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Abstract

We find closed-form expressions and continued fraction generating functions for

a family of generalized Catalan numbers associated with a set of Pascal-like number

triangles that are defined by Riordan arrays. We express these generalized Catalan

numbers as the moments of appropriately defined orthogonal polynomials. We also

describe them as the row sums of related Riordan arrays. Links are drawn to the

Narayana numbers and to lattice paths. We further generalize this one-parameter

family to a three-parameter family. We use the generalized Catalan numbers to define

generalized Catalan triangles. We define various generalized Motzkin numbers defined

by these general Catalan numbers. Finally we indicate that the generalized Catalan

numbers can be associated with certain generalized Eulerian numbers by means of a

special transform.

1 Introduction

The Catalan numbers [26] are among the most important numbers in combinatorics. They
have many important properties, which are shared to one degree or another with related
sequences. This has prompted works which extend or generalize the Catalan numbers in
various ways [1, 13]. In this note, we use the theory of Riordan arrays, and in particular
a family of Pascal-like Riordan arrays, to find families of generalized Catalan numbers. A
short introduction to Riordan arrays is provided later in this section.

In fact, we find families of Catalan-like polynomials, which through specialization, give
us generalized Catalan numbers. All are found to be moment sequences, like the Catalan
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numbers themselves, and in most cases we give their Hankel transforms. A feature that they
share is that the coefficient arrays of the defining orthogonal polynomials are Riordan arrays.

The Catalan numbers

Cn =
1

n+ 1

(

2n

n

)

A000108 which begin
1, 1, 2, 5, 14, 42, 132, 429, . . . ,

occur in two ways in Pascal’s triangle (Bn,k =
(

n

k

)

). First of all, as indicated by the above

formula, they are equal to the central binomial coefficients
(

2n
n

)

, divided by n + 1. That
(

2n
n

)

is divisible by n+ 1 for all n is an interesting arithmetical property of Pascal’s triangle

[10]. As is well-known, the central binomial coefficients
(

2n
n

)

A000984, form the central spine
of Pascal’s triangle A007318 when it is viewed as a centrally symmetric (or palindromic)
triangle.

1
1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

The alternative view of the Catalan numbers is as

Cn = B2n,n − B2n,n−1 =

(

2n

n

)

−
(

2n

n− 1

)

=

(

2n

n

)

−
(

2n

n+ 1

)

.

We illustrate Cn =
(

2n
n

)

−
(

2n
n+1

)

below.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

When we view Pascal’s triangle as a lower-triangular matrix, we see these numbers as the
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difference of adjacent elements on alternate rows.























1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 2 1 0 0 0 0

1 3 3 1 0 0 0

1 4 6 4 1 0 0

1 5 10 10 5 1 0

1 6 15 20 15 6 1























.

We recall that
(

2n
n

)

has the generating function

n
∑

k=0

(

2n

n

)

xn =
1√

1− 4x
,

while the Catalan numbers Cn have the generating function

c(x) =
1−

√
1− 4x

2x
.

We then have

c(x) =
1

x
Rev(x(1− x)),

and

c(x) =
1

1− x−
x2

1− 2x−
x2

1− 2x−
x2

1− 2x− · · ·

.

Here, the notation Rev refers to the reversion of a power series. If f(x) is a power series
with f(0) = 0 and f ′(0) 6= 0, then f̄(x) = Rev(f)(x) is the solution u = u(x) to the equation
f(u) = x such that u(0) = 0.

The Catalan numbers Cn are the row sums of the Riordan array

(1, x(1− x))−1 = (1, xc(x)).

We also have the moment representation

Cn =
1

2π

∫ 4

0

√

x(4− x)

x
dx.

In the sequel, we shall generalize the Catalan numbers, and we shall seek to state the
generalizations of the foregoing statements.
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We shall be principally interested in this note in a family of Pascal-like triangles (Tn,k(r))
depending on an integer parameter r, where Tn,k(0) = Bn,k. That is, Pascal’s triangle
coincides with r = 0. For r = 1, we get the Delannoy triangle A008288 which begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 5 5 1 0 0 0
1 7 13 7 1 0 0
1 9 25 25 9 1 0
1 11 41 63 41 11 1





















.

The generalized Catalan numbers T2n,n(1)− T2n,n+1(1) in this case begin

1, 2, 6, 22, . . . .

These are the Schroeder numbers A006318, which count Schroeder paths from (0, 0) to
(2n, 0).























1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 3 1 0 0 0 0

1 5 5 1 0 0 0

1 7 13 7 1 0 0

1 9 25 25 9 1 0

1 11 41 63 41 11 1























.

Integer sequences in this note are referred to by their Annnnnn number from the On-Line
Encyclopedia of Integer Sequences [24, 25] where such a number is known. All matrices in
this note are integer valued, lower triangular, and invertible. In particular the main diagonal
will always consist of all 1’s. Where examples are given, a suitable truncation is shown.

We recall that an ordinary Riordan array (g(x), f(x)) [4, 21, 22] is defined by two gener-
ating functions,

g(x) = g0 + g1x+ g2x
2 + · · · , g0 6= 0,

and
f(x) = f1x+ f2x

2 + f3x
3 + · · · , f1 6= 0,

with the (n, k)-th element of the corresponding lower-triangular matrix being given by

[xn]g(x)f(x)k.

In the sequel we shall always assume that g0 = f1 = 1. The inverse of the Riordan array
(g(x), f(x)) is given by

(g(x), f(x))−1 =

(

1

g(f̄(x))
, f̄

)

,
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where f̄(x) denotes the compositional inverse of f(x). Thus we have f(f̄(x)) = x and
f̄(f(x)) = x. The product law for Riordan arrays (which coincides with matrix multiplica-
tion) is given by

(g(x), f(x)) · (u(x), v(x)) = (g(x)u(f(x)), v(f(x)).

The Hankel transform [15, 16] of a sequence an is the sequence hn where hn = |ai+j|0≤i,j≤n.
If the g.f. of an is expressible as a continued fraction [6, 27] of the form

µ0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

,

then the Hankel transform of an is given by [15] the Heilermann formula

hn = µn+1
0 βn

1 β
n−1
2 · · · β2

n−1βn.

If the g.f. of an is expressible as the following type of continued fraction:

µ0

1 +
γ1x

1 +
γ2x

1 + · · ·

,

then we have
hn = µn+1

0 (γ1γ2)
n(γ3γ4)

n−1 · · · (γ2n−3γ2n−2)
2(γ2n−1γ2n).

A Motzkin path of length n is a lattice path from (0, 0) to (n, 0) with steps northeast,
(1, 1), east (1, 0) and southeast, (1,−1), that does not go below the x-axis.

A Schroeder path of semi-length n is a lattice path from (0, 0) to (2n, 0) with steps
northeast, (1, 1), east (2, 0) and southeast, (1,−1), that does not go below the x-axis.

2 Generalized Catalan numbers

The Riordan array
(

1

1− x
,
x(1 + rx)

1− x

)

defines a Pascal-like matrix [7] with general term Tn,k given by

Tn,k(r) =
k
∑

j=0

(

k

j

)(

n− j

k

)

rj =
n−k
∑

j=0

(

k

j

)(

n− k

j

)

(r + 1)j. (1)
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These number triangles are “Pascal-like” in the sense that

Tn,k = Tn,n−k, Tn,0 = 1, Tn,n = 1, Tn,k = 0 forn > k.

This array begins
















1 0 0 0 0 0
1 1 0 0 0 0
1 r + 2 1 0 0 0
1 2r + 3 2r + 3 1 0 0
1 3r + 4 r2 + 6r + 6 3r + 4 1 0
1 4r + 5 3r2 + 12r + 10 3r2 + 12r + 10 4r + 5 1

















.

We have

Tn,k(0) =

(

n

k

)

,

hence for r = 0, the obtained number triangle is indeed Pascal’s triangle A007318.
The central coefficients of these triangles are given by

T2n,n(r) =
n
∑

k=0

(

n

k

)(

2n− k

n

)

rk =
n
∑

k=0

(

n

k

)2

(r + 1)k.

Similarly, we have that

T2n,n−1(r) =
n−1
∑

k=0

(

n− 1

k

)(

2n− k

n− 1

)

rk =
n
∑

k=0

(

n− 1

n− 1− k

)(

n+ 1

k

)

(r + 1)k.

We define the generalized Catalan numbers associated with the Riordan array
(

1
1−x

,
x(1+rx)
1−x

)

to be the numbers
Cn(r) = T2n,n(r)− T2n,n−1(r). (2)



















1 0 0 0 0 0
1 1 0 0 0 0

1 r + 2 1 0 0 0
1 2r + 3 2r + 3 1 0 0

1 3r + 4 r2 + 6r + 6 3r + 4 1 0
1 4r + 5 3r2 + 12r + 10 3r2 + 12r + 10 4r + 5 1



















.

The polynomial sequence Cn(r) begins

1, r + 1, r2 + 3r + 2, . . . .

Proposition 1. The generating function of Cn(r) is given by

c(x; r) =
1− rx−

√

1− 2x(r + 2) + r2x2

2x
.
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Proof. By [5], we have that the generating function of T2n,n(r) is given by

1
√

1− 2x(r + 2) + r2x2
.

We now let
(

1

1− x
,
x(1 + rx)

1− x

)

= (G(x), xF (x)).

Then

T2n,n−1 = [x2n]G(x)(xF (x))n−1

= [xn]
G(x)

xF (x)2
F (x)n+1

= (n+ 1)
1

n+ 1
[xn]

G(x)

xF (x)2
F (x)n+1

= [xn]
G(v(x))

v(x)F (v(x))2
v′(x)

where

v(x) = Rev

(

x

F (x)

)

,

and where we have used Lagrange inversion [5, 18]. Now in this case we have

v(x) = Rev

(

x(1− x)

1 + rx

)

=
1− rx−

√

1− 2x(r + 2) + r2x2

2
.

We find that the generating function of T2n,n−1(r) is given by

(1− rx+
√

1− 2x(r + 2) + r2x2)2

4x
√

1− 2x(r + 2) + r2x2
.

Thus the generating function c(x; r) of Cn(r) is given by

1
√

1− 2x(r + 2) + r2x2
− (1− rx+

√

1− 2x(r + 2) + r2x2)2

4x
√

1− 2x(r + 2) + r2x2
,

or

c(x; r) =
1− rx−

√

1− 2x(r + 2) + r2x2

2x
.

Corollary 2. We have

c(x; r) =
1

1− rx
c

(

x

(1− rx)2

)

.
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Proof. Expansion shows that both forms are equal.

Corollary 3.

Cn(r) =
n
∑

k=0

(

n+ k

2k

)

rn−kCk. (3)

Proof. We have

c(x; r) =
1

1− rx
c

(

x

(1− rx)2

)

=

(

1

1− rx
,

x

(1− rx)2

)

· c(x).

The Riordan array
(

1
1−rx

, x
(1−rx)2

)

has (n, k)-th term
(

n+k

2k

)

rn−k, whence the result.

We note that the (large) Schroeder numbers A006318 Sn have the formula

Sn =
n
∑

k=0

(

n+ k

2k

)

Ck.

Thus there is justification for calling our numbers generalized Schroeder numbers. Nev-
ertheless, we shall continue to call them generalized Catalan numbers in this note (and
consequently we regard the large Schroeder numbers as elements of this family, correspond-
ing to r = 1). The numbers Cn(r) count the number of Schroeder paths of semi-length n

where the level steps have r possible colors (see A006318, A047891, A082298, A082301 and
A082302).

Corollary 4. We have that c(x; r) has the following continued fraction expansion.

c(x; r) =
1

1− rx−
x

1− rx−
x

1− rx− · · ·

.

Proof. We solve the equation

u =
1

1− rx− xu

to find that u(x) = c(x; r).

Corollary 5. We have that c(x; r) has the following continued fraction expansion.

c(x; r) =
1

1−
x(r + 1)

1−
x

1−
x(r + 1)

1−
x

1− · · ·

.
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Proof. We solve the equation

u =
1

1−
x(r + 1)

1− xu

to find that u(x) = c(x; r).

Corollary 6. We have

Cn(r) =
n
∑

k=0

1

n− k + 1

(

2n− k

n

)(

n

k

)

rk. (4)

Proof. The number triangle A060693 with general element 1
n−k+1

(

2n−k

n

)(

n

k

)

is equal to

[1, 1, 1, . . .] ∆ [1, 0, 1, 0, . . .]

in the Deléham notation [6]. The result follows from the previous result.

Corollary 7. Let

Nn,k =
1

n+ 1

(

n+ 1

k

)(

n− 1

n− k

)

= 0n+k +
1

n+ 0nk

(

n

k

)(

n

k − 1

)

denote the (n, k)-th element of the Narayana triangle that begins





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 3 1 0 0 0
0 1 6 6 1 0 0
0 1 10 20 10 1 0
0 1 15 50 50 15 1





















.

Then we have

Cn(r) =
∑

k=0

Nn,k(r + 1)k. (5)

Proof. In effect, the number triangle A060693 is the product of the Narayana triangle (Nn,k)
and the binomial triangle.

Proposition 8. We have

c(x; r) =
1

x
Rev

(

x(1− x)

1 + rx

)

.
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Proof. Solving the equation
u(1− u)

1 + ru
= x

we find that the branch with u(0) = 0 gives us

u(x) = Rev

(

x(1− x)

1 + rx

)

=
1− rx−

√

1− 2x(r + 2) + r2x2

2
.

Corollary 9. We have

Cn(r) =
1

n+ 1

n
∑

k=0

(

n+ 1

k

)(

2n− k

n

)

rk.

Proof. We have

[xn]
1

x
Rev

(

x(1− x)

1 + rx

)

= [xn+1]Rev

(

x(1− x)

1 + rx

)

=
1

n+ 1
[xn]

(

1 + rx

1− x

)n+1

by Lagrange inversion. The result follows from this.

We note that since
(

n+ 1

k

)

=
n+ 1

n− k + 1

(

n

k

)

,

we retrieve the result that

Cn(r) =
n
∑

k=0

1

n− k + 1

(

n

k

)(

2n− k

n

)

rk. (6)

3 Orthogonal polynomials and generalized Catalan num-

bers

We recall that a family of polynomials Pn(x) =
∑n

k=0 pn,kx
k is a family of orthogonal poly-

nomials if it satisfies a three term recurrence

Pn(x) = (x− αn)Pn−1 − βnPn−2,

for suitable parameters αn and βn, and suitable initial conditions such as P−1(x) = 0 and
P0(x) = 1, or P0(x) = 1 and P1(x) = x− a.
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The coefficient array (pn,k) will be a Riordan array [3] if and only if it is of the form

(

1− λx− µx

1 + ax+ bx2
,

x

1 + ax+ bx2

)

,

in which case we have
Pn(x) = (x− a)Pn−1(x)− bPn−2(x),

with P0(x) = 1, P1(x) = x − a − λ, and P2(x) = x2 − (2a + λ)x + a2 + aλ − b − µ.
This is equivalent to saying that αn is the sequence a+ λ, a, a, a, . . . and βn is the sequence
0, b + λ, b, b, b, . . . . Equivalently, this is the case if the coefficient array O = (pn,k) satisfies
the following. Letting M = O−1, we require that the production matrix P = M−1M be of
the form





















a+ λ 1 0 0 0 0 0
b+ µ a 1 0 0 0 0
0 b a 1 0 0 0
0 0 b a 1 0 0
0 0 0 b a 1 0
0 0 0 0 b a 1
0 0 0 0 0 b a





















.

Here, M is the matrix M with its first row removed.
If this is the case, we call M the moment matrix of the family of orthogonal polynomials

Pn(x) with coefficient array O = (pn,k). The elements of the first column of M are called
the moments of the family of orthogonal polynomials Pn(x).

With these preliminaries dealt with, we can now give the following result.

Proposition 10. The generalized Catalan numbers Cn(r) are the moments of the family of

orthogonal polynomials whose coefficient array is given by the Riordan array

(

1 + x

1 + (r + 2)x+ (r + 1)x2
,

x

1 + (r + 2)x+ (r + 1)x2

)

.

Proof. We find that

(

1 + x

1 + (r + 2)x+ (r + 1)x2
,

x

1 + (r + 2)x+ (r + 1)x2

)−1

=

(

c(x; r),
1− x(r + 2)−

√

1− 2x(r + 2) + r2x2

2x(r + 1)

)

.
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The production matrix of the moment matrix
(

1+x
1+(r+2)x+(r+1)x2 ,

x
1+(r+2)x+(r+1)x2

)−1

begins





















r + 1 1 0 0 0 0 0
r + 1 r + 2 1 0 0 0 0
0 r + 1 r + 2 1 0 0 0
0 0 r + 1 r + 2 1 0 0
0 0 0 r + 1 r + 2 1 0
0 0 0 0 r + 1 r + 2 1
0 0 0 0 0 r + 1 r + 2





















.

Corollary 11. The Hankel transform of the generalized Catalan numbers Cn(r) is given by

hn(r) = (r + 1)(
n+1
2 ).

Corollary 12. We have the following integral representation of Cn(r).

Cn(r) =
1

π

∫ r+2+2
√
r+1

r+2−2
√
r+1

xn

√

−x2 + 2x(r + 2)− r2

2x
dx

=
1

π

∫ r+2+2
√
r+1

r+2−2
√
r+1

xn−(x− 2− r − 2
√
r + 1)(x− 2− r + 2

√
r + 1)

2x
dx

We note that the density is of Marčenko-Pastur type [17, 28].

Proof. We apply the Stieltjes-Perron transform [14] to the generating function c(x; r) of
Cn(r).

Example 13. We find that for the Catalan numbers Cn, we have the following well-known
result.

Cn =
1

π

∫ 4

0

xn

√

x(4− x)

2x
dx.

Example 14. We find that for the large Schroeder numbers Sn we have the following integral
representation.

Sn =
1

π

∫ 3+2
√
2

3−2
√
2

xn

√
−x2 + 6x− 1

2x
dx

=
1

π

∫ 3+2
√
2

3−2
√
2

xn−(x− 3− 2
√
2)(x− 3 + 2

√
2)

2x
dx.

4 Cn(r) as row sums

The following result exhibits the generalized Catalan numbers Cn(r) as the row sums of a
Riordan array.
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Proposition 15. The generalized Catalan numbers Cn(r) are the row sums of the Riordan

array
(

1

1 + rx
,
x(1− x)

1 + rx

)−1

.

.

Proof. We have that

(

1

1 + rx
,
x(1− x)

1 + rx

)−1

= (1 + rxc(x; r), xc(x; r)).

Then the row sums of this matrix are given by

1 + rxc(x; r)

1− xc(x; r)
= c(x; r).

We note that the production matrix of the Riordan array
(

1
1+rx

,
x(1−x)
1+rx

)−1

begins

















r 1 0 0 0 0
r r + 1 1 0 0 0
r r + 1 r + 1 1 0 0
r r + 1 r + 1 r + 1 1 0
r r + 1 r + 1 r + 1 r + 1 1
r r + 1 r + 1 r + 1 r + 1 r + 1

















.

The first column elements of
(

1
1+rx

,
x(1−x)
1+rx

)−1

are of interest. We have seen that their gen-

erating function is 1 + rxc(x; r). We can express this generating function as a continued
fraction. We have the following result.

Proposition 16. The generating function 1 + rxc(x; r) is equal to the following continued

fraction.
1

1− rx−
rx2

1− (r + 2)x−
(r + 1)x2

1− (r + 2)x−
(r + 1)x2

1− (r + 2)x− · · ·

.

Proof. We solve the equation

u =
1

1− (r + 2)x− (r + 1)x2u
,

13



and then we calculate the generating function

1

1− rx− rx2u
.

This is found to be equal to 1 + rxc(x; r).

This proposition says that the initial column of
(

1
1+rx

,
x(1−x)
1+rx

)−1

is the moment family

for a family of orthogonal polynomials. In fact, we have the following result.

Proposition 17. The initial column of
(

1
1+rx

,
x(1−x)
1+rx

)−1

is the moment sequence for a family

of orthogonal polynomials whose coefficient array is given by

(

(1 + x)2

1 + (r + 2)x+ (r + 1)x2
,

x

1 + (r + 2)x+ (r + 1)x2

)

.

.

Proof. This follows since we have the following equality of Riordan arrays.

(

1

1 + rx
,
x(1− x)

1 + rx

)−1

·
(

1,
x

1− x

)

=

(

(1 + x)2

1 + (r + 2)x+ (r + 1)x2
,

x

1 + (r + 2)x+ (r + 1)x2

)−1

.

The production matrix for this last Riordan array begins




















r 1 0 0 0 0 0
r r + 2 1 0 0 0 0
0 r + 1 r + 2 1 0 0 0
0 0 r + 1 r + 2 1 0 0
0 0 0 r + 1 r + 2 1 0
0 0 0 0 r + 1 r + 2 1
0 0 0 0 0 r + 1 r + 2





















.

The initial column sequence with generating function 1 + rxc(x; r) has general element

r

n−1
∑

k=0

(

n+ k − 1

2k

)

rn−k−1Ck =
n−1
∑

k=0

(

n+ k − 1

2k

)

rn−kCk.

Corollary 18. The Hankel transform of the initial column sequence with g.f. 1 + rxc(x; r)
is given by

hn = rn(r + 1)(
n

2).

14



5 Generalizations

We have seen that the generating function of Cn(r) is given by

c(x; r) =

(

1

1 + rx
,
x(1− x)

1 + rx

)−1

· 1

1− x
.

A natural generalization is to consider the generating function

c(x; r, s, y) =

(

1

1 + rx
,
x(1− sx)

1 + rx

)−1

· 1

1− yx
.

We find that

c(x; r, s, y) =
2s+ r − y − rx(y + r)− (y + r)

√

1− 2x(r + 2s) + r2x2

2(xy(y + r)− y + s)
.

This expands to give the sequence that begins

1, y + r, (y + r)(y + r + s), (y + r)(y2 + 2y(r + s) + r2 + 3rs+ 2s2), . . . .

The generating function can be expressed as

c(x; r, s, y) =
−(r + s)

rx(y + r) + y − r − 2s
c

(

(r + s)(x(y + r)− y + s)

(rx(y + r) + y − r − 2s)2

)

,

which exhibits a link to the standard Catalan numbers Cn. Using Lagrange inversion to find

the general term of the inverse Riordan array
(

1
1+rx

,
x(1−sx)
1+rx

)−1

, we find that

Cn(r, s, y) =

n
∑

k=0

(

k + 0n+k

n+ 0n

n
∑

i=0

(n

i

)(2n− k − i− 1

n− k − i

)

risn−k−i +
r(k + 1)

n+ 0n

n
∑

i=0

(n

i

)(2n− k − i− 2

n− k − i− 1

)

risn−k−i−1

)

yk,

where we have used the notation Cn(r, s, y) to denote the generalized Catalan numbers with
generating function c(x; r, s, y). Note that when y = 0 (and thus we are considering the first

column of
(

1
1+rx

,
x(1−sx)
1+rx

)−1

) we have

Cn(r, s, 0) = 0n +
r

n+ 0n

n
∑

i=0

(

n

i

)(

2n− i− 2

n− i− 1

)

risn−i−1 (7)

= 0n +
n−1
∑

k=0

(

n+ k − 1

2k

)

rn−kskCk (8)

=
n
∑

k=0

(

n+ k − 1

2k

)

rn−kskCk. (9)
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Example 19. The sequence Cn(2, 3, 0) =
∑n

k=0

(

n+k−1
2k

)

2n−k3kCk begins

1, 2, 10, 80, 790, 8720, 103060, 1275680, . . . .

This is A152600. Its Hankel transform is given by

hn = 6n15(
n

2).

We have the following result.

Proposition 20. The sequence Cn(r, s, y) with generating function c(x; r, s, y) is the moment

sequence for the family of orthogonal polynomials that have coefficient array given by the

Riordan array

(

1 + (2s− y)x+ s(s− y)x2

1 + (r + 2s)x+ s(r + s)x2
,

x

1 + (r + 2s)x+ s(r + s)x2

)

.

Corollary 21. The Hankel transform of the generalized Catalan numbers with generating

function c(x; r, s, y) is given by

hn = (s(y + r))n(s(r + s))(
n

2).

Proof. This follows since we can show that the generating function c(x; r, s, y) is expressible
as the Jacobi continued fraction

1

1− (r + y)x−
s(r + y)x2

1− (r + 2s)x−
s(r + s)x2

1− (r + 2s)x−
s(r + s)x2

1− · · ·

.

Corollary 22. The generating function c(x; r, s, y) can be represented as the Stieltjes con-

tinued fraction
1

1−
(r + y)x

1−
sx

1−
(r + s)x

1−
sx

1−
(r + s)x

1− · · ·

.
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Example 23. We consider the generating function c(x; 2, 1,−1). Thus we have that c(x; 2, 1,−1)
is equal to

1

1−
x

1−
x

1−
3x

1−
x

1−
3x

1−
x

1− · · ·

,

or equivalently
1

1− x−
x2

1− 4x−
3x2

1− 4x−
3x2

1− 4x− · · ·

.

This generating function expands to give the sequence that begins

1, 1, 2, 7, 32, 166, 926, . . . .

The sequence 1, 2, 7, 32, 166, . . . is A108524 and it counts the number of ordered rooted trees
with n generators. Alternatively it counts the number of Schroeder paths of semi-length
n− 1 in which the level steps that are not on the horizontal axis come in 2 colors (Deutsch).
This latter sequence has generating function

1

1− x−
x

1− 2x−
x

1− 2x− · · ·

.

Proposition 24. The generating function c(x; r, s, y) is equal to the continued fraction

1

1− r(r+y)
r+s

x−
s(r+y)
r+s

x

1− rx−
sx

1− rx−
sx

1− rx− · · ·

.

Proof. We let

v =
1

1− rx− sxv
.
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Then the generating function defined by the continued fraction is given by

1

1− r(r+y)
r+s

x− s(r+y)
r+s

xv
.

This simplifies to give c(x; r, s, y).

Example 25. The generating function c(x; 1, 2, 3) expands to give the sequence that begins

1, 4, 24, 168, 1272, 10104, 82920, 696840, . . . .

This sequence thus has generating function

1

1− 4
3
x−

8
3
x

1− x−
2x

1− x−
2x

1− x− · · ·

.

Example 26. The generating function c(x; 2, 2, 0) expands to give the sequence that begins

1, 2, 8, 48, 352, 2880, 25216, 231168, . . . .

This sequence thus has generating function

1

1−
2x

1−
2x

1−
4x

1−
2x

1−
4x

1− · · ·

,

or
1

1− x−
x

1− 2x−
2x

1− 2x−
2x

1− 2x− · · ·

.

Equivalently, this is equal to

1

1− 2x−
4x2

1− 6x−
8x2

1− 6x−
8x2

1− 6x− · · ·

.
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The sequence 1, 1, 2, 8, 48, 352, . . . is A054726, which counts the number of ways of drawing
non-crossing chords between n points on a circle. The generating function of this sequence
can be expressed as the continued fractions

1

1− x−
x2

1− 5x−
8x2

1− 6x−
8x2

1− 6x− · · ·

,

1

1−
x

1−
2x

1− 2x−
2x

1− 2x− · · ·

,

or
1

1−
x

1−
x

1−
4x

1−
2x

1−
4x

1−
2x

1− · · ·

.

Corollary 27. We have

Cn(r, s, s) =
n
∑

k=0

1

n− k + 1

(

2n− k

n

)(

n

k

)

sn−krk. (10)

Proof. The number triangle 1
n−k+1

(

2n−k

n

)(

n

k

)

A060693 is equal to

[1, 1, 1, . . .] ∆ [1, 0, 1, 0, . . .].

This begins
















1 0 0 0 0 0
1 1 0 0 0 0
2 3 1 0 0 0
5 10 6 1 0 0
14 35 30 10 1 0
42 126 140 70 15 1

















.
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Then 1
n−k+1

(

2n−k

n

)(

n

k

)

sn−krk corresponds to

[s, s, s, . . .] ∆ [r, 0, r, 0, . . .],

or the generating function
1

1−
(s+ r)x

1−
sx

1−
(s+ r)x

1−
sx

1− · · ·

.

This is c(x; r, s, s).

Equivalently, we have

Cn(r, s, s) =
n
∑

k=0

1

k + 1

(

n+ k

n

)(

n

k

)

rn−ksk, (11)

where the matrix ( 1
k+1

(

n+k

n

)(

n

k

)

) is A088617 which counts Schroeder paths of semi-length n

with k up steps.

Corollary 28. We have

Cn(r, s, s) =
n
∑

k=0

Nn,k(r + s)ksn−k. (12)

Proof. This follows from the continued fraction expression above.

Corollary 29. We have that Cn(r, s, s) =
∑n

k=0

(

n+k

2k

)

rn−kskCk is the moment sequence for

the family of orthogonal polynomials with coefficient matrix given by the Riordan array

(

1 + sx

1 + (r + 2s)x+ s(r + s)x2
,

x

1 + (r + 2s)x+ s(r + s)x2

)

.

In similar fashion, we can establish the following with regard to Cn(r, s, s) = [xn]c(x; r, s, s).
We have

c(x; r, s, s) =
1

1− rx
c

(

sx

(1− rx)2

)

=
1− rx−

√

1− 2x(r + 2s) + r2x2

2sx
=

1

x
Rev

x(1− sx)

1 + rx
.

We also have that Cn(r, s, s) are the row sums of the Riordan array

(

1− x(s+ 1)

(1− x)(1 + (r − 1)x)
,

x(1− x(s+ 1))

(1− x)(1 + (r − 1)x)

)−1

.
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Equivalently,

c(x; r, s, s) =

(

1− x(s+ 1)

(1− x)(1 + (r − 1)x)
,

x(1− x(s+ 1))

(1− x)(1 + (r − 1)x)

)−1

· 1

1− x
.

The numbers Cn(r, s, s) count Schroeder paths of semi-length n with r possible colors for the
level steps and s possible colors for the up steps [19]. For instance, A156017 is the sequence
that begins

1, 4, 24, 176, 1440, 12608, 115584, 1095424, 10646016, . . .

with general term
n
∑

k=0

(

n+ k

2k

)

2n−k2k =
n
∑

k=0

Nn,k2
n+k = 2nSn,

which counts Schroeder paths of semi-length n with 2 possible colors for the level steps and 2
possible colors for the up steps. Its generating function can by represented as the continued
fraction

1

1− 2x−
2x

1− 2x−
2x

1− 2x− · · ·

.

(An alternative interpretation in terms of operads can be given: the sequence counts the
number of recursively defined red-white trees [9]).

Example 30. The sequences Cn(1, s, s) =
∑n

k=0

(

n+k

2k

)

skCk count Schroeder paths of semi-
length n where the up steps can have s colors. For s = 1 . . . 4 we obtain sequences A006318,
A103210, A103211, and A133305, which begin respectively,

1, 2, 6, 22, 90, 394, 1806, . . . ,

1, 3, 15, 93, 645, 4791, 37275, . . . ,

1, 4, 28, 244, 2380, 24868, 272188, . . . ,

and
1, 5, 45, 505, 6345, 85405, 1204245, . . . .

The sequence 1, 5, 45, . . . then has generating function

1

1−
5x

1−
4x

1−
5x

1−
4x

1− · · ·

,
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Figure 1: The 15 Schroeder paths of semi-length 2 with 2 up-colors

or equivalently
1

1− 5x−
20x2

1− 9x−
20x2

1− 9x− · · ·

.

These sequences also count the first homogeneous components of the operad As(Q) [12],
where Q is the trivial poset on the set [s+1], and As is a functor from the category of finite
posets to the category of nonsymmetric binary and quadratic operads defined in [12].

Proposition 31. The generating function c(x; r, s, s) can be expressed as the continued frac-

tion
1

1− rx−
sx

1− rx−
sx

1− rx− · · ·

.
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Proof. We have

c(x; r, s, y) =
2s+ r − y − rx(y + r)− (y + r)

√

1− 2x(r + 2s) + r2x2

2(xy(y + r)− y + s)
.

Thus

c(x; r, s, s) =
1− rx−

√

1− 2(r + 2s)x+ r2x2

2sx
.

Solving the equation

u =
1

1− rx− sxu

shows that u(x) = c(x; r, s, s).

This type of continued fraction is a T -fraction, or Thron-fraction [19, 20].
We have the following integral representation for the moments Cn(r, s, s).

Proposition 32. We have

Cn(r, s, s) =
1

2π

∫ r+2s+2
√

s(r+s)

r+2s−2
√

s(r+s)

xn

√

−x2 + 2x(r + 2s)− r2

x
dx.

Proof. We apply the Stieltjes-Perron transform to the generating function c(x; r, s, s).

Example 33. The sequence Cn(2, 3, 3) =
∑n

k=0

(

n+k

2k

)

Ck2
n−k3k =

∑n

k=0 Nn,k5
k3n−k A152601,

which begins
1, 5, 40, 395, 4360, 51530, 637840, 8163095, . . . ,

has integral representation

Cn(2, 3, 3) =
1

2π

∫ 8+2
√
15

8−2
√
15

xn

√

4(4x− 1)− x2

3x
dx.

The generating function of this sequence can be represented as the continued fraction

1

1−
5x

1−
3x

1−
5x

1−
3x

1− · · ·

.
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We end this section by gathering all the expressions for the generalized Catalan numbers
Cn(r, s, s). We have

Cn(r, s, s) =
n
∑

k=0

Nn,k(r + s)ksn−k

=
n
∑

k=0

N rev
n,k (r + s)n−ksk

=
n
∑

k=0

(

n+ k

2k

)

Ckr
n−ksk

=
n
∑

k=0

(

2n− k

k

)

Cn−kr
ksn−k

=
n
∑

k=0

1

k + 1

(

n+ k

n

)(

n

k

)

rn−ksk

=
n
∑

k=0

1

n− k + 1

(

2n− k

n

)(

n

k

)

rksn−k

=
1

n+ 1

n
∑

k=0

(

n− 1

k

)(

2n− k

n

)

(r + s)n−k(−s)k

=
1

n+ 1

n
∑

k=0

(

n− 1

n− k

)(

n+ k

k

)

(r + s)k(−s)n−k.

For instance, the coefficient array for the last equality begins





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 2 0 0 0 0
0 1 5 5 0 0 0
0 1 9 21 14 0 0
0 1 14 56 84 42 0
0 1 20 120 300 330 132





















.

This is A086810. The coefficient triangle N rev
n,k is the reversal of the Narayana triangle Nn,k.

We have

N rev
n,k = 0n+k +

n− k

(n+ 0n)(k + 1)

(

n

k

)2

.

This is the triangle A131198, which in the Deléham notation is

[1, 0, 1, 0, 1, 0, . . .] ∆ [0, 1, 0, 1, 0, . . .].
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Example 34. We have

n
∑

k=0

(

n+ k

2k

)

(s+ 1)n−k(s− 1)k =
n
∑

k=0

Nn,k(2s)
k(s− 1)n−k.

For s = 2, we get the sequence
∑n

k=0

(

n+k

2k

)

Ck3
n−k =

∑n

k=0Nn,k4
k which begins

1, 4, 20, 116, 740, 5028, 35700, 261780, 1967300, . . . .

This is A082298, which counts Schroeder paths of semi-length n in which the level steps can
have any of 3 colors. For s = 3, we obtain the sequence

n
∑

k=0

(

n+ k

2k

)

Ck4
n−k2k =

n
∑

k=0

Nn,k6
k2n−k

which begins
1, 6, 48, 456, 4800, 53952, 634368, . . . .

This sequence counts Schroeder paths of semi-length n in which the level steps can have any
of 4 colors and the up steps have 2 colors.

We have remarked that

c(x; r, s, s) =
1

x
Rev

(

x(1− sx)

1 + rx

)

.

This suggests the following generalization. We define č(x; r, s, t) to be the generating function

č(x; r, s, t) =
1

x
Rev

(

x(1− sx)

1 + rx+ tx2

)

.

We then define the sequence Čn(r, s, t) = [xn]č(x; r, s, t). This sequence begins

1, r + s, r2 + 3rs+ 2s2 + t, r3 + 6r2s+ r(10s2 + 3t) + s(5s2 + 4t), . . . .

We have

[xn]Rev

(

x(1− sx)

1 + rx+ tx2

)

=
1

n
[xn−1]

(

1 + rx+ tx2

1− sx

)n

,

which gives us the following expression for Čn(r, s, t).

Proposition 35. We have

č(x; r, s, t) =
1− rx−

√

1− 2(r + 2s)x+ (r2 − 4t)x2

2(s+ tx)
,

and

Čn(r, s, t) =
1

n+ 1

n+1
∑

k=0

(

n+ 1

k

) k
∑

j=0

(

k

j

)(

2n− k − j

n− k − j

)

tjrk−jsn−k−j. (13)
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Corollary 36. We have

č(x; r, s, t) =
1

1− rx
c

(

x(s+ tx)

(1− rx)2

)

,

and

Čn(r, s, t) =
n
∑

k=0

k
∑

j=0

(

k

j

)(

n+ k − j

n− k − j

)

rn−k−jtjsk−jCk. (14)

Proof. The equality of the two expressions for the generating function can be seen by ex-
pansion of the latter expression. We then use the expression for the general element of the

Riordan array
(

1
1−rx

,
x(s+tx)
(1−rx)2

)

to obtain the second expression for Čn(r, s, t).

An immediate consequence of this corollary is that we have the following continued
fraction expression for the generating function č(x; r, s, t).

1

1− rx−
x(s+ tx)

1− rx−
x(s+ tx)

1− rx− · · ·

.

Proposition 37. The generating function č(x; r, s, t) of the generalized Catalan numbers

Čn(r, s, t) can be expressed as the Jacobi continued fraction

1

1− (r + s)x−
(s(r + s) + t)x2

1− (r + 2s)x−
(s(r + s) + t)x2

1− (r + 2s)x− · · ·

.

Proof. We solve the equation

u =
1

1− (r + 2s)x− (s(r + s) + t)x2u
,

and then we verify that č(x; r, s, t) = 1
1−(r+s)x−(s(r+s)+t)x2u

.

Corollary 38. The Hankel transform of the generalized Catalan numbers Čn(r, s, t) is given
by

hn = (s(r + s) + t)(
n+1
2 ).

Proposition 39. The sequence Čn(r, s, t) is the moment sequence of the family of orthogonal

polynomials whose coefficient array is given by the Riordan array

(

1− sx

1 + (r + 2s)x+ (t+ s(r + s))x2
,

x

1 + (r + 2s)x+ (t+ s(r + s))x2

)

.
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Proof. Using the theory of Riordan arrays, it is direct to show that the initial column of the
inverse matrix has generating function given by č(x; r, s, t). By its form, the above Riordan
array is the coefficient array of a family of orthogonal polynomials.

We can use the generating function and the Stieltjes-Perron transform to find an integral
representation of this moment sequence.

Proposition 40. We have the following integral representation for the sequence Čn(r, s, t).

Čn(r, s, t) =
1

π

∫ r+2s+2
√

t+s(r+s)

r+2s−2
√

t+s(r+s)

xn

√

−x2 + 2(r + 2s)x− r2 + 4t

2(sx+ t)
dx.

Example 41. We have

Čn(1, 1, 1) =
1

π

∫ 2+2
√
3

3−2
√
3

xn

√

3(2x+ 1)− x2

2(x+ 1)
dx.

This sequence A064641 begins

1, 2, 7, 29, 133, 650, 3319, 17498, 94525, . . . .

We have

Čn(2, 2, 1) =
1

π

∫ 12

0

xn

√

x(12− x)

2(2x+ 1)
dx.

This sequence A064063(n+ 1) begins

1, 4, 25, 190, 1606, 14506, 137089, 1338790, 13403950, . . . .

We have
Cn(r, s, s) = Čn(r, s, 0).

The numbers

Čn(r, 0, t) =

⌊n
2
⌋

∑

k=0

(

n

2k

)

Ckr
n−2ktk

count Motzkin paths where the level steps have r colors and the up steps have t colors.

6 The generalized Catalan numbers C̃n(r, s, y).

In this section, we consider the generalized Catalan numbers C̃n(r, s, y) whose generating
function is given by

(

1− x(s+ 1)

(1− x)(1 + (r − 1)x)
,

x(1− x(s+ 1))

(1− x)(1 + (r − 1)x)

)−1

· 1

1− yx
.
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These generalized Catalan numbers are the moments for the family of orthogonal polynomials
whose coefficient matrix is given by

(

1 + (1 + s− y)x

1 + (r + 2s)x+ s(r + s)x2
,

x

1 + (r + 2s)x+ s(r + s)x2

)

.

Their generating function can be expressed as the Jacobi continued fraction

J (y + r + s− 1, r + 2s, r + 2s, . . . ; s(r + s), s(r + s), . . .).

When y = s+ 1, we obtain the generating function

J (r + 2s, r + 2s, r + 2s, . . . ; s(r + s), s(r + s), . . .),

or u(x) where

u(x) =
1

1 + (r + 2s)x+ s(r + s)x2u
.

This gives us

u(x) =
1− (r + 2s)x−

√

1− 2(r + 2s)x+ r2x2

2sx2(r + s)
=

1

1− (r + 2s)x
c

(

x2s(r + s)

(1− (r + 2s)x)2

)

.

From this we deduce that the generalized Catalan numbers of this section, for y = s+1, are
given by

C̃n(r, s, s+ 1) =

⌊n
2
⌋

∑

k=0

(

n

2k

)

(r + 2s)n−2k(s(r + s))kCk (15)

=
n
∑

k=0

(

n+ 1

k

)(

2n− k + 2

n− k

)

sn−krk. (16)

Note that when both r + 2s = 1 and s(r + s) = 1, we obtain the Motzkin numbers. This
occurs when

r = 1− 2s and s =
1± i

√
3

2
.

For instance, we have C̃n(
√
3i, 1

2
−

√
3i
2
, 3
2
−

√
3i
2
) = Mn. We have the integral representation

C̃(r, s, s+ 1) =
1

π

∫ r+2s+2
√

s(r+s))

r+2s−2
√

s(r+s)

xn

√

−x2 + 2(r + 2s)x− r2

2s(r + s)
dx.

Example 42. The generalized Catalan sequence C̃n(2, 3, 4), which begins

1, 8, 79, 872, 10306, 127568, 1632619, . . .

is given by

C̃(2, 3, 4) =
1

π

∫ 8+
√
15

8−2
√
15

xn

√

4(4x− 1)− x2

30
dx.
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In the general case of C̃n(r, s, y), we see that its generating function will be given by

1

1− (y + r + s− 1)x− s(r + s)x2u(x)
=

2

1− (2y + r − 2)x+
√

1− 2(r + 2s)x+ r2x2
.

This may be expressed as

1

1− (r + 2y − 2)x
c

(

x(1 + s− y + (1− r + (r − 2)y + y2)x)

(1− (r + 2y − 2)x)2

)

.

Using the Stieltjes-Perron transform, we find that

C̃n(r, s, y) =
1

π

∫ r+2s+2
√

s(r+s)

r+2s−2
√

s(r+s)

xn

√

−x2 + 2(r + 2s)x− r2

2(1− r + y(r − 2) + y2 + (1 + s− y)x)
dx.

Example 43. We consider the case of (r, s, y) = (1, 2, 3). Then C̃n(1, 2, 3) is A269730 which
begins

1, 5, 31, 215, 1597, 12425, 99955, 824675, 6939769, . . . .

Then

C̃n(1, 2, 3) =
1

π

∫ 5+2
√
6

5−2
√
6

xn−x2 + 10x− 1

12
dx.

Other expressions for C̃n(1, 2, 3) are given by

C̃n(1, 2, 3) =
n
∑

k=0

1

k + 1

(

n

k

)(

n+ k + 2

k

)

2k =
n
∑

k=0

Ñn,k2
n−k3k,

where Ñn,k =
1

k+1

(

n

k

)(

n+1
k

)

are the (palindromic) Narayana numbers, and the coefficient array

( 1
k+1

(

n

k

)(

n+k+2
k

)

) is A033282, which gives the number of diagonal dissections of a convex n-

gon into k+1 regions. In this case, the sequence C̃n(1, 2, 3) or A269730 gives the dimensions
of the 2-polytridendriform operad TDendr2 [11]. We note that the generating function of
this sequence is f(−x), where

f(x) =
1

x
Rev

(

1

1− 3x
− 1

1− 2x

)

,

(remark by Gheorghe Coserea).
In terms of Riordan arrays, the generating function for this sequence is simply given by

(

1

1− 5x
,

6x2

(1− 5x)2

)

· c(x).

Thus we have

C̃n(1, 2, 3) =

⌊n
2
⌋

∑

k=0

(

n

2k

)

5n−2k6kCk =
n
∑

k=0

Ñn,k2
k3n−k.
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Example 44. We now look at (r, s, y) = (2, 2, 3). Then we find that C̃(2, 2, 3), which begins

1, 6, 44, 360, 3152, 28896, 273856, 2661504, 26380544, . . .

is A090442. We have

C̃(2, 2, 3) =
1

π

∫ 6+4
√
2

6−4
√
2

xn

√

4(3x− 1)− x2

16
dx.

In terms of Riordan arrays, the generating function for this sequence is simply given by

(

1

1− 6x
,

8x2

(1− 6x)2

)

· c(x).

Thus we have

C̃n(2, 2, 3) =

⌊n
2
⌋

∑

k=0

(

n

2k

)

6n−2k8kCk =
n
∑

k=0

Ñn,k2
k4n−k.

This sequence gives the row sums of the scaling A090452 of the {3, 2}-Stirling2 array
A078740.

Example 45. We have that C̃n(−1, 4, 5) = C̃n(1, 3, 4). This sequence begins

1, 7, 61, 595, 6217, 68047, 770149, . . .

with generating function
(

1

1− 7x
,

12x2

(1− 7x)2

)

· c(x),

and hence the general term is given by

C̃n(1, 3, 4) =

⌊n
2
⌋

∑

k=0

(

n

2k

)

7n−2k12kCk =
n
∑

k=0

Ñn,k3
k4n−k.

This sequence is A269731, which gives the dimensions of the 3-polytridendriform operad
TDendr3 [11]. We note that the generating function of this sequence is f(−x), where

f(x) =
1

x
Rev

(

1

1− 4x
− 1

1− 3x

)

.

Lemma 46. We have

1

x
Rev

(

1

1 + rx
− 1

1 + (r + 1)x

)

=

(

1

1− (2r + 1)x
,

x2r(r + 1)

(1− (2r + 1)x)2

)

· c(x).
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It follows that

[xn]
1

x
Rev

(

1

1 + rx
− 1

1 + (r + 1)x

)

=

⌊n
2
⌋

∑

k=0

(

n

2k

)

(r(r + 1))k(2r + 1)n−2kCk

=
n
∑

k=0

1

k + 1

(

n

k

)(

n+ k + 2

k

)

rk.

More generally, we have the following.

Lemma 47.

[xn]
1

x
Rev

(

1

s− r

(

1

1 + rx
− 1

1 + sx

))

=
n
∑

k=0

Ñn,ks
n−krk.

Proof. We find that

1

x
Rev

(

1

s− r

(

1

1 + rx
− 1

1 + sx

))

=
1

1− (r + s)x
c

(

rsx2

(1− (r + s)x)2

)

.

This expands to give the sequence

⌊n
2
⌋

∑

k=0

(

n

2k

)

(rs)k(r + s)n−2kCk =
n
∑

k=0

Ñn,ks
n−krk.

We have seen that in the general case of C̃n(r, s, y), its generating function will be given
by

1

1− (y + r + s− 1)x− s(r + s)x2u(x)
=

2

1− (2y + r − 2)x+
√

1− 2(r + 2s)x+ r2x2
.

This may be expressed as

1

1− (r + 2y − 2)x
c

(

x(1 + s− y + (1− r + (r − 2)y + y2)x)

(1− (r + 2y − 2)x)2

)

.

We now let y = s+ 1. Then C̃n(r, s, s+ 1) will have as generating function
(

1

1− (r + 2s)x
,

x2s(r + s)

(1− (r + 2s)x)2

)

· c(x),

which means that

C̃n(r, s, s+ 1) =

⌊n
2
⌋

∑

k=0

(

n

2k

)

(s(r + s))k(r + 2s)n−2kCk =
n
∑

k=0

Ñn,ks
k(r + s)n−k.

As a consequence, we get the following result.
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Proposition 48. We have

[xn]
1

x
Rev

(

1

s− r

(

1

1 + rx
− 1

1 + sx

))

= C̃n(s− r, r, r + 1).

Thus we have

C̃n(s− r, r, r + 1) =
n
∑

k=0

Ñn,ks
n−krk.

Example 49. In this example, we begin by noting that the generating function

1

x
Rev

(

x

1 + rx+ sx2

)

expands to give the sequence
⌊n
2
⌋

∑

k=0

(

n

2k

)

Ckr
n−2ksk.

The generating function of this sequence can be represented by the continued fraction

1

1− rx−
sx2

1− rx−
sx2

1− rx− · · ·

.

We now substitute Cn(v, w, w) for Cn into this expression. Thus we consider the sequence
˜̃
Cn(r, s, v, w) with general term

˜̃
Cn(r, s, v, w) =

⌊n
2
⌋

∑

k=0

(

n

2k

)

Ck(v, w, w)r
n−2ksk. (17)

This sequence depends on the four parameters r, s, v, w. We find that this sequence has a
generating function given by

1− rx

1− 2rx− x2(sv − r2)
c

(

x2sw(1− rx)2

(1− 2rx− x2(sv − r2))2

)

.

Equivalently, this is given by the continued fraction

1

1− rx−
s(v + w)x2

1− rx−
swx2

1− rx−
s(v + w)x2

1− rx−
swx2

1− rx− · · ·

.
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We find that

˜̃
Cn(r, s, v, w) =

n
∑

k=0

2k+1
∑

j=0

(2k + 1

j

)

(−r)j
n−2k−j
∑

i=0

(2k + i

i

)( i

n− 2k − j − i

)

(sv − r2)n−2k−j−i(2r)2i+2k+j−nskwkCk.

The Hankel transform of this sequence is then given by

hn = s(
n+1
2 )(v + w)⌊

(n+1)2

4
⌋w⌊n2

4
⌋.

We note that the reversion of

x(1− rx)

1− 2rx− x2(sv − r2)
c

(

x2sw(1− rx)2

(1− 2rx− x2(sv − r2))2

)

is given by
1 + 2rx+ swx2 −

√

1 + 2sx2(2v + w) + s2w2x4

2(r + x(r2 − sv) + rswx2)

or equivalently by

x

1 + 2rx+ swx2
c

(

x(r + (r2 − sv)x+ rswx2)

(1 + 2rx+ swx2)2

)

.

This expands to give a sequence that begins

0, 1,−r,−sv + r2 − sw, r(2sv − r2 + 2sw), 2s2v2 + 3sv(sw − r2) + r4 − 3r2sw + s2w2 . . . .

When v = 0 and w = 1, we obtain the expansion of

x

1 + rx+ sx2
.

7 Generalized Catalan triangles

There are many triangles associated with the Catalan numbers which have been called by
the term “Catalan triangle”. Two such matrices are the Riordan arrays

(1, xc(x)) and (c(x), xc(x)2).

These number triangles are related according to

(c(x), xc(x)2) = (1, xc(x)) · B,

where B =
(

1
1−x

, x
1−x

)

. This can be expressed as

(c(x; 0), xc(x; 0)2) = (1, xc(x; 0)) · (Tn,k(0)).
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We generalize the above Catalan matrices in the following way.

(1, c(x)) 7→ (1 + rxc(x; r), xc(x; r)),

and
(c(x), xc(x)2) 7→ (c(x; r), xc(x; r)2).

We recall that the row sums of the matrix (1 + rxc(x; r), xc(x; r)) have generating function
c(x; r). We then have the following result for these generalized Catalan triangles.

Proposition 50.

(c(x; r), xc(x; r)2) = (1 + rxc(x; r), xc(x; r)) ·
(

1

1− x
,
x(1 + rx)

1− x

)

.

Proof. Straight-forward evaluation shows that both sides are equal.

We have in fact that the elements of the generalized Catalan matrix (c(x; r), xc(x; r)2)
are equal to

T2n,n+k(r)− T2n,n+k+1(r).

This corresponds to the formula
(

2n

n+ k

)

−
(

2n

n+ k + 1

)

for the general element of the Catalan matrix (c(x), xc(x)2). We find that the general (n, k)-
th element of the generalized Catalan triangle (c(x; r), xc(x; r)2) is equal to

n+k
∑

j=0

(

n+ k

j

)(

2n− j

n− k − j

)

rj −
n+k+1
∑

j=0

(

n+ k + 1

j

)(

2n− j

n− k − j − 1

)

rj .

This triangle begins












1 0 0 0 0
r + 1 1 0 0 0

r2 + 3r + 2 3r + 3 1 0 0
r3 + 6r2 + 10r + 5 6r2 + 15r + 9 5r + 5 1 0

r4 + 10r3 + 30r2 + 35r + 14 10r3 + 45r2 + 63r + 28 15r2 + 35r + 20 7r + 7 1













.

For the values r = 0 . . . 4, we obtain triangles that begin, respectively, as follows.
















1 0 0 0 0 0
1 1 0 0 0 0
2 3 1 0 0 0
5 9 5 1 0 0
14 28 20 7 1 0
42 90 75 35 9 1

















,
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















1 0 0 0 0 0
2 1 0 0 0 0
6 6 1 0 0 0
22 30 10 1 0 0
90 146 70 14 1 0
394 714 430 126 18 1

















,

















1 0 0 0 0 0
3 1 0 0 0 0
12 9 1 0 0 0
57 63 15 1 0 0
300 414 150 21 1 0
1686 2682 1275 273 27 1

















,

















1 0 0 0 0 0
4 1 0 0 0 0
20 12 1 0 0 0
116 108 20 1 0 0
740 892 260 28 1 0
5028 7164 2820 476 36 1

















,

and
















1 0 0 0 0 0
5 1 0 0 0 0
30 15 1 0 0 0
205 165 25 1 0 0
1530 1640 400 35 1 0
12130 15690 5275 735 45 1

















.

We note that for r = −1, we get the identity matrix.
The corresponding matrices (1 + rxc(x; r), xc(x, r)) begin

















1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 2 2 1 0 0
0 5 5 3 1 0
0 14 14 9 4 1

















,

















1 0 0 0 0 0
1 1 0 0 0 0
2 3 1 0 0 0
6 10 5 1 0 0
22 38 22 7 1 0
90 158 98 38 9 1

















,
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















1 0 0 0 0 0
2 1 0 0 0 0
6 5 1 0 0 0
24 24 8 1 0 0
114 123 51 11 1 0
600 672 312 87 14 1

















,

















1 0 0 0 0 0
3 1 0 0 0 0
12 7 1 0 0 0
60 44 11 1 0 0
348 284 92 15 1 0
2220 1916 716 156 19 1

















,

and
















1 0 0 0 0 0
4 1 0 0 0 0
20 9 1 0 0 0
120 70 14 1 0 0
820 545 145 19 1 0
6120 4370 1370 245 24 1

















.

The variant of the Catalan triangle given by (c(x), xc(x)) becomes the family of triangles
(c(x; r), xc(x; r)). For r = 0 . . . 2, we obtain the triangles that begin





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 2 1 0 0 0 0
5 5 3 1 0 0 0
14 14 9 4 1 0 0
42 42 28 14 5 1 0
132 132 90 48 20 6 1





















, (A033184)





















1 0 0 0 0 0 0
2 1 0 0 0 0 0
6 4 1 0 0 0 0
22 16 6 1 0 0 0
90 68 30 8 1 0 0
394 304 146 48 10 1 0
1806 1412 714 264 70 12 1





















, (A080247)
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and




















1 0 0 0 0 0 0
3 1 0 0 0 0 0
12 6 1 0 0 0 0
57 33 9 1 0 0 0
300 186 63 12 1 0 0
1686 1086 414 102 15 1 0
9912 6540 2682 768 150 18 1





















.

The production matrix of the generalized Catalan matrix (c(x; r), xc(x; r)) begins
















r + 1 1 0 0 0 0
r + 1 r + 1 1 0 0 0
r + 1 r + 1 r + 1 1 0 0
r + 1 r + 1 r + 1 r + 1 1 0
r + 1 r + 1 r + 1 r + 1 r + 1 1
r + 1 r + 1 r + 1 r + 1 r + 1 r + 1

















.

The Riordan array (g(x), f(x)) has g(x)
1−yf(x)

as bivariate generating function. Equivalently,

this can be seen as the generating function of the polynomial sequence
∑n

k=0 an,ky
k where

the matrix (an,k) represents the Riordan array (g(x), f(x)). Thus the bivariate generating
function of the generalized Catalan array (c(x; r), xc(x; r)) is given by

c(x; r)

1− yxc(x; r)
=

1− (r + 2y)x−
√

1− 2(r + 2)x+ r2x2

2x(1− y + y(y + r)x)
.

This is equal to

g(x, y) =
1

1− x(2y + r)
c

(

x(xy(y + r)− y + 1)

(1− x(2y + r))2

)

.

We can express this generating function as the continued fraction

1

1− (y + r + 1)x−
(r + 1)x2

1− (r + 2)x−
(r + 1)x2

1− (r + 2)x−
(r + 1)x2

1− (r + 2)x− · · ·

.

This gives us the following proposition.

Proposition 51. The matrix polynomials of the generalized Catalan array (c(x; r), xc(x; r))
are the moments of the family of orthogonal polynomials whose coefficient array is given by

the Riordan array
(

1− (y − 1)x

1 + (r + 2)x+ (r + 1)x2
,

x

1 + (r + 2)x+ (r + 1)x2

)

.
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In the literature, it is more usual to call the reversal of the Riordan array (c(x), xc(x)) the
Catalan matrix A009766. Thus we consider the reversal of the generalized Catalan matrix
(c(x; r), xc(x; r)). This will have bivariate generating function

g

(

xy,
1

y

)

=
1− x(ry + 2)−

√

1− 2xy(r + 2) + r2x2y2

2x(x(ry + 1) + y − 1)
.

This can be expressed as

1

1− x(ry + 2)
c

(

x(x(ry + 1) + y − 1)

(1− x(ry + 2))2

)

,

or as the continued fraction

1

1− (y(r + 1) + 1)x−
(r + 1)y2x2

1− y(r + 2)x−
(r + 1)y2x2

1− y(r + 2)x− · · ·

.

We have the following proposition.

Proposition 52. The matrix polynomials of the reversal of the generalized Catalan array

(c(x; r), xc(x; r)) are the moments of the family of orthogonal polynomials whose coefficient

array is given by the Riordan array
(

1 + (y − 1)x

1 + y(r + 2)x+ y2(r + 1)x2
,

x

1 + y(r + 2)x+ y2(r + 1)x2

)

.

The Shapiro Catalan triangle A039598 [23] is the triangle given by

(c(x), xc(x)) ·
(

1

1− x
,

x

1− x

)

.

We can generalize this to the generalized Shapiro Catalan triangle

(c(x; r), xc(x; r)) ·
(

1

1− x
,
x(1 + rx)

1− x

)

.

For r = 0 . . . 2, we obtain the generalized Shapiro Catalan triangles that begin




















1 0 0 0 0 0 0
2 1 0 0 0 0 0
5 4 1 0 0 0 0
14 14 6 1 0 0 0
42 48 27 8 1 0 0
132 165 110 44 10 1 0
429 572 429 208 65 12 1





















, (A039598)
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



















1 0 0 0 0 0 0
3 1 0 0 0 0 0
11 7 1 0 0 0 0
45 39 11 1 0 0 0
197 205 83 15 1 0 0
903 1061 541 143 19 1 0
4279 5483 3285 1117 219 23 1





















,

and




















1 0 0 0 0 0 0
4 1 0 0 0 0 0
19 10 1 0 0 0 0
100 76 16 1 0 0 0
562 532 169 22 1 0 0
3304 3619 1504 298 28 1 0
20071 24394 12265 3232 463 34 1





















.

The case r = 0 is the Shapiro Catalan triangle.
The triangle

(c(x; r), xc(x; r)) ·
(

1

1− x
,
x(1 + rx)

1− x

)

is given explicitly by
(

1− (r + 2)x−
√

1− 2(r + 2)x+ r2x2

2(r + 1)x2
,
1− 2(r + 1)x+ r2x2 − (1− rx)

√

1− 2(r + 2)x+ r2x2

2x

)

,

which can be expressed as
(

1

1− (r + 2)x
c

(

x2(r + 1)

(1− (r + 2)x)2

)

,
x

1− 2(r + 1)x+ r2x2
c

(

x2

(1− 2(r + 1)x+ r2x2)2

))

.

The first element of this, given by

1− (r + 2)x−
√

1− 2(r + 2)x+ r2x2

2(r + 1)x2
=

1

1− (r + 2)x
c

(

x2(r + 1)

(1− (r + 2)x)2

)

,

expands to give the sequence with general term

⌊n
2
⌋

∑

k=0

(

n

2k

)

Ck(r + 1)k(r + 2)n−2k =
1

n+ 1

n
∑

k=0

(

n+ 1

k

)(

2n+ 2− k

n+ 2

)

rk.

This sequence has generating function expressible as the continued fraction

1

1− (r + 2)x−
(r + 1)x2

1− (r + 2)x−
(r + 1)x2

1− (r + 2)x− · · ·

.
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The term 1
n+1

(

n+1
k

)(

2n+2−k

n+2

)

is the general element of the number triangle A126216, which
counts the number of Schroeder paths of semi-length n containing exactly k peaks but no
peaks at level one.

The second term, divided by x, gives 1
1−2(r+1)x+r2x2 c

(

x2

(1−2(r+1)x+r2x2)2

)

. This expands to

give a sequence which begins

1, 2(r + 1), 3r2 + 8r + 5, 2(r + 1)(2r2 + 8r + 7), 5r4 + 40r3 + 105r2 + 112r + 42, . . . .

This polynomial sequence in r has a coefficient array that begins





















1 0 0 0 0 0 0
2 2 0 0 0 0 0
5 8 3 0 0 0 0
14 30 20 4 0 0 0
42 112 105 40 5 0 0
132 420 504 280 70 6 0
429 1584 2310 1680 630 112 7





















.

Multiplying this on the right by the inverse binomial matrix B−1, we obtain the matrix that
begins





















1 0 0 0 0 0 0
0 2 0 0 0 0 0
0 2 3 0 0 0 0
0 2 8 4 0 0 0
0 2 15 20 5 0 0
0 2 24 60 40 6 0
0 2 35 140 175 70 7





















.

This is A281260, the triangle of generalized Narayana numbers [8]

N2(n, k) =
2

n+ 2

(

n+ 2

k

)(

n− 1

n− k

)

.

Thus the above sequence has general term

2

n+ 2

n
∑

k=0

n
∑

i=0

(

n+ 2

i

)(

n− 1

n− i

)(

i

k

)

rk.

The bivariate generating function of the generalized Shapiro Catalan triangle can be ex-
pressed as

(rxy + 1)
√

1− 2(r + 2)x+ r2x2 − r2x2y + x(r + 2)(y + 1)− 1

2x(r + 1)(r2x2y − x(y2 + 2y(r + 1) + 1) + y)
.
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Only in the classical case of r = 0 does this admit a “nice” Jacobi continued fraction
expression, which is then given by

1

1− (y + 2)x−
x2

1− 2x−
x2

1− 2x−
x2

1− 2x− · · ·

.

8 Generalized Motzkin numbers

We have the formula

Mn =

⌊n
2
⌋

∑

k=0

(

n

2k

)

Ck,

where Mn denotes the Motzkin numbers A001006. Writing

Cn(r, s) =
n
∑

k=0

(

n+ k

2k

)

rn−kskCk, (18)

we can define generalized Motzkin numbers

Mn(r, s) =

⌊n
2
⌋

∑

k=0

(

n

2k

)

Ck(r, s). (19)

We have Mn = Mn(0, 1). The sequence Mn(r, s) begins

1, 1, r + s+ 1, 3r + 3s+ 1, r2 + r(3∆s+ 6) + 2s2 + 6s+ 1, . . . .

Proposition 53. The generating function of Mn(r, s) is given by the continued fraction

1

1− x−
(r + s)x2

1− x−
sx2

1− x−
(r + s)x2

1− x−
sx2

1− x− · · ·

.

A consequence of this is that the generating function of Mn(r, s) is given by

1− x

1− 2x− (r − 1)x2
c

(

sx2(1− x)2

(1− 2x− (r − 1)x2)2

)
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=
1− 2x− (r − 1)x2 −

√

1− 4x− 2(r + 2s− 3)x2 + 4(r + 2s− 1)x3 + (r2 − 2r − 4s+ 1)x4

2sx2(1− x)
.

We can also form the generalized Motzkin number

Mn(r, s, y) =

⌊n
2
⌋

∑

k=0

(

n

2k

)

Ck(r, s, y).

We find that the generating function of Mn(r, s, y) has the continued fraction form

1

1− x−
(r + y)x2

1− x−
sx2

1− x−
(r + s)x2

1− x−
sx2

1− x− · · ·

.

In particular, the sequence Mn(r, s, y) has its Hankel transform given by

hn = (r + y)ns⌊
n2

4
⌋(r + s)⌊

(n−1)2

4
⌋.

In particular, we have that the Hankel transform of Mn(r, s) is given by

hn = s⌊
n2

4
⌋(r + s)⌊

(n+1)2

4
⌋.

Example 54. We consider Mn(s+ 1, s− 1) =
∑⌊n

2
⌋

k=0

(

n

2k

)
∑k

j=0

(

k+j

2j

)

(s+ 1)k−j(s− 1)j. The
generating function of this sequence is given by

1

1− x−
2sx2

1− x−
(s− 1)x2

1− x−
2sx2

1− x−
(s− 1)x2

1− x− · · ·

.

For s = 2 we obtain the sequence Mn(3, 1) that begins

1, 1, 5, 13, 45, 141, 477, 1597, 5501, . . . .

This is the binomial transform of the aeration of the sequence

n
∑

k=0

Nn,k4
k =

n
∑

k=0

(

n+ k

2k

)

Ck3
n−k

A082298, which counts Schroeder paths of semi-length n where the level steps can have 3
colors.
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Another family of generalized Motzkin numbers can be formed as follows. We recall that
the Narayana triangle with general term

Nn,k =
1

n+ 1

(

n+ 1

k

)(

n− 1

n− k

)

= 0n+k +
1

n+ 0nk

(

n

k

)(

n

k − 1

)

has the Catalan numbers as its row sums.
We form the alternative generalized Motzkin numbers

M̃n(r, s) =

⌊n
2
⌋

∑

k=0

(

n

2k

) k
∑

i=0

Nk,ir
isk−i. (20)

This sequence begins

1, 1, r + 1, 3r + 1, r2 + r(s+ 6) + 1, 5r2 + 5r(s+ 2) + 1, . . . .

We find that these generalized Motzkin numbers have generating function given by the
continued fraction

1

1− x−
rx2

1− x−
sx2

1− x−
rx2

1− x−
sx2

1− x− · · ·

.

This is equivalent to

1− x

1− 2x− (r − s− 1)x2
c

(

sx2(1− x)2

(1− 2x− (r − s− 1)x2)2

)

.

In particular, the Hankel transform of the sequence M̃n(r, s) is given by

hn = r⌊
(n+1)2

4
⌋s⌊

n2

4
⌋.

By construction, M̃n(r, s) represents the first binomial transform of the aeration of the
generalized Catalan numbers given by

∑n

k=0Nn,ks
n−krk [6]. The sequence

∑n

k=0Nn,ks
n−krk

has generating function given by

1

1−
rx

1−
sx

1−
rx

1− · · ·

,
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or
1

1− (r − s)x
c

(

sx

(1− (r − s)x)2

)

.

We have that
∑n

k=0Nn,ks
n−krk = Cn(r − s, s, s). Thus

M̃n(r, s) =
n
∑

k=0

(

n

k

)

C k
2
(r − s, s, s)

1 + (−1)k

2
. (21)

9 The T transform of the generalized Catalan numbers

Cn(r, s, s)

We recall that the generating function of the generalized Catalan numbers Cn(r, s, s) =
∑n

k=0

(

n+k

2k

)

rn−kskCk can be expressed as the continued fraction

1

1− (r + s)x−
s(r + s)x2

1− (r + 2s)x−
s(r + s)x2

1− (r + 2s)x− · · ·

.

Taking the T transform [2] of this, we obtain the generating function

1

1− (r + s)x−
s(r + s)x2

1− (2r + 3s)x−
4s(r + s)x2

1− (3r + 5s)x−
9s(r + s)x2

1− (4r + 7s)x−
16s(r + s)x2

1− (5r + 9s)x− · · ·

.

This expands to give the bivariate polynomial that begins

1, r + s, (r + s)(r + 2s), (r + s)(r2 + 6rs+ 6s2), (r + s)(r3 + 14r2s+ 36rs2 + 24s3), . . . .

Expressed as a polynomial in r, this has a coefficient array that begins





















1 0 0 0 0 0 0
s 1 0 0 0 0 0
2s2 3s 1 0 0 0 0
6s3 12s2 7s 1 0 0 0
24s4 60s3 50s2 15s 1 0 0
120s5 360s4 390s3 180s2 31s 1 0
720s6 2520s5 3360s4 2100s3 602s2 63s 1





















.
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We now recall that the Eulerian number triangle E2 with generating function

(1− z)ezx

ezx − zex

which begins




















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 4 1 0 0 0
0 1 11 11 1 0 0
0 1 26 66 26 1 0
0 1 57 302 302 57 1





















satisfies




















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 4 1 0 0 0
0 1 11 11 1 0 0
0 1 26 66 26 1 0
0 1 57 302 302 57 1





















·B

=





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 3 1 0 0 0 0
6 12 7 1 0 0 0
24 60 50 15 1 0 0
120 360 390 180 31 1 0
720 2520 3360 2100 602 63 1





















.

This last triangle then has generating function

(1− (z + 1))e(z+1)x

e(z+1)x − (z + 1)ex
=

ze(z+1)x

(z + 1)ex − e(z+1)x
.

The general element of this matrix is thus

n
∑

i=0

E2(n, i)

(

i

k

)

.

We have the following result.

Proposition 55. The T transform of the generalized Catalan number

Cn(r, s, s) =
n
∑

k=0

(

n+ k

2k

)

rn−ksk
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is given by the generalized Eulerian number

n
∑

k=0

(

n
∑

i=0

E2(n, i)

(

i

k

)

)

sn−krk.

10 Conclusions

We have shown that starting with the family of Pascal-like triangles defined by the Riordan

arrays
(

1
1−x

,
x(1+rx)
1−x

)

, we can define various generalized Catalan numbers. These numbers (or

polynomials, since they depend polynomially on parameters r, s, . . .) are essentially linked to
colored Schroeder paths. With the aid of the generating functions c(x; r) we have been able
to generalize three notions of Catalan triangle in a natural way. We can furthermore use
these generalized Catalan numbers to define generalized Motzkin numbers, where again the
parameters can be interpreted as colors. Finally we have shown that a link exists between
the generalized Catalan numbers Cn(r, s, s) and certain generalized Eulerian numbers via
the T transform.
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12 Appendix

We provide a summary of information on the generalized Catalan numbers considered in this
paper.

Cn(r) = T2n,n(r)− T2n,n−1(r) =
n
∑

k=0

(

n+ k

2k

)

rn−kCk.

The generating function of Cn(r) is

c(x; r) =
1

1− rx
c

(

x

(1− rx)2

)

=
1

x
Rev

(

x(1− x)

1 + rx

)

.

These numbers are the moments for the orthogonal polynomials whose coefficient array is
given by

(

1 + x

1 + (r + 2)x+ (r + 1)x2
,

x

1 + (r + 2)x+ (r + 1)x2

)

.
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They are the row sums of the Riordan array
(

1
1+rx

,
x(1−x)
1+rx

)−1

.

The numbers Cn(r, s, y) have generating function

(

1

1 + rx
,
x(1− sx)

1 + rx

)−1

· 1

1− yx
.

These numbers are the moments for the family of orthogonal polynomials with coefficient
array given by

(

1 + (2s− y)x+ s(s− y)x2

1 + (r + 2s)x+ s(r + s)x2
,

x

1 + (r + 2s)x+ s(r + s)x2

)

.

We have

Cn(r, s, s) =
n
∑

k=0

1

k + 1

(

n+ k

k

)(

n

k

)

rn−ksk =
n
∑

k=0

1

n− k + 1

(

2n− k

n

)(

n

k

)

sn−krk.

The generating function c(x; r, s, s) of Cn(r, s, s) is given by

c(x; r, s, s) =
1

x
Rev

(

x(1− sx)

1 + rx

)

.

We have

c(x; r, s, s) =
1

1− rx−
sx

1− rx−
sx

1− rx− · · ·

.

The numbers Cn(r, s, s) are the moments of the family of orthogonal polynomials with coef-
ficient array

(

1 + sx

1 + (r + 2s)x+ s(r + s)x2
,

x

1 + (r + 2s)x+ s(r + s)x2

)

.

The numbers Čn(r, s, t) have the generating function

č(x; r, s, t) =
1

1− rx
c

(

x(s+ tx)

(1− rx)2

)

=
1

x
Rev

(

x(1− sx)

1 + rx+ tx2

)

.

They are the moments of the family of orthogonal polynomials whose coefficient array is
given by

(

1− sx

1 + (r + 2s)x+ (t+ s(r + s))x2
,

x

1 + (r + 2s)x+ (t+ s(r + s))x2

)

.
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The numbers C̃n(r, s, y) have their generating function given by

(

1− x(s+ 1)

(1− x)(1 + (r − 1)x)
,

x(1− x(s+ 1))

(1− x)(1 + (r − 1)x)

)−1

· 1

1− yx
.

These generalized Catalan numbers are the moments for the family of orthogonal polynomials
whose coefficient matrix is given by

(

1 + (1 + s− y)x

1 + (r + 2s)x+ s(r + s)x2
,

x

1 + (r + 2s)x+ s(r + s)x2

)

.

The numbers ˜̃
Cn(r, s, v, w) have their generating function given by

1− rx

1− 2rx− x2(sv − r2)
c

(

x2sw(1− rx)2

(1− 2rx− x2(sv − r2))2

)

.

Equivalently, this is given by the continued fraction

1

1− rx−
s(v + w)x2

1− rx−
swx2

1− rx−
s(v + w)x2

1− rx−
swx2

1− rx− · · ·

.
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[20] E. Roblet and X. G. Viennot, Théorie combinatoire des T-fractions et approximants de
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