn 4 loglogn — 1 + 5
logn 2log”n

for all sufficiently large values of n. Let r3 denote the smallest positive integer such that the
inequality (5.16) holds for every n > r3. Under the assumption that the Riemann hypothesis
is true, Arias de Reyna and Toulisse [1, Theorem 6.4] proved that 3.9-10%° < r3 < 3.958-10%°.

6 New estimates for J(p,)

Chebyshev’s ¥-function is defined by

I(w) = logp,

p<w

where p runs over primes not exceeding x. Notice that the prime number theorem is equiv-

alent to
V(z) ~x (x — o00). (6.1)

By proving the existence of a zero-free region for the Riemann zeta-function ((s) to the left
of the line Re(s) = 1, de la Vallée-Poussin [20] found an estimate for the error term in (6.1)
by proving ¥(z) = x4 O(ze~°V1°8%), where ¢ is a positive absolute constant. Applying (1.2)
to the last asymptotic formula, we see that

logon —2  (logyn)? —6logyn + 11 Lo (logy n)?
logn 2log® n log®n

U(pn) =n (1ogn +log,n — 1+

where log, n = loglogn. In this direction, many estimates for J(p,) were obtained (see for
example Massias and Robin [11, Théoreme B]). The current best ones are due to Dusart [8,
Propositions 5.11 and 5.12]. He found that

loglogn — 2.04>

Y pn) >n (logn + loglogn — 1 +
logn

for every n > w(10%) + 1 = 29844 570422 670, and that the inequality

log1 —2 0.782
19(pn)§n(logn—|—loglogn—1—|— 008N )

logn a log®n

holds for every n > 781. Using Theorems 1 and 4, we find the following estimates for ¥(p,,),
which improve the estimates given by Dusart.
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Proposition 20. For every integer n > 2, we have

loglogn —2  (logl 2 —6logl 11.621
ﬁ(pn)>n<logn+1oglogn_1+ oglogn B (loglogn) oglogn + >’

logn 21og” n

and for every integer n > 2581, we have

loglogn —2  (logl 2 _—6logl 10.367
I (pn) <n<10g”+10glogn_1+ oglogn B (loglogn) oglogn + >

logn 21og” n
Proof. From [3, Theorem 1], it follows that
0.15p,

0.15p,
log” pp, log” pn

Pn

where the left-hand side inequality is valid for every integer n > 841508 302 and the right-
hand side inequality holds for every positive integer n. By Rosser and Schoenfeld [16,
Corollary 1], we have n > p,/logp, for every n > 7. Applying the last inequality to the
left-hand side inequality of (6.2), we get ¥J(p,) > pn —0.15n/ log® n for every n > 841 508 302.
Now we apply Theorem 4 to get the desired lower bound for ¥(p,,) for every n > 841 508 302.
By Biithe [4, Theorem 2], we have

Iz) > o — g/_i log?z (599 <z < 1.89 x 10?!). (6.3)
m

Now we apply Theorem 3 to (6.3) and get the required lower bound for 9J(p,,) for every integer
n with 200000 < n < 841508 301. We check the remaining cases for n with a computer.
Similarly to the first part of the proof, we apply the inequality n > p,/logp, to the
right-hand side inequality of (6.2) to get ¥(p,) < p, + 0.15n/log?n for every n > 7. Now
we use Theorem 1 to get the required upper bound for ¥(p,) for every n > 46254 381. For
smaller values of n, we use a computer. O

7 Appendix

Let My = m(10") + 1 = 234057667 276 344 608. In the proof of Theorem 4, we note a table
in which we give explicit values of B;. In this appendix, we show that the H; defined at the
start of paragraph 5 are non-negative for every integer n > M, for the given values of B;.
We start with the claim concerning H;.

Proposition 21. If By = 0.132, then Hi(n) > 0 for every integer n > M.

Proof. Let zy = loglog My. We have Py(z) > 0 for every x > 0.6 and Py(x) > 0 for every
x > 0.6. Using Lemma 15, we get
loglogn)

i >

—_— 7.1
~ 4log® nlogp, (7.1)
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for every integer n > My, where fi(z) = 0.528z€>* — 2Py(x)e” + 1.74P;1(z) + Ppao(x) +
19.45233FPs(x). We show that f(z) > 0 for every x > xy. For this, we set g(x) = (57.024 +
42.768x)e** + (—24.6x* — 32212 — 1137.12? — 1265.98z — 512.24). It is easy to show that
g(z) > 3-10° for every x > zg. So, f1(4)(:v) = g(z)e” + 240z — 1005.6 > 0 for every x > x.
Now it is easy to see that f(z) > 0 for every x > zo. Applying this to (7.1), we get Hy(n) >0
for every integer n > M,. m

Let By = 3.021. Before we check that Ha(n) > 0 for every integer n > My, we introduce
the following

Definition 22. For x > 1, let

-1 —2.1
q)(x)—em—i—:c—i—log(ljtxx + 2 o )
e e

We note the following three properties of the function ®(x).
Lemma 23. For every x > 0.179, we have ®'(z) > e* + 3/4.

Proof. We have ®'(z) > e® + 3/4 if and only if g(x) = €** — 3we® + 7e* — Tz + 18.7 > 0.
Since ¢’ (z) = 4e** — (3z — 1)e” > 0 for every x > 0 and ¢/(0.179) > 0, we obtain ¢'(x) > 0
for every > 0.179. If we combine this with ¢(0.179) > 26.6, we get g(x) > 0 for every
x> 0.179. [

Lemma 24. For every x > 1.246, we have ®(x) > e* + x.

Proof. The desired inequality holds if and only if (z — 1)e* + 2 — 2.1 > 0. Since the last
inequality holds for every x > 1.246, we arrived at the end of the proof. ]

Lemma 25. For every integer n > 3, we have ®(loglogn) < logp,.

Proof. The claim follows directly from (1.11). O
Next, we use these properties to see that Hs(n) > 0 for every integer n > M.

Proposition 26. Let By = 3.021. Then Hs(n) > 0 for every integer n > M.

Proof. Let xq = loglog My. We set fo(z) = 3.0212®%(z) + 12.852e"®?(x) — 71.3¢** and use
Lemmata 23 and 24 to obtain

fi(x) > 3.021(e” + ) + 21.913ze” (e + z)* + 12.85¢" (e” + x)*
+ 25.7we** (¥ + 1) — 213.9¢* (7.2)

for every x > 1.25. We denote the right-hand side of the last inequality by g¢a(x). A
straightforward calculation gives gé?’) (z) > (1285.551x — 4061.232)e3® > 0 for every x > .
Now it is easy to see that go(z) > 0 for every z > . Applying this to (7.2), we see that
fo(z) > 0 for every z > xo. Since fy(zg) > 268.5, we obtain fo(loglogn) > 0 for every
integer n > Mj. Finally, we apply Lemma 25. O]
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Proposition 27. If By = 1.11, then Hs(n) > 0 for every integer n > M.

Proof. Let xy = loglog My and let f3(x) = 2.222®(z) — 35.152% + 44.62 — 42.08. Using
Lemmata 23 and 24, we get f}(z) > (2.22¢* — 65.86)x > 0 holds for every > xy. Combined
with f3(x¢) > 2.42 and Lemma 25, we get that Hs(n) > 0 for every integer n > M. O

Proposition 28. Let By = 0.023. Then Hy(n) > 0 for every integer n > M.

Proof. Let xg = loglog My. We set fi(z) = 0.0462e”®(x)+3.152% —57.452% +113.012 —80.05
and have fy(My) > 10.103. By Lemmata 23 and 24, we get f;(x) > (0.046(e®(e® +x) +€>) +
9.45x — 114.9)x > 0 for every x > . Hence f;(loglogn) > 0 for every integer n > M, and
we can apply Lemma 25. ]

Proposition 29. Let By = 1.993. Then we have Hs(n) > 0 for every integer n > M.

Proof. Let xy = loglog My. To proof the claim, we define f5(z) = 3.986ze” — 22 + 53 —
47.152% 4+ 60x —48.28. Since f2'(x) > 0 for every x > g and fZ(z¢) > 0, we obtain f/(z) >0
for every > . Combined with ff(x¢) > 0, it turns out that fi(z) > 0 for every x > x.
Together with f5(z¢) > 0.203, we conclude that f5(loglogn) > 0, and thus Hs(n) > 0, for
every integer n > M. O

Adding the constants By, ..., Bs given in Proposition 21 and Propositions 26-29, we get
12.85 — By — By — B3 — By — B; = 6.571. Now we set Bg = 0.055 to obtain the following
result.

Proposition 30. Let Bg = 0.055. Then Hg(n) > 0 for every integer n > M.

Proof. Let xo = loglog My. Furthermore, let r(z,t) = (0.118¢* + 4.116)x®(x) + 3.15ze” —
3.15(t% + 1)e* and let fg(x) = r(z,x). If tog < x < ty, then fs(x) > r(to,t1). We check
with a computer that r(3.6 +4-107%,3.6 + (i + 1) - 1073) > 0 for every integer ¢ such that
0 < i <599. Hence fg(z) > 0 for every = such that 3.6 < x < 4.2. To show that fg(x) >0
for every x > 4.2, we set

g(x) = (0.055(xe” + €*) 4+ 6.571)(e” + ) + (0.055e” 4+ 6.571)ze” — 3.15ze”(1 + x).

Then ¢'(z) = h(x)e® + 6.571 where h(x) = 0.22(1 + x)e® — 3.0952% — 2.714x + 10.047. Since
h(z) > 0 for every x > 4.2, we get ¢'(x) > 0 for every x > 4.2. Together with g(4.2) > 0, we
see that g(x) > 0 for every > 4.2. Using Lemmata 23 and 24, we obtain f§(z) > g(z) >0
for every x > 4.2. Combined with fs(4.2) > 17.047, we have fs(z) > 0 for every x > 4.2.
Hence fg(x) > 0 for every z > xy > 3.6. Now we apply Lemma 25 to get Hg(n) > 0 for
every integer n > M. O

Proposition 31. If B; = 0.0006, then we have Hz(n) > 0 for every integer n > M.
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Proof. Let xg = loglog My. Substituting the definition of P5(x), we get

0.0006w  38.55w? — 77.1w + 66.82
Hz(n) = .

e o 24323

To show that Hr(n) > 0 for every integer n > M,, we first consider the function f7(z) =
0.0012ze”®?(x) — 38.55x2 + 77.1x — 66.82. We have f;(z) > 31.88. Additionally, we use
Lemmata 23 and 24 to get fi(z) > (0.0012(e” + x)?(1+ €”) + 0.0024e* (e +x) — 77.1)x > 0
for every & > xy. Hence, f7(loglogn) > 0 for every integer n > M. Finally, it suffices to
apply Lemma 25. O

Proposition 32. Let Bg = 0.0199. Then Hg(n) > 0 for every integer n > M.

Proof. Let xzy = loglog M. We set fs(z) = 0.0199x ®*(x) — 12.85(z* — z + 1). We have
fs(zo) > 0.906. By Lemmata 23 and 24, we obtain f{(z) > (0.0199(e” + x) + 0.0398(e” +
x)e® —25.7)x > 0 for every x > zg. Hence fg(loglogn) > 0 for every integer n > M,.
Finally, we use Lemma 25. [l

Proposition 33. If By = 0.055, then Hg(n) > 0 for every integer n > M.

Proof. Let xzy = loglog My. We define fo(x) = 0.0552 ®*(x) — 463.2275¢%**. By Lemmata
23 and 24, we have f{(z) > ((0.055 + 0.22z)(e” + x)?* — 926.455)e** > 0 for every = > x.
Combined with fo(xg) > 2263.343, we get fo(z) > 0 for every x > zy. Substituting z =
loglogn in fo(z), we apply Lemma 25 to see that Hg(n) > 0 for every integer n > M,. [

Finally, we set Bjp = 0.0125 and check that Hyo(n) > 0 for every integer n > M.
Proposition 34. Let Byg = 0.0125. Then we have Hyo(n) > 0 for every integer n > M.
Proof. Let zy = loglog My and let fio(z) = 0.01252 ®°(x) — 4585¢**. Applying Lemmata
23 and 24, we get f1o(z) > (0.4x(e® + x)® — 9170)e** > 0 for every z > xy. Together with
fio(xo) > 55867.822, we see that fig(loglogn) > 0 for every integer n > M,. Now, we use
Lemma 25 to conclude that Hyp(n) > 0 for every integer n > M. O
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