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Abstract

We use elementary methods to find an explicit formula for the second term of the

continued fraction of the Riemann zeta function over positive integers, with only finitely

many exceptions. As a corollary to this, we find connections between the Riemann zeta

function and the fractional parts of rational powers.

1 Introduction

Given an irrational real number x we recall that the simple continued fraction of it is

x = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

where all ai are integers and ai ≥ 1 for i ≥ 1. Thus, the first term a0 = ⌊x⌋ and the second

term is a1 =
⌊

1
x−a0

⌋

.

The Riemann zeta function is defined for real s > 1 as

ζ(s) =
∞
∑

n=1

1

ns
.

For all positive integers n ≥ 2 we have that 1 < ζ(n) < 2. Therefore, the first term of ζ(n)
in its simple continued fraction is always 1.
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Let a(n) denote the second term in the continued fraction of ζ(n). According to Adams-
Watters in the description of sequence A013697 in the On-Line Encyclopedia of Integer

Sequences (OEIS) [3], “It appears that a(n) = 2n −
⌊(

4
3

)n⌋

− k, where k is usually 2, but is
sometimes 1. Up to n = 1000, the only values of n where k = 1 are 4, 5, 13, 14, and 17.
That is,

⌊

1

ζ(n)− 1

⌋

= 2n −

⌊(

4

3

)n⌋

− k,

where k = 1 or k = 2”. We first prove that this formula holds for all n ≥ 2.

Theorem 1. The equality

⌊

1

ζ(n)− 1

⌋

= 2n −

⌊(

4

3

)n⌋

− 2,

holds for all natural numbers, n ≥ 2, with finitely many exceptional cases. In the exceptional

cases we instead have
⌊

1

ζ(n)− 1

⌋

= 2n −

⌊(

4

3

)n⌋

− 1.

We write {x} = x− ⌊x⌋ , for the fractional part of x. Given coprime integers p > q > 1,

we consider the set
{{(

p

q

)n}

| n ∈ N

}

. Vijayaraghavan [4] proved that this set has infinitely

many limit points, but otherwise not much is known about its distribution. For real s write

εx(s) = (2x)s
((

2
3

)s
+
(

1
2

)s)2
and for simplicity we write ε(s) = ε1(s). As a corollary of

Theorem 1 we obtain the following result.

Corollary 2. For all natural numbers, n ≥ 2, with finitely many exceptional cases, we have

that

1 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< 1 + ε(n).

In the exceptional cases we instead have

0 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< ε(n).

Corollary 2 implies the set
{{

1
ζ(n)−1

}

| n ∈ N

}

has infinitely many limit points.

Corollary 3. For a natural number, n ≥ 2, ζ(n) can only be of the form 1+ 1
m
, where m is

a natural number, finitely many times.

Conjecture 4. The finite exceptions of Theorem 1 only occur when n = 4, 5, 13, 14, 17.

Using Mathematica we checked when
{(

4
3

)n}

is less than 10−9 for n ≤ 5, 000, 000, and no
examples were found. As ε(n) < 10−9 for n ≥ 176, Corollary 2 implies that the conjecture
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holds for 176 ≤ n ≤ 5, 000, 000. Since Adams-Watters verified the conjecture for n ≤ 1000,
we conclude the conjecture holds for n ≤ 5, 000, 000.

Using similar methods to Theorem 1 and Corollary 2, results can also be obtained for
other functions of the form

∞
∑

i=1

(−1)ti

ui
s

,

where ti and ui are some sequence. The Riemann zeta function is such that ti = 0 and
ui = i. For example for the Dirichlet beta function, β(s), where ti = i− 1 and ui = 2i− 1,
we can show
{{

1

1− β(n)

}

−

{(

9

5

)n}

+

{(

9

7

)n}

−

{(

27

25

)n}}

= 1−

(

9

11

)n

+O

((

27

35

)n)

.

For P (s) where ti = 0 and ui is the ith prime, we can show that

1−

(

8

9

)s

− 2

(

2

3

)s

−
1

2s
<

1

P (s)
−

1

ζ(s)− 1
< 1 +

(

8

9

)s

+ 2

(

8

15

)s

+

(

8

25

)s

.

The most interesting of these results using different functions is given in Theorem 5. This
is using the function for when ti = 0 and ui =

2i
3
.

Theorem 5. For n large enough we have

1−

(

8

9

)n

−

(

2

3

)n

<

{

1

ζ(n)− 1

}

+

{

(

2
3

)n

ζ(n)− 1

}

<

1−

(

8

9

)n

−

(

2

3

)n

+ ε(n) + ε 2

3

(n).

2 Analytic Results

Proposition 6. For all n ≥ 2 we have that

1 <
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2.

Proof. For n = 2 and n = 3, it can be checked that the inequality is true. For n ≥ 4 we
prove the proposition by contradiction. Assume

1 ≥
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2.

We will first cancel out some terms from our inequality. Our assumption implies that

2n −

(

4

3

)n

− 1 ≥
1

ζ(n)− 1
,
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6n − 4n − 3n

3n
≥

1

ζ(n)− 1
,

3n

6n − 4n − 3n
≤ ζ(n)− 1,

3n ≤ (6n − 4n − 3n)
∞
∑

i=2

1

in
,

3n +
∞
∑

i=2

3n

in
+

∞
∑

i=2

4n

in
≤

∞
∑

i=2

6n

in
. (1)

On the other hand, the following three inequalities are obvious:

∞
∑

i=2

3n

in
>

(

3

2

)n

+ 1, (2)

∞
∑

i=2

4n

in
> 2n +

(

4

3

)n

+ 1, (3)

∞
∑

i=2

6n

in
< 3n+2n+

(

3

2

)n

+

(

6

5

)n

+1+

∫

∞

6

(

6

t

)n

dt = 3n+2n+

(

3

2

)n

+

(

6

5

)n

+1+
6

n− 1
. (4)

Thus, substituting (2), (3), and (4) into (1), we have

3n +

(

3

2

)n

+ 1 + 2n +

(

4

3

)n

+ 1 < 3n + 2n +

(

3

2

)n

+

(

6

5

)n

+ 1 +
6

n− 1
,

(

4

3

)n

+ 1 <

(

6

5

)n

+
6

n− 1
.

It is clear that the above statement is false for n ≥ 7. Specifically it can be checked that it
is false for n ≥ 4. This is a contradiction and thus,

1 <
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2,

for all n ≥ 2.

Proposition 7. For n ≥ 2 we have that

1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2 < 1 + ε(n).

4



Proof. Consider

1

ζ(n)− 1
=

1
1
2n

+ 1
3n

+ 1
4n

+ 1
5n

+ · · ·
<

1
1
2n

+ 1
3n

+ 1
4n

.

Thus,
1

ζ(n)− 1
<

2n

1 + 2n

3n
+ 1

2n

=

2n

(

1−

(

2n

3n
+

1

2n

)

+

(

2n

3n
+

1

2n

)2

−

(

2n

3n
+

1

2n

)3

+ · · ·

)

<

2n

(

1−

(

2n

3n
+

1

2n

)

+

(

2n

3n
+

1

2n

)2
)

= 2n −

(

4

3

)n

− 1 + 2n
(

2n

3n
+

1

2n

)2

.

We conclude that
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2 < 1 + ε(n),

for n ≥ 2.

3 Proof of Results

The following lemma is obvious.

Lemma 8. If

A < x < B,

then

A− 1 < ⌊x⌋ < B.

Proposition 9. For all natural numbers n ≥ 2, we have that

⌊

1

ζ(n)− 1

⌋

= 2n −

⌊(

4

3

)n⌋

− k,

where k = 1 or k = 2.

Proof. It is easy to check the equality holds for 2 ≤ n ≤ 4. We know from Proposition 6
and Proposition 7 that

1 <
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2 < 1 + ε(n).

Applying Lemma 8 twice to this inequality we obtain that

−1 <

⌊

1

ζ(n)− 1

⌋

− 2n +

⌊(

4

3

)n⌋

+ 2 < 1 + ε(n).
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As lim
n→∞

ε(n) = 0, for n ≥ 5 we have that

−1 <

⌊

1

ζ(n)− 1

⌋

− 2n +

⌊(

4

3

)n⌋

+ 2 < 2.

It is clear that
⌊

1
ζ(n)−1

⌋

− 2n +
⌊(

4
3

)n⌋

+ 2 is an integer for n ≥ 2. Thus,

⌊

1

ζ(n)− 1

⌋

− 2n +

⌊(

4

3

)n⌋

+ 2 = 0 or 1.

Hence,
⌊

1

ζ(n)− 1

⌋

= 2n −

⌊(

4

3

)n⌋

− k,

where k = 1 or k = 2 for all n ≥ 2.

Proposition 10. For all natural numbers n ≥ 2, where k is as in Proposition 9, we have

that

k − 1 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< k − 1 + ε(n).

Proof. From Proposition 9 we have that
⌊

1

ζ(n)− 1

⌋

= 2n −

⌊(

4

3

)n⌋

− k,

and therefore,
⌊

1

ζ(n)− 1

⌋

− 2n +

⌊(

4

3

)n⌋

+ 2 = 2− k.

Since the integral part plus the fractional part is the number itself, we have that

1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2 =

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

+ 2− k. (5)

We know from Proposition 6 and Proposition 7 that

1 <
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2 < 1 + ε(n).

Substituting (5) into this inequality we obtain that

1 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

+ 2− k < 1 + ε(n).

We conclude that

k − 1 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< k − 1 + ε(n).
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Proposition 11. Let k be as in Proposition 9. Then k = 1 occurs finitely many times.

Proof. We know from Proposition 10 that

k − 1 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< k − 1 + ε(n).

It follows from Mahler’s work [1] that if p > q ≥ 2 are coprime integers and ε > 0, then

{(

p

q

)n}

> e−εn,

for all integers n, except for at most a finite number of exceptions.
As ε(n) = O

((

8
9

)n)

, by taking p = 4, q = 3 and ε = log(10
9
) we obtain that only a finite

number of n satisfy

0 <

{(

4

3

)n}

< ε(n).

Therefore, only a finite number of n satisfy

0 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< ε(n).

Thus, k = 1 occurs a finite number of times.

The best effective lower bound for the distance of
(

4
3

)n
to the nearest integer we are

aware of is
∥

∥

∥

∥

(

4

3

)n∥
∥

∥

∥

> 0.4910n for n ≥ 5 868 122 745 713 241 570,

given by Pupyrev [2], where ‖·‖ denotes the distance to the nearest integer. However this
bound is not strong enough for our purposes. Therefore, Proposition 11 is not effective.

Proof of Theorem 1. Theorem 1 follows from combining both Proposition 9 and Proposi-
tion 11.

Proof of Corollary 2. Corollary 2 follows from combining both Proposition 10 and Proposi-
tion 11.

Proof of Corollary 3. We prove this by contradiction. Suppose ζ(n) = 1+ 1
m
for some integer

m. Therefore, 1
ζ(n)−1

= m is an integer and thus,
{

1
ζ(n)−1

}

= 0. From Proposition 10 we

know that

k − 1 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< k − 1 + ε(n).

Therefore,

k − 1 <

{(

4

3

)n}

< k − 1 + ε(n).
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When k = 2 we have

1 <

{(

4

3

)n}

< 1 + ε(n).

However, this implies that a fractional part is greater than 1 which by definition is impossible.
This is a contradiction. Therefore, if ζ(n) = 1 + 1

m
for some integer m, then k = 1. Thus,

this happens finitely many times.

Proposition 12. For all 1
2
< x < 3

4
and n large enough,

−

(

4x

3

)n

− xn − k <

{

xn

ζ(n)− 1

}

− {(2x)n} < εx(n)−

(

4x

3

)n

− xn − k,

where k = 0 or k = −1. When x is rational k = 0 except for a finite number of exceptions.

Proof. From Proposition 6 and Proposition 7 we know that

1 <
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 2 < 1 + ε(n).

So

0 <
1

ζ(n)− 1
− 2n +

(

4

3

)n

+ 1 < ε(n).

Recall that εx(n) = (2x)n
((

2
3

)n
+
(

1
2

)n)2
. It is obvious that xnεy(n) = εxy(n). Therefore,

0 <
xn

ζ(n)− 1
− (2x)n +

(

4x

3

)n

+ xn < εx(n),

and thus,

−

(

4x

3

)n

− xn <
xn

ζ(n)− 1
− (2x)n < εx(n)−

(

4x

3

)n

− xn. (6)

Applying Lemma 8 twice to (6) and noticing that ⌊(2x)n⌋ appears with a negative sign we
obtain that

−1−

(

4x

3

)n

− xn <

⌊

xn

ζ(n)− 1

⌋

− ⌊(2x)n⌋ < 1 + εx(n)−

(

4x

3

)n

− xn.

Notice that for 1
2
< x < 3

4
both bounds of the above inequality tend to −1 and 1 respectively.

Also notice that for n large enough we have that

εx(n)−

(

4x

3

)n

− xn = xn

(

ε(n)−

(

4

3

)n

− 1

)

< 0.

As
⌊

xn

ζ(n)−1

⌋

− ⌊(2x)n⌋ is an integer, for n large enough we have that

⌊

xn

ζ(n)− 1

⌋

− ⌊(2x)n⌋ = −1 or 0.
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Therefore,
xn

ζ(n)− 1
− (2x)n = k +

{

xn

ζ(n)− 1

}

− {(2x)n} ,

where k = −1 or k = 0. Substituting this into (6) we get that

−

(

4x

3

)n

− xn < k +

{

xn

ζ(n)− 1

}

− {(2x)n} < εx(n)−

(

4x

3

)n

− xn.

Hence,

−

(

4x

3

)n

− xn − k <

{

xn

ζ(n)− 1

}

− {(2x)n} < εx(n)−

(

4x

3

)n

− xn − k.

One can use the same argument as in Proposition 11 to show that for a rational number
1
2
< x < 3

4
we have that k = −1 occurs finitely many times.

One can apply the same methods for other values of x. For 0 < x ≤ 1
2
, both fractional

parts converge to 0, so it is not interesting. For x = 3
4
, one can achieve the same result

but with k = −2 or k = −1. For 3
4
< x, if we want the bounds to converge, there are two

possibilities. The first is that there will be more than two fractional parts (apart for some
exceptions like x = 1), and k will take more values, that is, the number of fractional parts.
The second is that there will still be two fractional parts and k can only take two values, but
one of the fractional parts will be of a finite sum of real numbers to natural powers rather
than just one term. For example when x = 11

10
we have that

−k <

{

(

11
10

)n

ζ(n)− 1

}

−

{(

11

5

)n}

+

{(

22

15

)n}

+

{(

11

10

)n}

< −k + ε 11

10

(n),

where k = −2 or k = −1 or k = 0 or k = 1. Or

−k <

{

(

11
10

)n

ζ(n)− 1

}

−

{(

11

5

)n

−

(

22

15

)n

−

(

11

10

)n}

< −k + ε 11

10

(n),

where k = 0 or k = 1.

Proof of Theorem 5. When x = 2
3
in Proposition 12 we have

−

(

8

9

)n

−

(

2

3

)n

− k <

{

(

2
3

)n

ζ(n)− 1

}

−

{(

4

3

)n}

<

ε 2

3

(n)−

(

8

9

)n

−

(

2

3

)n

− k,
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where k = −1 or k = 0. We know from Corollary 2 that

k′ − 1 <

{

1

ζ(n)− 1

}

+

{(

4

3

)n}

< k′ − 1 + ε(n),

where k′ = 1 or k′ = 2. Adding the two inequalities we get

m−

(

8

9

)n

−

(

2

3

)n

<

{

1

ζ(n)− 1

}

+

{

(

2
3

)n

ζ(n)− 1

}

<

m+ ε(n) + ε 2

3

(n)−

(

8

9

)n

−

(

2

3

)n

,

where m = 0 or m = 1 or m = 2. We can see that m = 0 or m = 2 occur finitely many
times. Thus, for n large enough we always have m = 1. This proves the theorem.
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