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Abstract

We study the central coefficients of a family of Pascal-like triangles defined by

Riordan arrays. These central coefficients count left-factors of colored Schröder paths.

We give various forms of the generating function, including continued fraction forms,

and we calculate their Hankel transform. By using the A and Z sequences of the

defining Riordan arrays, we obtain a matrix whose row sums are equal to the central

coefficients under study. We explore the row polynomials of this matrix. We give

alternative formulas for the coefficient array of the sequence of central coefficients.

1 Introduction

In the mathematics literature, the designation of “central binomial coefficients” is normally
reserved for the binomial coefficients

(

2n
n

)

A000984, as they form the central spine of Pascal’s
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triangle A007318 when it is viewed as a centrally symmetric (or palindromic) triangle.

1
1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

When we view Pascal’s triangle as a lower-triangular matrix, these numbers skip alternate
rows.























1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 2 1 0 0 0 0

1 3 3 1 0 0 0

1 4 6 4 1 0 0

1 5 10 10 5 1 0

1 6 15 20 15 6 1























.

In this note, we shall be principally concerned with generalizations of the central coefficients
(

n

⌊n
2
⌋
)

A001405, which take numbers from each row when we view Pascal’s triangle as a

lower-triangular matrix. To distinguish
(

n

⌊n
2
⌋
)

from the usual central binomial coefficients,

we shall call
(

n

⌊n
2
⌋
)

, and their generalizations that we shall soon introduce, complete central

coefficients.






















1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 2 1 0 0 0 0

1 3 3 1 0 0 0

1 4 6 4 1 0 0

1 5 10 10 5 1 0

1 6 15 20 15 6 1























.

We recall that
(

2n
n

)

has the generating function (g.f.)

n
∑

k=0

(

2n

n

)

xn =
1√

1− 4x
,

while
(

n

⌊n
2
⌋
)

has the generating function

g(x) =
n
∑

k=0

(

n

⌊n
2
⌋

)

xn =
−1 + 2x+

√
1− 4x2

2x− 4x2
.
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This generating function can be alternatively expressed as

g(x) =
1 + xc(x2)√

1− 4x2
=

1

1− x− x2c(x2)
,

where

c(x) =
1−

√
1− 4x

2x

is the generating function of the sequence of Catalan numbers Cn = 1
n+1

(

2n
n

)

A000108. We

note that
(

n

⌊n
2
⌋
)

is given by the interlacing of
(

2n
n

)

and
(

2n+1
n+1

)

A001700 so that we have

(

n

⌊n
2
⌋

)

=

(

n

n/2

)

1 + (−1)n

2
+

(

n

(n+ 1)/2

)

1− (−1)n

2
.

Now the generating function of
(

2n+1
n+1

)

is c(x)√
1−4x

, so that we obtain that

g(x) =
1√

1− 4x2
+

1−
√
1− 4x2

2x
√
1− 4x2

=
−1 + 2x+

√
1− 4x2

2x− 4x2
.

We have previously [5] defined a family of Pascal-like triangles whose elements are (ordinary)
Riordan arrays. In this note, we study the complete central coefficients of this family of
triangles.

Integer sequences in this note are referred to by their Annnnnn number from the On-Line
Encyclopedia of Integer Sequences [14, 15] where such a number is known. All matrices in
this note are integer valued, lower triangular, and invertible. In particular the main diagonal
will always consist of all 1’s. Where examples are given, a suitable truncation is shown.

We recall that an ordinary Riordan array (g(x), f(x)) [2, 12, 13] is defined by two gener-
ating functions,

g(x) = g0 + g1x+ g2x
2 + . . . , g0 6= 0,

and
f(x) = f1x+ f2x

2 + f3x
3 + . . . , f1 6= 0,

with the (n, k)-th element of the corresponding lower-triangular matrix being given by

[xn]g(x)f(x)k.

In the sequel we shall always assume that g0 = f1 = 1. The inverse of the Riordan array
(g(x), f(x)) is given by

(g(x), f(x))−1 =

(

1

g(f̄(x))
, f̄

)

,

where f̄(x) denotes the compositional inverse of f(x). Thus we have f(f̄(x)) = x and
f̄(f(x)) = x. We also use the notation Rev(f)(x) = f̄(x). The product law for Riordan
arrays (which coincides with matrix multiplication) is given by

(g(x), f(x)) · (u(x), v(x)) = (g(x)u(f(x)), v(f(x)).

3
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In the group of Riordan arrays, a Bell matrix is a Riordan array defined by a pair (g(x), xg(x)).
The row sums of a Bell matrix have a generating function given by

(g(x), xg(x)) · 1

1− x
=

g(x)

1− xg(x)
.

The Hankel transform [9, 10] of a sequence an is the sequence hn where hn = |ai+j|0≤i,j≤n.
If the g.f. of an is expressible as a continued fraction [4, 16] of the form

µ0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

,

then the Hankel transform of an is given by [9] the Heilermann formula

hn = µn+1
0 βn

1 β
n−1
2 · · · β2

n−1βn.

If the g.f. of an is expressible as the following type of continued fraction:

µ0

1 +
γ1x

1 +
γ2x

1 + · · ·

,

then we have
hn = µn+1

0 (γ1γ2)
n(γ3γ4)

n−1 · · · (γ2n−3γ2n−2)
2(γ2n−1γ2n).

A Motzkin path of length n is a lattice path from (0, 0) to (n, 0) with steps northeast,
(1, 1), east (1, 0) and southeast, (1,−1) , that does not go below the x-axis. A left-factor of
a Motzkin path is the portion of a Motzkin path that goes from (0, 0) to the line x = n.

A Schröder path of length n is a lattice path from (0, 0) to (2n, 0) with steps northeast,
(1, 1), east (2, 0) and southeast, (1,−1) , that does not go below the x-axis. A left-factor of
a Schröder path is the portion of a Schröder path that goes from (0, 0) to the line x = n.

2 The family of Pascal-like triangles

The Riordan array
(

1

1− x
,
x(1 + rx)

1− x

)

4



defines a Pascal-like matrix [5] with general term Tn,k given by

Tn,k(r) =
k
∑

j=0

(

k

j

)(

n− j

n− k − j

)

rj =
n−k
∑

j=0

(

k

j

)(

n− k

j

)

(r + 1)j.

These number triangles are “Pascal-like” in the sense that

Tn,k = Tn,n−k, Tn,0 = 1, Tn,n = 1, Tn,k = 0 forn > k.

We have

Tn,k(0) =

(

n

k

)

,

hence for r = 0, the obtained number triangle is indeed Pascal’s triangle A007318.
The central coefficients of these triangles are given by

T2n,n(r) =
n
∑

k=0

(

n

k

)(

2n− k

n− k

)

rk =
n
∑

k=0

(

n

k

)(

2n− k

n

)

rk =
n
∑

k=0

(

n

k

)2

(r + 1)k.

Similarly, we have that

T2n+1,n+1(r) =
n+1
∑

j=0

(

n+ 1

j

)(

2n+ 1− j

n− j

)

rj =
n
∑

j=0

(

n+ 1

j

)(

n

j

)

(r + 1)j.

Proposition 1. The generating function of T2n,n(r) is given by

1
√

1− 2x(r + 2) + r2x2

and the generating function of T2n+1,n+1(r) is given by

1− rx−
√

1− 2x(r + 2) + r2x2

2x
√

1− 2x(r + 2) + r2x2
.

Proof. Define G(x) and F (x) by
(

1

1− x
,
x(1 + rx)

1− x

)

= (G(x), xF (x)).

Then

T2n,n = [x2n]G(x)(xF (x))n

= [xn]G(x)F (x)n

= [xn]
G(x)

F (x)
F (x)n+1

= (n+ 1)
1

n+ 1
[xn]

G(x)

F (x)
F (x)n+1

= [xn]
G(v(x))

F (v(x))
v′(x)

5
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where

v(x) = Rev

(

x

F (x)

)

,

and where we have used Lagrange inversion [3, 11]. Now in this case we have

v(x) = Rev

(

x(1− x)

1 + rx

)

=
1− rx−

√

1− 2x(r + 2) + r2x2

2
,

whence the result follows. In similar fashion, we have

T2n+1,n+1 = [xn]G(v(x))v′(x).

From the above we have that

T2n,n(r) = rnPn

(

r + 2

r

)

,

where Pn(x) is the n-th Legendre polynomial. In particular we have

T2n,n(r) =
n
∑

k=0

(n− k + 1)T̃n,kr
k,

where

T̃n,k =
1

n− k + 1

(

2n− k

n

)(

n

k

)

is the number triangle A060693 that counts the number of Schröder paths of length n with
k peaks. This latter triangle is closely related to the Narayana triangle (Nn,k) that begins

















1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 1 3 1 0 0
0 1 6 6 1 0
0 1 10 20 10 1

















.

In fact we have
(Nn,k) ·B = (T̃n,k),

where B = (
(

n

k

)

) is the binomial matrix.
We now turn our attention to the complete central coefficients Tn,⌊n

2
⌋(r) which define the

polynomial sequence that begins

1, 1, r + 2, 2r + 3, r2 + 6r + 6, . . . .

6
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Example 2. The Pascal-like Riordan array
(

1
1−x

, x(1+x)
1−x

)

(the Delannoy triangle A008288)

begins




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 5 5 1 0 0 0
1 7 13 7 1 0 0
1 9 25 25 9 1 0
1 11 41 63 41 11 1





















.

The complete central coefficients form the sequence A026003 that begins

1, 1, 3, 5, 13, 25, 63, . . . .

This sequence counts left-factors of Schröder paths (from (0, 0) to the line x = n).

Example 3. The Pascal-like triangle
(

1
1−x

, x(1+2x)
1−x

)

A081577 begins




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 4 1 0 0 0 0
1 7 7 1 0 0 0
1 10 22 10 1 0 0
1 13 46 46 13 1 0
1 16 79 136 79 16 1





















.

The complete central coefficients form the sequence that begins

1, 1, 4, 7, 22, 46, 136, . . . .

This sequence counts left-factors of Schröder paths (from (0, 0) to the line x = n), where the
horizontal steps come in two colors. See Figure 1.

Proposition 4. The generating function of the complete central coefficients Tn,⌊n
2
⌋(r) of the

Pascal-like Riordan array
(

1
1−x

, x(1+rx)
1−x

)

is given by

g(x; r) =

√

1− 2x2(r + 2) + r2x4 + rx2 + 2x− 1

2x(1− 2x− rx2)
.

Proof. By the previous proposition, we have

g(x; r) =
1

√

1− 2x2(r + 2) + r2x4
+ x

1− rx2 −
√

1− 2x2(r + 2) + r2x4

2x
√

1− 2x2(r + 2) + r2x4

=
1 + 2x− rx2 −

√

1− 2x2(r + 2) + r2x4

2x
√

1− 2x2(r + 2) + r2x4

=

√

1− 2x2(r + 2) + r2x4 + rx2 + 2x− 1

2x(1− 2x− rx2)
.

7
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Figure 1: The 7 Schröder left-factors at x = 3 for r = 2
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Corollary 5. We have the following continued fraction form for g(x; r).

g(x; r) =
1

1− x−
(r + 1)x2

1−
x2

1−
(r + 1)x2

1−
x2

1− · · ·

.

Proof. We solve the equation

u =
1

1− x2

1−(r+1)x2u

.

Then we find that

g(x; r) =
1

1− x− (r + 1)x2u
.

Corollary 6. We have the following continued fraction form for g(x; r).

g(x; r) =
1

1− x− rx2 −
x2

1− rx2 −
x2

1− rx2 − · · ·

.

Corollary 7. We have

g(x; r) =
1

1− 2x− rx2
c

( −x

1− 2x− rx2

)

.

Corollary 8. The Hankel transform hn = |Ti+j,⌊ i+j

2
⌋|0≤i,j≤n of Tn,⌊n

2
⌋(r) is given by

hn = (r + 1)⌊
(n+1)2

4
⌋.

Proof. We have

g(x; r) =
1

1− x−
(r + 1)x2

1−
x2

1−
(r + 1)x2

1−
x2

1− · · ·

9



whose expansion has the same Hankel transform as the expansion of its INVERT(1) trans-
form

1

1−
(r + 1)x2

1−
x2

1−
(r + 1)x2

1−
x2

1− · · ·

.

The Hankel transform result follows from Heilermann’s formula.

Note that if a sequence has generating function f(x), then its INVERT(r) transform is

the sequence with generating function f(x)
1−rxf(x)

. The Hankel transform of a sequence and

that of its INVERT(r) transform are equal [6]. We let

c(x) =
1 + xc(x2)√

1− 4x2
=

1

1− x− x2c(x2)
=

√
1− 4x2 + 2x− 1

2x(1− x)

be the generating function of
(

n

⌊n
2
⌋
)

. We have

c(x) =

(

1

1− 2x
,

−x

1− 2x

)

· c(x).

Corollary 9. The generating function g(x; r) of the complete central coefficients Tn,⌊n
2
⌋ of

the Pascal-like matrix
(

1
1−x

, x(1+rx)
1−x

)

is given by

g(x; r) =

(

1

1− rx2
,

x

1− rx2

)

· c(x) = 1

1− rx2
c

(

x

1− rx2

)

.

Proof. This follows since we have the Riordan array factorization

(

1

1− 2x− rx2
,

−x

1− 2x− rx2

)

=

(

1

1− rx2
,

x

1− rx2

)

·
(

1

1− 2x
,

−x

1− 2x

)

.

Corollary 10. We have

Tn,⌊n
2
⌋ =

n
∑

k=0

(

n+k
2

k

)

r
n−k
2
1 + (−1)n−k

2

(

k

⌊k
2
⌋

)

=

⌊n
2
⌋

∑

k=0

(

n− k

k

)

rn−2k

(

n− 2k

⌊n−2k
2

⌋

)

.

Proof. The general term of the Riordan array
(

1
1−rx2 ,

x
1−rx2

)

is given by
(n+k

2
k

)

r
n−k
2

1+(−1)n−k

2
.

10



3 A matrix whose row sums are Tn,⌊n2 ⌋(r)

In this section, we wish to construct a matrix whose row sums are equal to the complete
central coefficients Tn,⌊n

2
⌋(r). In order to do this, we will make use of the A and the Z

sequences of the Pascal-like triangle (Tn,k).

Proposition 11. For the Pascal-like triangle

(

1

1− x
,
x(1 + rx)

1− x

)

,

we have

Z(x) = 1, A(x) =
1 + x+

√

1 + 2x(2r + 1) + x2

2
.

Proof. We let
(

1
1−x

, x(1+rx)
1−x

)

= (g(x), f(x)). Then

A(x) =
x

f̄(x)
,

where f̄(x) is the solution of the equation f(u) = x for which u(0) = 0. Thus we are looking
for the solution of the equation

u(1 + ru)

1− u
= x.

We find that

f̄(x) =

√

1 + 2x(2r + 1) + x2 − x− 1

2r
,

and so

A(x) =
1 + x+

√

1 + 2x(2r + 1) + x2

2
.

That Z(x) = 1 follows from the fact that g(x) = 1
1−x

.

We now wish to construct the Riordan array M whose A-sequence is A(x2), and whose
Z-sequence is Z(x2). By the theory of Riordan arrays, this matrix will have its inverse given
by

M−1 =

(

1− xZ(x2)

A(x2)
,

x

A(x2)

)

=

(

1− x

A(x2)
,

x

A(x2)

)

.

Now

A(x2) =
1 + x2 +

√

1 + 2x2(2r + 1) + x4

2
.

Thus if M = (u(x), v(x)), we have

v(x) = Rev

(

x

A(x2)

)

= Rev

(

√

1 + 2x2(2r + 1) + x4 − x2 − 1

2rx

)

.

11



We obtain that

v(x) =
1− rx2 −

√

1− 2x2(r + 2) + r2x4

2x
.

It follows that

u(x) =
1

1− x
.

We then have the following result.

Proposition 12. We consider the Pascal-like Riordan array

(

1

1− x
,
x(1 + rx)

1− x

)

.

Let the Z-sequence, respectively the A-sequence of this matrix be given by Z(x), respectively
A(x). Then the matrix whose Z-sequence is Z(x2), and whose A-sequence is A(x2), is given
by

(

1

1− x
,
1− rx2 −

√

1− 2x2(r + 2) + r2x4

2x

)

.

Corollary 13. The row sums of the matrix M have generating function given by

2x

(1− x)(
√

r2x4 − 2x2(r + 2) + 1 + rx2 + 2x− 1)
.

Proof. This follows since the row sums of M = (u, v) have generating function u
1−v

.

We now form the Riordan array

M̃ = (1− x, x)M = (1, v(x))

which will have row sums whose generating function is given by

2x
√

r2x4 − 2x2(r + 2) + 1 + rx2 + 2x− 1
=

√

1− 2x2(r + 2) + r2x4 − rx2 − 2x+ 1

2(1− 2x− rx2)
.

We then have

Proposition 14. The generating function s(x) of the row sums of the matrix M̃ satisfies

s(x) = 1 + xg(x),

where g(x) is the generating function of the complete central coefficients of the Pascal-like

matrix
(

1

1− x
,
x(1 + rx)

1− x

)

.

12



Corollary 15. Let A(x) be the A-sequence of the Pascal-like triangle
(

1
1−x

, x(1+rx)
1−x

)

. The

row sums of the Bell matrix

(

v(x)

x
, v(x)

)

=

(

1

x
Rev

(

x

A(x2)

)

,Rev

(

x

A(x2)

))

are the complete central coefficients Tn,⌊n
2
⌋(r) of the Pascal-like matrix

(

1

1− x
,
x(1 + rx)

1− x

)

.

Proof. We have

v(x) =
1− rx2 −

√

1− 2x2(r + 2) + r2x4

2x
.

The row sums of
(

v(x)
x
, v(x)

)

then have generating function

v(x)
x

1− v(x)
= g(x; r).

The matrix (1, v(x)) begins



























1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 r + 1 0 1 0 0 0 0 0
0 0 2r + 2 0 1 0 0 0 0
0 r2 + 3r + 2 0 3r + 3 0 1 0 0 0
0 0 3r2 + 8r + 5 0 4r + 4 0 1 0 0
0 r3 + 6r2 + 10r + 5 0 6r2 + 15r + 9 0 5r + 5 0 1 0
0 0 4r3 + 20r2 + 30r + 14 0 10r2 + 24r + 14 0 6r + 6 0 1



























,

while the matrix
(

v(x)
x
, v(x)

)

begins























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

r + 1 0 1 0 0 0 0 0
0 2r + 2 0 1 0 0 0 0

r2 + 3r + 2 0 3r + 3 0 1 0 0 0
0 3r2 + 8r + 5 0 4r + 4 0 1 0 0

r3 + 6r2 + 10r + 5 0 6r2 + 15r + 9 0 5r + 5 0 1 0
0 4r3 + 20r2 + 30r + 14 0 10r2 + 24r + 14 0 6r + 6 0 1























.

The matrix R =
(

1
x
Rev

(

x
A(x2)

)

,Rev
(

x
A(x2)

))

can be written as

R =

(

1

1− rx2
c

(

x2

(1− rx2)2

)

,
x

1− rx2
c

(

x2

(1− rx2)2

))

.
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We define the row polynomials of this matrix Rn(y; r) to be the elements of the sequence
with generating function

R(x, y) = R · 1

1− yx
=

(

1

1− rx2
c

(

x2

(1− rx2)2

)

,
x

1− rx2
c

(

x2

(1− rx2)2

))

· 1

1− yx
.

We find that

R(x, y) =
1− 2xy − rx2 −

√

1− 2x2(r + 2) + r2x4

2x(rx2y + x(y2 + 1)− y)
.

This expands to give the sequence of polynomials Rn(y; r) that begins

1, y, y2 + r + 1, y3 + 2y(r + 1), y4 + 3y2(r + 1) + (r + 1)(r + 2), . . . .

The complete central coefficients Tn,⌊n
2
⌋(r) are given by Rn(1; 0).

We have the following result.

Proposition 16. The generating function R(x, y; r) of the row polynomials Rn(y; r) can be

expressed as the following continued fraction.

R(x, y; r) =
1

1− yx−
(r + 1)x2

1−
x2

1−
(r + 1)x2

1−
x2

1− · · ·

.

Corollary 17. The Hankel transform of the row polynomial sequence Rn(y) is given by

hn = (r + 1)⌊
(n+1)2

4
⌋.

Example 18. For (y, r) = (0, 1) we have that Rn(0; 1) is the sequence of aerated large
Schröder numbers

1, 0, 2, 0, 6, 0, 22, 0, 90, 0, 394, 0, 1806, . . .

that counts Schröder paths of length n.

Example 19. For (y, r) = (2, 0), we have that Rn(2; 0) is the sequence A054341 which
begins

1, 2, 5, 12, 30, 74, 185, 460, 1150, 2868, 7170, 17904, 44760, . . .

and which counts Motzkin paths of length n for which the horizontal steps at level 0 come
in two colours, and which have no horizontal steps at higher level (Emeric Deutsch).
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Figure 2: The 16 = R2(2, 1) Motzkin left-factors for y = 2 and r = 1 at x = 3.
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Example 20. For (y, r) = (2, 1), we have that Rn(2, 1), which begins

1, 2, 6, 16, 46, 128, 366, 1032, 2946, 8352, 23826, 67720, 193126, . . . ,

counts left-factors of length n of Motzkin paths whose the horizontal steps at level 0 come
in two colours, and which have no horizontal steps at higher level. See Figure 2.

We note that the Riordan array A110109 [1]

(

1− x2 −
√
1− 6x2 + x4

2x2
,
1− x2 −

√
1− 6x2 + x4

2x

)

counts the number of left factors of Schröder paths from (0, 0) to (n, k). Its general term [8]
is given by

Ln,k =

n
2
∑

j=0

(

n− j

j

)((

n− 2j
n+k−2j

2

)

−
(

n− 2j
n+k−2j+2

2

))

,

with the convention that a binomial coefficient whose lower parameter is not an integer is 0.
We have

Rn(2, 1) =
n
∑

k=0

Ln,k2
k,

and in general

Rn(y, 1) =
n
∑

k=0

Ln,ky
k.

This corresponds to the fact that the generating function

1

1− yx−
2x2

1−
x2

1−
2x2

1− · · ·
expands to the matrix that begins

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
0 4 0 1 0 0 0 0
6 0 6 0 1 0 0 0
0 16 0 8 0 1 0 0
22 0 30 0 10 0 1 0
0 68 0 48 0 12 0 1

























.

This is (Ln,k).

16

https://oeis.org/A110109


4 Further results

We begin this section by considering the coefficient array of the complete central coefficients
Tn,⌊n

2
⌋(r). We have

Tn,⌊n
2
⌋(r) =

⌊n
2
⌋

∑

k=0

(⌊n
2
⌋

k

)(

n− k

n− ⌊n
2
⌋ − k

)

rk,

and hence the coefficient array has coefficients

(⌊n
2
⌋

k

)(

n− k

n− ⌊n
2
⌋ − k

)

=

(⌊n
2
⌋

k

)(

n− k

⌊n
2
⌋

)

.

This coefficient array begins

































1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 2 0 0 0 0 0 0 0 0
6 6 1 0 0 0 0 0 0 0
10 12 3 0 0 0 0 0 0 0
20 30 12 1 0 0 0 0 0 0
35 60 30 4 0 0 0 0 0 0
70 140 90 20 1 0 0 0 0 0
126 280 210 60 5 0 0 0 0 0

































.

The (n, k)-th element of this array represents the number of left-factors of Schröder paths
(Schröder paths from (0, 0) to the line x = n) with k peaks. This gives us the interpretation
of the complete central coefficients Tn,⌊n

2
⌋(r) as counting left-factors of Schröder paths where

the horizontal steps can have any of r colors.
Rectifying the above matrix (let n 7→ n+ k), we get the array that begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 2 1 0 0 0 0
3 6 3 1 0 0 0
6 12 12 4 1 0 0
10 30 30 20 5 1 0
20 60 90 60 30 6 1





















.

We recognise in this the exponential Riordan array A107230

[I0(2x) + I1(2x), x] .
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Since the Bessel function In(x) is given by

In(x) =
∞
∑

i=0

1

i!(n+ i)!

(x

2

)n+2i

,

we can also describe the elements of the coefficient array as

(n− k)!

k!

(

[n− 2k is even]
1

n−2k
2

!2
+ [n− 2k − 1 is even]

1
n−2k−1

2
!n−2k+1

2
!

)

.

Here we have used the Iverson bracket notation [P ], where [P ] is 1 if the proposition P is
true, and 0 if not [7].

We can generalize Tn,⌊n
2
⌋(r) by defining

Tn,⌊n
2
⌋(r, s) =

⌊n
2
⌋

∑

k=0

(⌊n
2
⌋

k

)(

n− k

⌊n
2
⌋

)

sn−krk.

We have the following.

Proposition 21. The sequence Tn,⌊n
2
⌋(r, s) is the complete central coefficient sequence of the

Riordan array
(

1

1− sx
,
sx(1 + rx)

1− sx

)

.

.

Proof. We find that

Tn,k(r, s) =
k
∑

j=0

(

k

j

)(

n− j

k

)

rjsn−j.

Thus

Tn,⌊n
2
⌋(r, s) =

⌊n
2
⌋

∑

j=0

(⌊n
2
⌋

j

)(

n− j

⌊n
2
⌋

)

rjsn−j.

As a consequence of this proposition, we can obtain the following result.

Proposition 22. The generating function of Tn,⌊n
2
⌋(r, s) is given by

g(x; r, s) =
1− 2sx− rsx2 −

√

1− 2sx2(r + 2s) + r2s2x4

2sx(rsx2 + 2sx− 1)
.
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We can express this as the continued fraction

1

1− sx−
s(r + s)x2

1−
s2x2

1−
s(r + s)x2

1−
s2x2

1− · · ·

.

Corollary 23. The generating function of Tn,⌊n
2
⌋(r, s) is given by

(

1

1− 2sx− rsx2
,

−sx

1− 2sx− rsx2

)

· c(x) =
(

1

1− rsx2
,

sx

1− rsx2

)

· c(x).

Corollary 24. The Hankel transform of Tn,⌊n
2
⌋(r, s) is given by

hn = s2⌊
n2

4
⌋(s(r + s))⌊

(n+1)2

4
⌋.

Example 25. For (r, s) = (0, 2), we get the sequence A060899 or 2n
(

n

⌊n
2
⌋
)

that begins

1, 2, 8, 24, 96, 320, 1280, 4480, 17920, 64512, 258048, . . . .

This counts walks of length n on a square lattice, starting at the origin, staying on points
with x+ y ≥ 0.

For (r, s) = (1, 2), we get the sequence that begins

1, 2, 10, 32, 148, 536, 2440, 9344, 42256, 167072, 752800, . . . .

This counts left-factors of Schröder paths where each type of step can have a choice of two
colors.

For (r, s) = (2, 2), we get the sequence that begins

1, 2, 12, 40, 208, 800, 4032, 16512, 82176, 348672, 1723392, . . . .

This counts left-factors of Schröder paths where each type of step can have a choice of two
colors, and where additionally the horizontal step can be dashed or dotted. See Figure 3.

5 Conclusions

We have studied the sequences that are given by the complete central sequences of the

Pascal-like triangles defined by the Riordan arrays
(

1
1−x

, x(1+rx)
1−x

)

. We have given generating

functions and closed from formulas. We have also presented Riordan arrays whose row sums
are equal to these sequences. Throughout, we have found sequences that are linked to the
statistics of Schröder and Motzkin paths. As the techniques used have been of an algebraic
and analytical nature, there is as yet no clear combinatorial view of why this should be so.
This therefore merits further study.

The author would like to thank the anonymous referees for their constructive comments.
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Figure 3: The 12 Schröder left-factors for x = 2 and r = 2, s = 2.
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