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Abstract

Polynomially-recursive sequences have a periodic behavior modm, when the leading
coefficient of the corresponding recurrence is invertible mod m. In this paper, we
analyze the period mod m of a class of second-order polynomially-recursive sequences.
Starting with a problem originally coming from an enumeration of avoiding pattern
permutations, we give a generalization which appears to be linked with nice elementary
number theory notions (the Carmichael function, algebraic integers, quadratic residues,
Wieferich primes).

1 Introduction

In his analysis of sorting algorithms, Knuth introduced the notion of forbidden pattern in
permutations, which later became a field of research per se [11]. By studying the basis of
such forbidden patterns for permutations reachable with k right-jumps from the identity
permutation, the authors of [1] discovered that the permutations of size n in this basis were
enumerated by the sequence of integers (bn)n≥0 given by b0 = 1, b1 = 0,

bn+2 = 2nbn+1 + (1 + n− n2)bn for all n ≥ 0. (1)

This is sequence A265165 in the OEIS1. It starts as follows: 1, 0, 1, 2, 7, 32, 179, 1182, 8993,
77440, 744425, 7901410, 91774375. . . .

Such a sequence defined by a recurrence with polynomial coefficients in n is called
P-recursive (for polynomially recursive). Some authors also call such sequences holonomic, or
D-finite (see, e.g., [5,7,13,16]). The D-finite (for differentially finite) terminology comes from
the fact that a sequence (fn)n≥0 satisfies a linear recurrence with polynomial coefficients in n
if and only if its generating function F (z) =

∑

n≥0 fnz
n satisfies a linear differential equation

with polynomial coefficients in z. Accordingly, P-recursive sequences and D-finite functions
satisfy many closure properties: this contributes to make them ubiquitous in combinatorics,
number theory, analysis of algorithms, computer algebra, mathematical physics, etc. It is
not always the case that such sequences have a closed form. In our case, the generating
function of (bn)n≥0 has in fact a nice closed form involving the golden ratio. Indeed, putting

α :=
1 +

√
5

2
and β :=

1−
√
5

2

for the two roots of the quadratic equation x2 − x − 1 = 0, it was shown in [1] that the
exponential generating function of (bn)n≥0, namely

B(x) =
∑

n≥0

bn
xn

n!
, satisfies B(x) =

β

β − α
(1− x)α +

α

α− β
(1− x)β. (2)

1OEIS stands for the On-Line Encyclopedia of Integer Sequences; see https://oeis.org.
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It should be stressed here that our sequence (bn)n≥0 is an instance of a noteworthy
phenomenon: it is one of the rare combinatorial sequences exhibiting an irrational exponent
in its asymptotics:

bn
n!

∼ α√
5Γ(α− 1)

nα−2(1 + o(1)) as n → ∞,

where Γ(z) =
∫ +∞
0

tz−1 exp(−t)dt is the Euler gamma function. We refer to the wonderful
book of Flajolet and Sedgewick [5] for a few other examples of such a phenomenon in analytic
combinatorics, and to [1, Section 4] for further comments on the links between G-functions
and (ir)rational exponents in the asymptotics of the coefficients.

P-recursive sequences are also of interest in number theory, where there is a vast literature
analyzing the modular congruences of famous sequences, e.g., for the binomial coefficients,
or the Fibonacci, Catalan, Motzkin, Apéry numbers, see [3, 6, 9, 14, 19]. For example, the
Apéry numbers satisfy A(peq) = A(pe−1q) mod p3e, in which the exponent 3e in the modulus
grows faster than the exponent e in the function argument. This phenomenon is sometimes
called “supercongruence”, and finds its roots in seminal works by Kummer and Ramanujan
(see [8, 12, 17] for more recent advances on this topic). Accordingly, many articles consider
sequences modulo m = 2r, or m = 3r, or variants of power of a prime number.

We now restate an important result which holds for any m (not necessarily the power of
a prime number).

Theorem 1 (Congruences and periods for P-recursive sequences [1, Theorem 7]).
Consider any P-recurrence of order r:

P0(n)un =
r
∑

i=1

Pi(n)un−i ,

where the polynomials P0(n), . . . , Pr(n) belong to Z[n], and where the polynomial P0(n) is
invertible mod m. Then the sequence (un mod m)n≥0 is eventually periodic2. In particular,
sequences such that P0(n) = 1 are periodic mod m. Additionally, the preperiod and the
period p are bounded by m2r+1, therefore one can efficiently compute them via the Knuth–
Floyd cycle-finding algorithm (the tortoise and the hare algorithm).

N.B.: It is not always the case that P-recursive sequences are periodic mod p. E.g., it
was proven in [10] that Motzkin numbers are not periodic mod m, and it seems that

(n+ 3)(n+ 2)un = 8(n− 1)(n− 2)u(n− 2) + (7n2 + 7n− 2)u(n− 1) , u0 = 0, u1 = 1 ,

is also not periodic mod m, for any m > 2 (this P-recursive sequence counts a famous class
of permutations, namely, the Baxter permutations). This is coherent with Theorem 1, as

2An eventually periodic sequence of period p is a sequence for which un+p = un for all n ≥ n∗ (n∗ is
called the preperiod). Some authors use the terminology “ultimately periodic” instead. In the sequel, as the
context is clear, we will often omit the word “eventually”.
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the leading term in the recurrence (the factor (n + 3)(n + 2)) is not invertible mod m, for
infinitely many n.

For our sequence (bn)n≥1 (defined by recurrence (1)), this theorem explains the periodic
behavior of bn mod m. Thanks to the bounds mentioned in Theorem 1, we can get bn mod m,
by brute-force computation, for any given m. For example bn mod 15 is periodic of period 12
(after a preperiod n∗ = 9):

(bn mod 15)n≥9 = (10, 5, 10, 10, 0, 10, 5, 10, 5, 5, 0, 5)∞.

The period can be quite large, for example bn mod 3617 has period 26158144. More generally,
for every positive integer m, the sequence (bn mod m)n≥1 is eventually periodic, for some
period p depending on m, as defined in the footnote on the previous page. For each m, let
Tm be the smallest possible period p. In this paper, we study some properties of (Tm)m≥2.

This is sequence A306699 in the OEIS; here are its first few values T2, . . . , T100:
2, 12, 8, 1, 12, 84, 8, 36, 2, 1, 24, 104, 84, 12, 16, 544, 36, 1, 8, 84, 2, 1012, 24, 1, 104, 108, 168, 1, 12, 1, 32,

12, 544, 84, 72, 2664, 2, 312, 8, 1, 84, 3612, 8, 36, 1012, 4324, 48, 588, 2, 1632, 104, 5512, 108, 1, 168, 12, 2,

1, 24, 1, 2, 252, 64, 104, 12, 2948, 544, 3036, 84, 1, 72, 10512, 2664, 12, 8, 84, 312, 1, 16, 324, 2, 13612, 168,

544, 3612, 12, 8, 1, 36, 2184, 2024, 12, 4324, 1, 96, 18624, 588, 36, 8.

Do you detect some nice patterns in this sequence? This is what we tackle in the next
section.

2 Periodicity mod m and links with number theory

Our main result is the following.

Theorem 2. Let (bn)n≥0 be the sequence defined by the recurrence of Formula 1. The period
Tm of this sequence bn mod m satisfies:

(a) If m = pe11 · · · pekk (where p1, . . . , pk are distinct primes), then3

Tm = lcm(Tp
e1
1
, . . . , Tp

ek

k

).

(b) We have Tm = 1 if and only if m is the product of primes p ≡ 0, 1, 4 (mod 5).

(c) For every prime p, we have4 Tp | 2p ord5(p).

(d) If Tm > 1 then 2 | Tm if m is even, and 4 | Tm if m is odd.

(e) For m ≥ 3, we have Tm = 2 if and only if m is even and m
2
is the product of primes

p ≡ 0, 1, 4 (mod 5).

3As usual, lcm stands for the least common multiple.
4We denote by ordp(5) the order of 5 modulo p, i.e., the smallest k > 0 such that 5k ≡ 1 (mod p).
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(f) For every prime p and r ∈ N, we have Tpr | 2prord5(p).

The function Tm thus shares some similarities with the Carmichael function introduced
in [2], and it is expected that its asymptotic behavior is also similar (following, e.g., the
lines of [4]). In this article, we focus on the rich arithmetic properties of this function. Note
that Theorem 2 allows computing Tm in a much faster way than the brute-force algorithm
mentioned in Section 1: the complexity goes from m2r+1 via brute-force to ln(m)3 via Shor’s
factorization algorithm [15] (or to sub-exponential complexity in ln(m) with other efficient
algorithms, if one does not want to rely on the use of quantum computers!).

Proof of Part (a). The proof will use a little preliminary result. We call Tm the “eventual
period of the sequence mod m”, or, for short, the “period”, even if the sequence starts with
some terms which do not satisfy the periodic pattern. The following lemma holds for all
eventually periodic sequences of integers.

Lemma 3. Tm divides all other periods of (un)n≥0 modulo m.

Proof. Let Tm = a and assume there is b (not a multiple of a) which is also a period modulom.
Thus, there are na, nb such that un+a ≡ un (mod m) for all n > na and un ≡ un+b (mod m)
for all n > nb. Let d = gcd(a, b). By Bézout’s identity, one has then d = Aa + Bb for
some integers A, B. Let na,b = max{na, nb} + |A|a + |B|b and assume that n > na,b. Then
ua+d = un+Aa+Bb ≡ u(n+Aa)+bB ≡ un+Aa ≡ un (mod m) so d < a is a period of (un)n≥0

modulo m, contradicting the minimality of a.

An immediate consequence is the following:

Corollary 4. We have Tlcm(m1,...,mr) = lcm(Tm1
, . . . , Tmr

).

Proof. First consider r = 2, and let a := m1, b := m2. Since lcm(Ta, Tb) is a multiple of both
Ta and Tb, it follows that it is a period of (un)n≥0 modulo both a and b, so modulo lcm(a, b). It
remains to prove that it is the minimal one. To this aim, suppose that Tlcm(a,b) < lcm(Ta, Tb).
Then either Ta ∤ Tlcm(a,b) or Tb ∤ Tlcm(a,b). Since the two cases are similar, we only deal with
the first one. In this case we would have that both Ta and Tlcm(a,b) would be periods modulo a.
By the previous lemma, this would force gcd(Ta, Tlcm(a,b)) < Ta, which would obviously be a
contradiction. Now, a trivial induction on the number r ≥ 2 gives that

Tlcm(m1,...,mr) = lcm(Tm1
, . . . , Tmr

)

holds for all positive integers m1, . . . ,mr.

In particular, Part (a) of Theorem 2 holds: Tm = lcm(Tp
e1
1
, . . . , Tp

ek

k

). Let us now tackle

the proofs of Parts (b)–(f).

Proof of Part (b). We use the generating function (2), which tells us that

[xn]B(x) =
bn
n!

=
(−1)n√

5

(

α

(

β

n

)

− β

(

α

n

))

. (3)
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Thus,

bn =
(−1)n−1

√
5

(βα(α− 1) · · · (α− (n− 1))− αβ(β − 1) · · · (β − (n− 1))) . (4)

By Fermat’s little theorem,

p−1
∏

k=0

(X − k) = Xp −X (mod p). (5)

Now, assume that p ≡ 1, 4 (mod 5). Then

p−1
∏

k=0

(α− k) ≡ αp − α ≡ 0 (mod p),

where for the last congruence we used the law of quadratic reciprocity: since p ≡ 1, 4 (mod 5),
we have

(

5

p

)

=

(

p

5

)

= 1,

where

(

•
p

)

is the Legendre symbol. Thus,

αp =

(

1 +
√
5

2

)p

≡ 1 +
√
5 · 5(p−1)/2

2p
≡ α (mod p), (6)

because 5(p−1)/2 ≡
(

5

p

)

≡ 1 (mod p) by Euler’s criterion.

In the above and in what follows, for two algebraic integers δ, γ and an integer m we
write δ ≡ γ (mod m) if the number (δ − γ)/m is an algebraic integer. This shows that

1

p

p−1
∏

k=0

(α− k)

is an algebraic integer. The same is true with α replaced by β. Now take r ≥ 1 be any
integer and take n ≥ pr. Then, for each ℓ = 0, 1, . . . , r − 1, we have that both

1

p

p−1
∏

k=0

(α− (pℓ+ k)) and
1

p

p−1
∏

k=0

(β − (pℓ+ k))

are algebraic integers. Thus, if n ≥ pr, then

√
5bn
pr

= (−1)n−1

(

β
r−1
∏

ℓ=0

p−1
∏

k=0

(α− (pℓ+ k))
n−1
∏

k=pr

(α− k)− α
r−1
∏

ℓ=0

p−1
∏

k=0

(β − (pℓ+ k))
n−1
∏

k=pr

(β − k)

)
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is an algebraic integer. Thus, 5b2n/p
2r is an algebraic integer and a rational number, so an

integer. Since p 6= 5, it follows that p2r | b2n, so pr | bn for n ≥ pr. This shows that Tpr = 1
for all such primes p and positive integers r. The same is true for p = 5. There we use that
α− 3 =

√
5β, so

√
5 | α− 3. Thus, if n ≥ 10r, we have that

n
∏

k=1

(α− k) is a multiple of
2r−1
∏

ℓ=0

(α− (3 + 5ℓ)) in Z[(1 +
√
5)/2],

which in turn is a multiple of 5r =
√
5
2r

in Z[(1 +
√
5)/2]. Thus, if n ≥ 10r, then 5r | bn.

This shows that also T5r = 1 and in fact, m | bn for all n > nm if m is made up only of
primes 0, 1, 4 (mod 5). This finishes the proof of (b).

Proof of Part (c). The claim is satisfied for p = 2, as (bn mod 2)n≥0 = (1, 0)∞, thus T2 = 2 | 4.
Consider now p > 2. By Part (b), it suffices to consider odd primes p ≡ 2, 3 (mod 5).

Evaluating Formula (5) at α = 1+
√
5

2
, one has

p−1
∏

k=0

(α− k) ≡ αp − α (mod p).

Since 5(p−1)/2 ≡ −1 (mod p), the argument from (6) shows that αp ≡ β (mod p). Thus

2p
∏

k=1

(α− k) =

p
∏

k=1

(α− k)

2p
∏

k=p+1

(α− k) ≡ (β − α)2 ≡ 5 (mod p).

The same is true for α replaced by β. Thus, for n > 2p, it follows that we have

bn+2p =
(−1)n+2p−1

√
5

(

β

n+2p−1
∏

k=0

(α− k)− α

n+2p−1
∏

k=0

(β − k)

)

≡ (−1)n−1

√
5

5

(

β

n−1
∏

k=0

(α− k)− α

n−1
∏

k=0

(β − k)

)

(mod p)

≡ 5bn (mod p).

Applying this k times, we get

bn+2pk ≡ 5kbn (mod p).

Taking k = p−1 and applying Fermat’s little theorem 5p−1 ≡ 1 (mod p), we get Tp | 2p(p−1).
We can optimize this idea by taking k = ordp(5) (this notation is defined in footnote 4), this
gives the stronger wanted claim: Tp | 2p ordp(5).

Proof of Part (d). By (a), we know that Tp | Tpm. Taking p = 2, one gets 2 | Tm. Now, if
Tm > 1, by (b), there is at least a prime p = 2, 3 (mod 5) such that p | m. We then have
Tp | Tm by (a). We now prove by contradiction that Tp is a multiple of 4.

7



Take a prime p ≥ 3 and assume ν2(Tp) < 2, where νq(a) is the exponent of q in the
factorization of a. That is, Tp would either be odd or 2 times an odd number. Since
Tp | 2p(p − 1), it would follow that if we write p − 1 = 2ak, where k is odd, then Tp | 2pk.
Thus, one would have

bn ≡ bn+2pk ≡ 5kbn (mod p) (7)

for all n > np. Since p = 2, 3 (mod 5), 5 is not a quadratic residue, and thus 5k 6≡ 1 (mod p)
(since −1 ≡ 5(p−1)/2 ≡ (5k)2

a−1

(mod p)). So, the above congruence (7) would imply that
p | (5k − 1)bn but p ∤ 5k − 1, so bn ≡ 0 (mod p) for all large n. Take n and n+ 1 and rewrite
what we got, i.e., bn ≡ bn+1 ≡ 0 (mod p) in Z[α]/pZ[α] as

bn = β
n−1
∏

k=0

(α− k)− α
n−1
∏

k=0

(β − k) ≡ 0 (mod p) ,

bn+1 = β

(

n−1
∏

k=0

(α− k)

)

(α− n)− β

(

n−1
∏

k=0

(β − k)

)

(β − n) ≡ 0 (mod p).

We treat this as a linear system in the two unknowns

(X, Y ) =

(

β
n−1
∏

k=0

(α− k), α
n−1
∏

k=0

(β − k)

)

in the field with p2 elements Z[α]/pZ[α]. This is homogeneous. None of X or Y is 0 since
p cannot divide β

∏n−1
k=0(α− k). Thus, it must be that the determinant of the above matrix

is 0 modulo p, but this is
∣

∣

∣

∣

1 −1
α− n −(β − n)

∣

∣

∣

∣

=
√
5,

which is invertible modulo p. Thus, indeed, it is not possible that both bn and bn+1 are
multiples of p for all large n, getting a contradiction. This shows that Tp is a multiple of 4.

Proof of Part (e). Let m be of shape different from the one required in Part (b), i.e., m now
has at least one prime p ≡ 2, 3 (mod 5) such that p | m. Then 4 | Tp by what we have done
above, and so 4 | Tm by (a). Thus, such m cannot participate in the situations described
either at (d) or (e). Further, one has T4 = 8 as (bn mod 4)n≥0 = (1, 0, 1, 2, 3, 0, 3, 2)∞. Thus,
if 4 | m, then 8 | Tm. Hence, if Tm = 2, then the only possibility is that 2 | m and m/2 is
a product of primes congruent to 0, 1, 4 modulo 5. Conversely, if m has such structure then
Tm = 2 by (a) and the fact that T2 = 2 and Tpr = 1 for all odd prime power factors pr of m.
This ends the proof of (e).

Proof of Part (f). Finally, (f) is based on a preliminary result: a slight generalization of (5),
namely

pr−1
∏

k=0

(X − k) ≡ (Xp −X)p
r−1

(mod pr) (8)
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valid for all odd primes p and r ≥ 1. Let us prove (8) by induction on r. We first prove it
for r = 2. We return to (5) and write

p−1
∏

k=0

(X − k) = Xp −X + pH1(X),

where H1(X) ∈ Z[X]. Changing X to X − pℓ for ℓ = 0, 1, . . . , p− 1, we get that

p−1
∏

k=0

(X−(pℓ+k)) = (X−pℓ)p−(X−pℓ)+pH(X−pℓ) ≡ (Xp−X−pH(X))−pℓ (mod p2).

In the above, we used the fact that H(X − pℓ) ≡ H(X) (mod p). Thus,

p2−1
∏

k=0

(X − k) =

p−1
∏

ℓ=0

p−1
∏

k=0

(X − (pℓ+ k))

≡
p−1
∏

k=0

((Xp −X − pH(X))− pℓ) (mod p2)

≡ (Xp −X − pH(X))p − (Xp −X − pH(X))p−1p

(

p−1
∑

ℓ=0

ℓ

)

(mod p2)

≡ (Xp −X)p − (Xp −X − pH(X))p−1p

(

p(p− 1)

2

)

(mod p2)

≡ (Xp −X)p (mod p2).

In the above, we used the fact that p is odd so p(p− 1)/2 is a multiple of p. This proves (8)
for r = 2. Now, assuming that (8) holds for pr, for some r ≥ 2, we get that for all ℓ ≥ 0, we
have

pr−1
∏

k=0

(X − (prℓ+ k)) ≡ ((X − prℓ)p − (X − prℓ))p
r−1

+ prHr(X − prℓ) (mod pr+1)

≡ (Xp −X)p
r−1

+ prHr(X) (mod pr+1),

where Hr(X) ∈ Z[X]. This allows concluding the induction step, and thus the generaliza-
tion (8) that we wanted:

pr+1−1
∏

k=0

(X − k) =

p
∏

ℓ=0

pr−1
∏

k=0

(X − (prℓ+ k))

≡ ((Xp −X)p
r−1

+ prHr(X))p (mod pr+1)

≡ (Xp −X)p
r

(mod pr+1).
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Equipped with this preliminary result, letting p > 2 be congruent to 2, 3 (mod 5), evalu-
ating the above identity in α, and using that αp ≡ β (mod p), we get that

pr−1
∏

k=0

(α− k) ≡ (Xp −X)p
r−1 ≡ (αp − α)p

r−1 ≡ (β − α)p
r−1

(mod pr).

This shows that
2pr−1
∏

k=0

(α− k) ≡ (β − α)2p
r−1 ≡ 5p

r−1

(mod pr).

The same is true for β; this leads to

bn+2pr ≡
(−1)n+2pr−1

√
5

5p
r−1

(

β
n−1
∏

k=0

(α− k)− α
n−1
∏

k=0

(β − k)

)

≡ 5p
r−1

bn (mod pr).

Thus, applying this k times, we get

bn+2prk ≡ 5p
r−1kbn (mod pr). (9)

By Euler’s theorem aφ(n) ≡ 1 (mod n), one has 5p
r−1(p−1) ≡ 1 (mod pr). Thus, taking

k = p− 1 in (9), we get bn+2pr(p−1) ≡ bn (mod pr). Therefore, Tpr | 2pr(p− 1).
As in the proof of (c), we can optimize this idea; indeed ord5(p

r) = pr−1ord5(p) and thus,
taking k = ord5(p), one gets the wanted claim: Tpr | 2prord5(p).

Finally, it remains to prove (f) for p = 2. Here, by inspection, we have

7
∏

k=0

(X − k) ≡ (X2 −X)4 (mod 4).

By induction on r ≥ 2, one shows that

2r+1−1
∏

k=0

(X − k) ≡ (X2 −X)2
r

(mod 2r).

Evaluating this in α, we get

2r+1−1
∏

k=0

(α− k) ≡ (α2 − β)2
r ≡ 52

r−1

(mod 2r).

The same holds for β, so this gives

bn+2r+1 ≡ (−1)n+2r+1−1

√
5

52
r−1

(

β

n−1
∏

k=0

(α− k)− α

n−1
∏

k=0

(β − k)

)

≡ 52
r−1

bn ≡ bn (mod 2r) ,

showing that T2r | 2r+1 for all r ≥ 2.
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3 Comments and generalizations

Along the proof of our main result we showed that if p ≡ 2 or 3 (mod 5), then

bn+2p ≡ 5bn (mod p).

From here we deduced that Tp | 2p(p− 1) via the fact that 5p−1 ≡ 1 (mod p). One may ask
whether it can be the case that

Tp2 | 2p(p− 1), for some prime p? (10)

Well, first of all, it implies that 5p−1 ≡ 1 (mod p2). This makes p a base-5 Wieferich prime5.
Despite the fact that it is conjectured that there are infinitely many such primes, only 7
base-5 Wieferich primes are currently known! (They are listed as A123692). Amongst them,
only p = 2, 40487, 1645333507, and 6692367337 are additionally congruent to 2 (mod 5), and
none is known to be congruent to 3 (mod 5). Note that the condition of p ≡ 2 or 3 (mod 5)
being base-5 Wieferich is not sufficient to have the divisibility property (10). A close analysis
of our arguments shows that in addition to be a base-5 Wieferich prime, it should also hold
that

2p−1
∏

k=0

(α− k)− 5 ≡ 0 (mod p2) ,

and if this is the case then indeed Tp2 | 2p(p− 1). So, how many other primes could lead to
Tp2 | 2p(p− 1)? Since the integer

1

p

(

2p−1
∏

k=0

(α− k)− 5

)

∈ Z[α]

should be the zero element in the finite field Z[α]/pZ[α], with p2 elements, it could be that
the “probability” that this condition happens is 1/p2. By the same logic, the “probability”
that p is base-5 Wieferich should be 1/p. Assuming these events to be independent, we could
infer that the probability that both these conditions hold is 1/p3. Then, as the series

∑

p≡2,3 (mod 5)

1

p3

is convergent, this heuristically suggests that there should be only finitely many primes
p ≡ 2 or 3 (mod 5) such that Tp2 | 2p(p− 1).

Finally, our results apply to other sequences as well. More precisely, let a, b be integers
and let α, β be the roots of x2 − ax− b. Let

B(x) =
β

β − α
(1− x)α +

α

α− β
(1− x)β =

∑

n≥0

bn
xn

n!
.

5A prime p is a Wieferich prime in base b if bp−1 ≡ 1 (mod p2). This notion was introduced (with b = 2)
by Arthur Wieferich in 1909 in his work on Fermat’s last theorem [18].
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Accordingly, the sequence (bn)n≥0 satisfies b0 = 1, b1 = 0, and, for n ≥ 0

bn+2 = (2n− a+ 1)bn+1 + (b+ an− n2)bn.

What are the periods mod m of such sequences?

• In case α and β are rational (hence, integers), B(x) is a rational function, so bn = n!un,
where (un)n≥0 is binary recurrent with constant coefficients. It then follows that bn ≡
0 (mod m) for all m provided n > nm is sufficiently large. Thus, Tm = 1.

• In case α, β are irrational, then we get a result similar to Theorem 2 (where we had
(a, b) = (1, 1)). Namely, bn ≡ 0 (mod m) for all n sufficiently large whenever m is the

product of odd primes p for which the Legendre symbol

(

∆

p

)

= 0, 1, where ∆ = a2+4b

is the discriminant of the quadratic x2 − ax− b. In case p is odd and

(

∆

p

)

= −1, we

have that Tp | 2p(p − 1) and Tp is a multiple of 4. Also, Tpr | 2pr(p − 1) for all
r ≥ 1 in this case. The proofs are similar. In the case of the prime 2, one needs to
distinguish cases according to the parities of a, b. For example, if a and b are odd, then
∆ ≡ 5 (mod 8), so 2 is not a quadratic residue modulo ∆, so T2r | 2r+1 for all r ≥ 1,
whereas if a is odd and b is even then T2 = 1.

This concludes our analysis of the periodicity of such P-recursive sequences mod m.
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