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Abstract

We define a three-parameter family of Bell pseudo-involutions in the Riordan group.

The defining sequences have generating functions that are expressible as continued

fractions. We indicate that the Hankel transforms of the defining sequences, and of

the A-sequences of the corresponding Riordan arrays, can be associated with a Somos-

4 sequence. We give examples where these sequences can be associated with elliptic

curves, and we exhibit instances where elliptic curves can give rise to associated Riordan

pseudo-involutions. In the case of a particular one-parameter family of elliptic curves,

we show how we can associate a unique Bell pseudo-involution with each such curve.

1 Introduction

The area of Riordan (pseudo) involutions has been the subject of much research in recent
years [4, 6, 11, 7, 8, 9, 10]. Recently, a sequence characterization of these involutions has
emerged [6]. This sequence is called the ∆-sequence or the B-sequence. In this paper, we
study a three-parameter family of Riordan pseudo-involutions defined by a simply described
B-sequence. We show that these pseudo-involutions are linked to Catalan defined generating
functions, and are linked to Somos sequences and elliptic curves via the Hankel transforms
of these generating functions. We show by example that it is possible to start with an
appropriate elliptic curve and to derive from its equation an associated Riordan pseudo-
involution.
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The group of (ordinary) Riordan arrays [1, 13, 14] is the set of lower triangular invertible
matrices (g(x), f(x)) defined by two power series

g(x) = 1 + g1x+ g2x
2 + · · · ,

and
f(x) = f1x+ f2x

2 + · · · ,
such that the (n, k)-th element tn,k of the matrix is given by

tn,k = [xn]g(x)f(x)k,

where [xn] is the functional that extracts the coefficient of xn from a power series.
The Fundamental Theorem of Riordan Arrays (FTRA) says that we have the law

(g(x), f(x)) · h(x) = g(x)h(f(x)).

This is equivalent to the matrix represented by (g(x), f(x)) operating on the column
vector whose elements are the expansion of the generating function h(x). The resulting
vector, regarded as a sequence, will have generating function g(x)h(f(x)).

The product of two Riordan arrays (g(x), f(x)) and (u(x), v(x)) is defined by

(g(x), f(x)) · (u(x), v(x)) = (g(x)u(f(x)), v(f(x))).

The inverse of the Riordan array (g(x), f(x)) is given by

(g(x), f(x))−1 =

(

1

g(f̄(x))
, f̄(x)

)

,

where f̄(x) = Rev(f)(x) is the compositional inverse of f(x). Thus f̄(x) is the solution u(x)
of the equation

f(u) = x

with u(0) = 0.
The identity element is given by (1, x) which as a matrix is the usual identity matrix.
With these operations the set of Riordan arrays form a group, called the Riordan group.
The Bell subgroup of Riordan arrays consists of those lower triangular invertible matrices

defined by a power series
g(x) = 1 + g1x+ g2x

2 + · · · ,
where the (n, k)-th element tn,k of the matrix is given by

tn,k = [xn]g(x)(xg(x))k = [xn−k]g(x)k+1.

A Bell pseudo-involution is a Bell array (g(x), xg(x)) such that the square of the Riordan
array (g(x),−xg(x)) is the identity matrix. We shall call a generating function g(x) for
which this is true an involutory generating function.
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For a lower triangular invertible matrix A, the matrix PA = A−1Ā is called the production
matrix of A, where Ā is the matrix A with its first row removed. A matrix A is a Riordan
array if and only if PA takes the form

















z0 a0 0 0 0 0
z1 a1 a0 0 0 0
z2 a2 a1 a0 0 0
z3 a3 a2 a1 a0 0
z4 a4 a3 a2 a1 a0
z5 a5 a4 a3 a2 a1

















.

The sequence that begins
z0, z1, z2, z3, . . .

is called the Z-sequence, while the sequence

a0, a1, a2, a3, . . .

is called the A-sequence. For a Riordan array (g(x), f(x)), we have

A(x) =
x

f̄(x)
and Z(x) =

1

f̄(x)

(

1− 1

g(f̄(x))

)

,

where A(x) is the power series a0+ a1x+ a2x
2+ · · · , and Z(x) is the power series z0+ z1x+

z2x+ · · · .
For a Riordan array (g(x), f(x)) to be an element of the Bell subgroup it is necessary

and sufficient that
A(x) = 1 + xZ(x).

If (g(x), xg(x)) is a pseudo-involution, then we have that [11]

A(x) =
1

g(−x)
.

We have the following result [6].

Proposition 1. An element (g(x), xg(x)) of the Bell subgroup is a pseudo-involution if and

only if there exists a sequence

b0, b1, b2, . . .

such that

tn+1,k = tn,k−1 +
∑

j≥0

bj · tn−j,k+j,

where tn,k−1 = 0 if k = 0.
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This sequence, when it exists, is called the B-sequence, or the ∆-sequence, of the Riordan
pseudo-involution. The relationship between A(x) and B(x), when this latter exists, is given
by [11]

A(x) = 1 + xB

(

x2

A(x)

)

.

Sequences and triangles, where known, will be referenced by their Annnnnn number in
the On-Line Encyclopedia of Integer Sequences [15, 16]. All number triangles in this note
are infinite in extent; where shown, a suitable truncation is used.

2 A Bell pseudo-involution defined by continued frac-

tions

In this section, we consider the B-sequence with generating function given by

B(x) =
a− cx

1 + bx
.

Proposition 2. For the Bell pseudo-involution (g(x), xg(x)) with

B(x) =
a− cx

1 + bx
,

we have

A(x) = 1 + ax− x3(ab+ c)

1 + ax+ bx2
C

(

x3(ab+ c)

(1 + ax+ bx2)2

)

,

and

g(x) =
1

1− ax− bx2
C

( −x2(b+ cx)

(1− ax− bx2)2

)

,

where

C(x) =
1−

√
1− 4x

2x

is the generating function of the Catalan numbers A000108 Cn = 1
n+1

(

2n
n

)

.

Proof. In order to solve for A(x), we must solve the equation

u = 1 + x
a− cx2/u

bx2/u+ 1

for u(x). We find that the appropriate branch is given by

u(x) = A(x) =
1 + ax− bx2 +

√

1 + 2ax+ (a2 + 2b)x2 − 2(ab+ 2c)x3 + bx4

2
.
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Using C(x) = 1−
√
1−4x
2x

we can put this in the form

A(x) = 1 + ax− x3(ab+ c)

1 + ax+ bx2
C

(

x3(ab+ c)

(1 + ax+ bx2)2

)

.

Now we have

g(x) =
1

A(−x)
.

We find that

g(x) =
2

1− ax− bx2 +
√

1− 2ax+ (a2 + 2b)x2 + 2(ab+ 2c)x3 + bx4
,

or

g(x) =
−1 + ax+ bx2 +

√

1− 2ax+ (a2 + 2b)x2 + 2(ab+ 2c)x3 + b2x4

2x2(cx+ b)
.

This last expression can then be expressed as

g(x) =
1

1− ax− bx2
C

( −x2(b+ cx)

(1− ax− bx2)2

)

.

We now recall that C(x) can be expressed as the continued fraction [3, 17]

C(x) =
1

1−
x

1−
x

1− · · ·

.

Thus we have

Corollary 3. For the pseudo-involution (g(x), xg(x)) with B-sequence given by

B(x) =
a− cx

1 + bx
,

we have that g(x) can be expressed as the continued fraction

g(x) =
1

1− ax− bx2 +
x2(b+ cx)

1− ax− bx2 +
x2(b+ cx)

1− ax− bx2 + · · ·

.
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Corollary 4. For the pseudo-involution (g(x), xg(x)) with B-sequence given by

B(x) = a+ dx,

we have that g(x) can be expressed as the continued fraction

g(x) =
1

1− ax−
dx3

1− ax−
dx3

1− ax− · · ·

. (1)

Corollary 5. For the pseudo-involution (g(x), xg(x)) with B-sequence given by

B(x) =
a

1− bx
,

we have that g(x) can be expressed as the continued fraction

g(x) =
1

1− ax+ bx2 −
bx2

1− ax+ bx2 −
bx2

1− ax+ bx2 − · · ·

.

3 Examples

In this section, we examine some examples of the above sequences gn, where g(x) =
∑∞

n=0 gnx
n

is such that (g(x), xg(x)) is a pseudo-involution. Thus we have (g(x),−xg(x))2 = (1, x).

Example 6. We recall that for the pseudo-involution (g(x), xg(x)) with B-sequence given
by

B(x) = a+ dx,

we have that g(x) can be expressed as the continued fraction of the form given in Eq (1).
Thus by Proposition 2, we have

g(x) =
1

1− ax
C

(

dx3

(1− ax)2

)

.

Using the FTRA, this can be written as

g(x) =

(

1

1− ax
,

dx3

(1− ax)2

)

· C(x).

6



We can determine the (n, k)-th term tn,k of the Riordan array
(

1
1−ax

, dx3

(1−ax)2

)

as follows.

tn,k = [xn]
dkx3k

(1− ax)2k+1

= dk[xn−3k]
∞
∑

j=0

(−(2k + 1)

j

)

(−a)j

= dk[xn−3k]
∞
∑

j=0

(

2k + 1 + j − 1

j

)

aj

= dk
(

2k + n− 3k

n− 3

)

an−3k

=

(

n− k

n− 3

)

dkan−3k.

We then have

gn =

⌊n

3
⌋

∑

k=0

(

n− k

n− 3k

)

dkan−3kCk

=
n
∑

k=0

1

n− k + 3

(2n+k
3

n+2k
3

)(

n+2k
3

k

)(

2 cos

(

2(n− k)π

3

)

+ 1

)

akd(n−k)/3.

For instance, we have

























g0
g1
g2
g3
g4
g5
g6
g7

























=

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
d 0 0 1 0 0 0 0
0 3d 0 0 1 0 0 0
0 0 6d 0 0 1 0 0
2d2 0 0 10d 0 0 1 0
0 10d2 0 0 15d 0 0 1

















































1
a
a2

a3

a4

a5

a6

a7

























.

The above matrix (for d = 1 is an aeration of A060693, which counts the number of Schröder
paths from (0, 0) to (2n, 0) having k peaks.

We note that the Hankel transform hn = |gi+j|0≤i,j≤n begins

1, 0,−d2,−d4, 0, d10, d14, 0,−d24,−d30, 0, . . . .

For a = d = 1, we get the sequence that begins

1, 1, 1, 2, 4, 7, 13, 26, 52, 104, 212, . . .
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This is A023431, which counts Motzkin paths of length n with no UD’s and no UU ’s. For
a = 1, d = 2 we get the sequence A091565, that begins

1, 1, 1, 3, 7, 13, 29, 71, 163, 377, 913, . . . .

For a = 2, d = 1, we get the sequence A091561 that begins

1, 2, 4, 9, 22, 56, 146, 388, 1048, 2869, 7942, . . . .

The related sequence A152225 that begins

1, 1, 2, 4, 9, 22, 56, 146, 388, 1048, 2869, 7942, . . .

counts the number of Dyck paths of semi-length n with no peaks at height 0 (mod 3) and
no valleys at height 2 (mod 3).

Example 7. When c = 0 we obtain that for the pseudo-involution (g(x), xg(x)) with B-
sequence given by

B(x) =
a

1 + bx
,

we have that g(x) can be expressed as the continued fraction

g(x) =
1

1− ax− bx2 +
bx2

1− ax− bx2 +
bx2

1− ax− bx2 + · · ·

.

In this case we have

g(x) =

(

1

1− ax− bx2
,

−bx2

(1− ax− bx)2

)

· C(x).

We find that

gn =
n
∑

k=0

(
n−2k
∑

j=0

(

2k + j

j

)(

j

n− 2k − j

)

bn−2k−ja2j+2k−n)(−b)kCk

=
n
∑

k=0

n−2k
∑

j=0

(

2k + j

j

)(

j

n− 2k − j

)

bn−k−ja2j+2k−n(−1)kCk

=
n
∑

k=0

(
n−2k
∑

i=0

(

n− i

2k

)(

n− 2k − i

i

)

bian−2k−2i)(−b)kCk.

We have the following characterization of these sequences [2, 5].
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Proposition 8. For the pseudo-involution (g(x), xg(x)) with B-sequence given by

B(x) =
a

1 + bx
,

we have that gn satisfies the recurrence

gn =











1, if n = 0;

a, if n = 1;

agn−1 + bgn−2 − b
∑n−2

k=0 gkgn−2−k, if n > 1.

The Hankel transform of gn begins

1, 0,−a2b2,−a4b4, a6b7, 0,−a12b15, a16b20, a20b26, 0,−a30b40, . . . .

For a = 1, b = −1 we get the RNA sequence A004148 that begins

1, 1, 1, 2, 4, 8, 17, 37, 82, . . . .

For a = 2, b = −1 we get the sequence A187256, which begins

1, 2, 4, 10, 28, 82, 248, 770, 2440, . . . .

This counts the number of peakless Motzkin paths of length n, assuming that the (1, 0) steps
come in 2 colors (Emeric Deutsch).

Example 9. In the general case, we have that

g(x) =
1

1− ax− bx2
C

( −x2(b+ cx)

(1− ax− bx2)2

)

.

One expansion of this gives us

gn =
n
∑

k=0

(
n
∑

i=0

(

k

i

)

cibk−i

n−2k−i
∑

m=0

(

n− i−m

n− 2k − i−m

)(

n− 2k − i−m

m

)

bman−2k−2m−i)(−1)kCk.

For a = 2, b = −1 and c = 1, we obtain the sequence gn(2,−1, 1) A105633 that begins

1, 2, 4, 9, 22, 57, 154, 429, 1223, 3550, 10455, . . . .

This sequence counts the number of Dyck paths of semi-length n+ 1 avoiding UUDU [12].
We note that the related sequence (we prepend a 1 to the previous sequence) that begins

1, 1, 2, 4, 9, 22, 57, 154, 429, 1223, 3550, 10455, . . .
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has generating function given by

1

1− x−
x2

1−
x

1− x−
x2

1−
x

1− x− · · ·

.

The general term of this sequence is given by

⌊n

2
⌋

∑

k=0

n−k
∑

j=0

(

n− k

j

)

Nj,k

where (Nn,k) is the Narayana triangle A090181 with

Nn,k =
1

n− k + 1

(

n

k

)(

n− 1

n− k

)

,

which begins




















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 3 1 0 0 0
0 1 6 6 1 0 0
0 1 10 20 10 1 0
0 1 15 50 50 15 1





















.

Equivalently, this sequence is equal to the diagonal sums of the matrix product
((

n

k

))

· (Nn,k),

where this product matrix A130749 begins




















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 7 6 1 0 0 0
1 15 24 10 1 0 0
1 31 80 60 15 1 0
1 63 240 280 125 21 1





















.

The inverse binomial transform of gn(2,−1, 1) is the sequence A007477 that begins

1, 1, 1, 2, 3, 6, 11, 22, 44, 90, 187, 392, . . . .
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This sequence counts the number of Dyck (n + 1)-paths containing no UDUs and no sub-
paths of the form UUPDD where P is a nonempty Dyck path (observation by David Callan,
[15]).

4 Hankel transforms and Somos-4 sequences

The sequence gn(a, b, c) begins

1, a, a2, a3 − ab− c, a4 − 3a2b− 3ac, a5 − 6a3b− 6a2c+ ab2 + bc, . . . .

The Hankel transform of gn(a, b, c) begins

1, 0,−a2b2 − 2abc− c2,−a4b4 − 4a3b3c− 6a2b2c2 − 4abc3 − c4, . . . .

Proceeding numerically, we can conjecture that the sequence tn that begins

−a2b2 − 2abc− c2,−a4b4 − 4a3b3c− 6a2b2c2 − 4abc3 − c4, . . .

is a ((ab+ c)2, b(ab+ c)2) Somos-4 sequence. By this we mean that

tn =
(ab+ c)2tn−1tn−3 + b(ab+ c)2t2n−2

tn−4

.

Example 10. We take a = 2, b = −2 and c = 3. We have

g(x) =
1

1− 2x+ 2x2
C

(

x2(2− 3x)

(1− 2x+ 2x2)2

)

=
1− 2x+ 2x2 −

√
1− 4x+ 4x3 + 4x4

2x2(2− 3x)
.

This expands to give the sequence gn(2,−2, 3) that begins

1, 2, 4, 9, 22, 58, 162, 472, 1418, 4357, 13618, . . . .

The Hankel transform of gn(3,−2, 3) begins

1, 0,−1,−1,−2,−3, 5, 28, 67, 411, 506, . . . .

Now the sequence
−1,−1,−2,−3, 5, 28, 67, 411, 506, . . .

is a (1,−2) Somos-4 sequence, associated with the elliptic curve y2 + y = x3 + 3x2 + x.

Example 11. The sequence gn(−1, 2, 1) has generating function

g(x) =
1

1 + x− 2x2
C

( −x2(2 + x)

(1 + x− 2x2)2

)

=

√
1 + 2x+ 5x2 + 4x4 − 2x2 + 1

2x2(x+ 2)
.
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The sequence gn(−1, 2, 1) begins

1,−1, 1, 0,−2, 3, 1,−12, 20, 4,−84, . . . .

It has a Hankel transform that begins

1, 0,−1,−1, 2,−1,−9, 16, 73, 145,−1442, . . . .

Here, the sequence −1,−1, 2,−1,−9, 16, 73, 145,−1442, . . . is a (1, 2) Somos-4 sequence. It
is related to A178075, which is the (1, 2) Somos-4 sequence that begins

1, 1,−2, 1, 9,−16,−73,−145, 1442, . . . .

Example 12. The sequence gn(−1,−2,−1) has generating function

g(x) =
1

1 + x+ 2x2
C

(

x2(2 + x)

(1 + x+ 2x2)2

)

=
1 + x+ 2x2 −

√
1 + 2x− 3x2 + 4x4

2x2(x+ 2)
.

The sequence begins

1,−1, 1,−2, 4,−9, 21,−50, 122,−302, 758, . . .

and its Hankel transform begins

1, 0,−1,−1,−2,−1, 7, 16, 57, 113,−670, . . . .

The sequence
−1,−1,−2,−1, 7, 16, 57, 113,−670, . . .

is a (1,−2) Somos-4 sequence. Apart from signs, this is A178622, which is associated with
the elliptic curve y2 − 3xy − y = x3 − x. In fact, we can show that the (1,−2) Somos-4
sequence 1, 1, 2, 1,−7,−16,−57, . . . can be described as the Hankel transform of the sequence
that begins

1, 0, 1,−1, 4,−10, 30,−84, 237,−653, 1771,−4699, 12173,−30625, . . .

with generating function

f(x) =
2x√

1 + 6x+ 9x2 − 4x3 − 8x4 − x− 1
.

Note that many other sequences can have the same Hankel transform.
The relationship between g(x) and f(x) is given by

g(x) =

(

1

1 + 2x
,

−x

1 + 2x

)

· f(x)(1 + 2x)− 1

f(x)x(3x+ 2)
.
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5 From elliptic curve to Riordan pseudo-involution

In this section, we reprise the last example to make explicit the steps that lead from the
elliptic curve given by

y2 − 3xy − y = x3 − x

to the Riordan pseudo-involution defined by gn(−1,−2,−1).
The first step is to solve the quadratic equation

y2 − 3xy − y = x3 − x

for y. The branch that we require is given by

1 + 3x−
√
1 + 2x+ 9x2 + 4x3

2
.

This expands to give a sequence that begins

0, 1,−2, 1, 3,−7, . . . .

Note that the other branch expands to give the sequence

1, 2, 2,−1,−3, 7, . . . .

Apart from the signs, the two sequences agree after the first two terms. We must discard
these first two terms, to get the generating function

(

1 + 3x−
√
1 + 2x+ 9x2 + 4x3

2
− x

)

/x2 =
1 + x−

√
1 + 2x+ 9x2 + 4x3

2x2
.

We now form the fraction

1

1− x− x2
(

1+x−
√
1+2x+9x2+4x3

2x2

) =
2

1− 3x+
√
1 + 2x+ 9x2 + 4x3

.

We revert this generating function to obtain the generating function

1 + 3x−
√
1 + 6x+ 9x2 − 4x3 − 8x4

2x2
.

Finally, we form the generating function

1

1− x2
(

1+3x−
√
1+6x+9x2−4x3−8x4

2x3

)

13



Figure 1: The elliptic curve y2 − 3xy − y = x3 − x

to arrive at

f(x) =
2x√

1 + 6x+ 9x2 − 4x3 − 8x4 − x− 1
.

The sought after involutory generating function is now obtained by

g(x) =

(

1

1 + 2x
,

−x

1 + 2x

)

· f(x)(1 + 2x)− 1

f(x)x(3x+ 2)
.

Example 13. Inspired by the last section, we now start with the elliptic curve

y2 − 2xy − y = x3 − x

and seek to produce an involutary power series g(x). We begin as before by solving the
quadratic in y to get

1 + 2x−
√
1 + 4x2 + 4x3

2
which expands to give a sequence that begins 0, 1,−1,−1, 1, . . .. We now form

(

1 + 2x−
√
1 + 4x2 + 4x3

2
− x

)

/x2 =
1−

√
1 + 4x2 + 4x3

2x2
.

We proceed to form the fraction

1

1− x− x2
(

1−
√
1+4x2+4x3

2x2

) =
2

1− 2x+
√
1 + 4x2 + 4x3

.

14



We revert this last generating function to obtain the generating function

1 + 2x−
√
1 + 4x+ 4x2 − 4x3 − 4x4

2x2
.

We finally form the generating function

1

1− x2
(

1+2x−
√
1+4x+4x2−4x3−4x4

2x3

)

to get

f(x) =
1 +

√
1 + 4x+ 4x2 − 4x3 − 4x4

1 + x− x2 − x3
.

We now let

g(x) =

(

1

1 + x
,
−x

1 + x

)

· f(x)(1 + x)− 1

f(x)x(2x+ 1)
.

Thus we arrive at

g(x) =
1 + x2 −

√
1− 2x2 + 4x3 + x4

2x2(1− x)
=

1

1 + x2
C

(

x2(1− x)

(1 + x2)2

)

.

This means that the sequence found is the involutory sequence gn(0,−1, 1).
This sequence begins

1, 0, 0,−1, 0,−1, 2,−1, 5,−6, 9,−22, 28,−57, 104,−163, . . .

and its Hankel transform begins

1, 0,−1,−1,−1, 1, 2, 3, 1,−7,−11, . . . .

The sequence
1, 1, 1,−1,−2,−3,−1, 7, 11, . . .

is the (1,−1) Somos-4 sequence A050512 which is associated with the curve

E : y2 − 2xy − y = x3 − x.

The association comes about in the following way. We take coordinates of the integer multi-
ples of the point P = (0, 0) on E. We use the x-coordinates as the coefficients of x2 and the
ratio of the y and x-coordinates as the coefficients of x in the following continued fraction.

1

1− x−
x2

1 + x−
x2

1 +
x2

1 + 3x+
2x2

1− x
2
−

(3/4)x2

1− 7x
6
−

(2/9)x2

1 + · · ·

,
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where
(0, 0), (−1, 0), (1, 3), (2,−1), (−3/4,−7/8), (−2/9, 22/27), . . .

are the coordinates of the multiples of P = (0, 0) on the elliptic curve E:y2−2xy−y = x3−x.

(nP )x 0 −1 2 −3
4

−2
9

21 11
49

(nP )y 0 0 3 −1 −7
8

22
27

120
y
x

1 0 3 −1
2

7
6

−11
3

7
40

This generating function expands to give the sequence starting

1, 1, 2, 2, 5, 4, 12, 10, 23, 38, 17, 162,−86, . . .

whose Hankel transform is
1, 1, 1,−1,−2,−3,−1, . . . .

The inverse binomial transform of gn begins

1,−1, 1,−2, 5,−12, 29,−72, 182,−466, 1207 . . . .

This is essentially A025273 or A217333. The sequence gn is the partial sum sequence of the
sequence that begins

1,−1, 0,−1, 1,−1, 3,−3, 6,−11, 15,−31, . . . .

This is the alternating sign version of A025250, whose binomial transform is essentially
A025273.

6 The A-sequence and Somos-4 sequences

We recall that for a Bell pseudo-involution (g(x), xg(x)) for which

B(x) =
a− cx

1 + bx
,

we have

A(x) = 1 + ax− x3(ab+ c)

1 + ax+ bx2
C

(

x3(ab+ c)

(1 + ax+ bx2)2

)

.

The Hankel transform of the expansion of A(x) is not a Somos sequence, so we look at the
element given by

1

1 + ax+ bx2
C

(

x3(ab+ c)

(1 + ax+ bx2)2

)

.

We can express this generating function as the continued fraction

1

1 + ax+ bx2 −
(ab+ c)x3

1 + ax+ bx2 −
(ab+ c)x3

1 + ax+ bx2 − · · ·

.
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Figure 2: The elliptic curve y2−2xy−y = x3−x and its associated Riordan pseudo-involution

This expands to give a sequence that begins

1,−a, a2 − b,−a3 + 3ab+ c, a4 − 6a2b− 3ac+ b2, . . .

with a Hankel transform that begins

1,−b,−abc− c2,−a3b3c+ a2b2(b3 − 3c2) + abc(2b3 − 3c2) + c2(b3 − c2), . . . .

Once again, we can conjecture that this Hankel transform is a ((ab+ c)2, b(ab+ c)2) Somos-4
sequence.

Example 14. For (a, b, c) = (−1, 1, 2), we obtain the sequence (essentially A025258 that
begins

1, 1, 0, 0, 2, 3, 1, 2, 11, 17, 12, . . .

with generating function

1

1− x+ x2
C

(

x3

(1− x+ x2)2

)

=
1− x+ x2 −

√
1− 2x+ 3x2 − 6x3 + x4

2x3
.

This sequence has a Hankel transform that begins

1,−1,−2,−1, 5, 9,−8,−41,−61, 241, . . . .
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This is a (1, 1) Somos-4 sequence (essentially A178627) associated with the elliptic curve

y2 + xy − y = x3 − x2 + x.

Example 15. For (a, b, c) = (−1,−1,−2) we obtain the sequence that begins

1, 1, 2, 2, 2,−1,−7,−20,−37,−53,−40, 49, 301, . . .

with generating function

1

1− x− x2
C

( −x3

(1− x− x2)2

)

=
−1 + x+ x2 +

√
1− 2x− x2 + 6x3 + x4

2x3
.

This sequence has a Hankel transform that begins

1, 1,−2,−3,−7, 5, 32, 83, 87,−821, . . . ,

, which is a (1,−1) Somos-4 sequence.

Example 16. We take (a, b, c) = (1, 2,−1). Thus we obtain the sequence that begins

1,−1,−1, 4,−4,−5, 23,−28,−28, 164,−232,−166, . . .

with generating function

1

1 + x+ 2x2
C

(

x3

(1 + x+ 2x2)2

)

=
1 + x+ 2x2 −

√
1 + 2x+ 5x2 + 4x4

2x3
.

This sequence has a Hankel transform that begins

1,−2, 1, 9,−16,−73,−145, 1442, 3951,−49121, . . . .

This is a (1, 2) Somos-4 sequence, essentially A178075.

Example 17. We let (a, b, c) = (−1,−2,−1). We obtain the sequence that begins

1, 1, 3, 6, 14, 33, 79, 194, 482, 1214, 3090, 7936, 20544, . . .

with generating function

1

1− x− 2x2
C

(

x3

(1− x− 2x2)2

)

=
1− x− 2x2 −

√
1− 2x− 3x2 + 4x4

2x3
.

This sequence has a Hankel transform that begins

1, 2, 1,−7,−16,−57,−113, 670, 3983, 23647, . . . .

This is a (1,−2) Somos-4 sequence, essentially A178622, which is associated with the elliptic
curve y2 − 3xy − y = x3 − x. We note further that the sequence that begins

1, 2, 1, 1, 3, 6, 14, 33, 79, 194, 482, 1214, 3090, 7936, 20544, . . .

or A025243 counts the number of Dyck (n − 1)-paths that contain no DUDU ’s and no
UUDD’s for n ≥ 3.
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7 Elliptic pseudo-involutions

In this section, we consider the methods outlined above, as applied to a particular one-
parameter family of elliptic curves. We obtain a result concerning what may be called
“elliptic” pseudo-involutions in the Riordan group, as each such pseudo-involution is asso-
ciated in a unique way with an elliptic curve of the type discussed below. Prior to this, we
need to establish the following result.

Proposition 18. The generating function

g(x) =
1

1− ax− bx2
C

( −x2(b+ cx)

(1− ax− bx2)2

)

is involutory.

Proof. We must establish that

(g(x),−xg(x))−1 = (g(x),−xg(x)).

Now

(g(x),−xg(x))−1 =

(

1

g (Rev(−xg(x)))
,Rev(−xg(x))

)

.

Thus a first requirement is to show that

Rev(−xg(x)) = −xg(x).

This follows from solving the equation

−u

1− au− bu2
C

( −u2(b+ cu)

(1− au− bxu2)2

)

= x,

where we take the solution that satisfies u(0) = 0. We next require that

g(x) =
1

g (Rev(−xg(x)))
,

or that
g(x)g(−xg(x)) = 1.

Equivalently, we must show that

xg(x)g(−xg(x)) = x.

Now

x = (Rev(−xg(x)))(−xg(x))

= (−xg(x))(−xg(x))

= xg(x)g(−xg(x)).
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Proposition 19. The elliptic curve

E : y2 − axy − y = x3 − x

defines a pseudo-involution (g(x), xg(x)) in the Riordan group whose B-sequence is given by

B(x) =
2− a+ (1− 3a+ a2)x

1 + (1− a)x
.

Proof. We solve the quadratic (in y) given by

y2 − axy − y = x3 − x

to obtain

y =
1 + ax−

√

1 + 2(a− 2)x+ a2x2 + 4x3

2
.

This expands to a sequence that begins

0, 1, 1− a, 1− 3a+ a2, . . . .

We remove the first two terms, giving the generating function
(

1 + ax−
√

1 + 2(a− 2)x+ a2x2 + 4x3

2
− x

)

/x2

=
1− (2− a)x−

√

1 + 2(a− 2)x+ a2x2 + 4x3

2x2
.

We now form the fraction

1

1− x− x2

(

1−(2−a)x−
√

1+2(a−2)x+a2x2+4x3

2x2

) =
2

√

1 + 2(a− 2)x+ a2x2 + 4x3
.

We revert this generating function 2x√
1+2(a−2)x+a2x2+4x3

and divide the result by x to get

1 + ax−
√

1 + 2ax+ a2x2 − 4x3 + 4(1− a)x4

2x3
.

We let

f(x) =
1

1− x2

(

1+ax−
√

1+2ax+a2x2−4x3+4(1−a)x4

2x3

) ,

or

f(x) =
2x

√

1 + 2ax+ a2x2 − 4x3 + 4(1− a)x4 + (2− a)x− 1
.

20



Finally, we form

g(x) =

(

1

1 + (a− 1)x
,

−x

1 + (a− 1)x

)

· f(x)(1 + (a− 1)x)− 1

xf(x)(ax+ a− 1)
.

This gives us

g(x) =

√

1 + 2(a− 2)x+ (a2 − 6a+ 6)x2 + 2a(3− a)x3 + (a− 1)2x4 + (1− a)x2 + (2− a)x− 1

2x2((a2 − 3a+ 1)x+ a− 1)
.

This can now be put in the form

g(x) =
1

1− (2− a)x− (1− a)x2
C

(−x2((1− a)− (1− 3a+ a2)x)

(1− (2− a)x− (1− a)x2)2

)

.

Comparing this with
1

1− αx− βx2
C

( −x2(β + γx)

(1− αx− βx2)2

)

we see that this shows that g(x) is an involutory generating function associated with the
B-sequence given by

B(x) =
2− a+ (1− 3a+ a2)x

1 + (1− a)x
.

The B sequence with generating function B(x) = 2−a+(1−3a+a2)x
1+(1−a)x

begins

2−a,−1,−(a−1),−(a−1)2,−(a−1)3,−(a−1)4,−(a−1)5,−(a−1)6,−(a−1)7,−(a−1)8, . . . .

The sequence gn begins

1, 2− a, a2 − 4a+ 4,−a3 + 6a2 − 12a+ 7, a4 − 8a3 + 24a2 − 29a+ 10, . . . ,

and it has a Hankel transform |gi+j|0≤i,j≤n which begins

1, 0,−1,−1, 1− a,−a2 + 3a− 1, . . . .

The sequence
1, 1, a− 1, a2 − 3a+ 1,−a3 + 4a2 − 6a+ 2, . . .

is in fact the Hankel transform of the sequence whose generating function is f(x). This
Hankel transform is a (1, 1− a) Somos-4 sequence [2, 5].

a bn g(x)

0 2,−1, 1,−1, 1,−1, . . .
√
1−4x+6x2+x4+x2+2x−1

2x2(1−x)

1 1,−1, 0, 0, 0, . . .
√
1−2x+x2+4x3+x−1

2x3

2 0,−1,−1,−1, . . .
√
1−2x2+4x3+x4−x2−1

2x2(x−1)

3 −1,−1,−2,−4,−8, . . . 1+x+2x2−
√
1+2x−3x2+4x4

2x2(x+2)

4 −2,−1,−3,−9,−27, . . . 1+2x+3x2−
√
1+4x−2x2−8x3+9x4

2x2(5x+3)

5 −3,−1,−4,−16, . . . 1+3x+4x2−
√
1+6x+x2−20x3+16x4

2x2(11x+4)
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Example 20. We take the case of a = −3. Thus we start with the elliptic curve

E : y2 + 3xy − y = x3 − x.

We find that

g(x) =

√
1− 10x+ 33x2 − 36x3 + 16x4 + 4x2 + 5x− 1

2x2(4− 19x)
,

which expands to give the sequence gn that begins

1, 5, 25, 124, 610, 2979, 14457, 69784, 335330, 1605334, 7662014, . . . .

The corresponding Riordan pseudo-involution then begins

























1 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0
25 10 1 0 0 0 0 0
124 75 15 1 0 0 0 0
610 498 150 20 1 0 0 0
2979 3085 1247 250 25 1 0 0
14457 18258 9300 2496 375 30 1 0
69784 104580 64512 21755 4370 525 35 1

























,

which has a production matrix that begins





















5 1 0 0 0 0 0
0 5 1 0 0 0 0
−1 0 5 1 0 0 0
5 −1 0 5 1 0 0

−21 5 −1 0 5 1 0
84 −21 5 −1 0 5 1

−326 84 −21 5 −1 0 5





















.

For this case, we have

B(x) =
5 + 19x

1 + 4x
.

The Hankel transform of gn begins

1, 0,−1,−1, 4,−19,−83,−1112, 12171, . . .

corresponding to the (1, 4) Somos-4 sequence that begins

1, 1,−4, 19, 83, 1112,−12171, . . . .

22



Figure 3: The elliptic curve y2 + 3xy − y = x3 − x

Example 21. When a = 0, we find that

g(x) =

(

1

1− 2x− x2
,

x2(x− 1)

(1− 2x− x2)2

)

· C(x).

This expands to give the sequence gn that begins

1, 2, 4, 7, 10, 9,−6,−53,−151,−284,−301, 278, 2482, 7717, . . . .

This sequence has a Hankel transform that begins

1, 0,−1,−1, 1,−1,−2, 1, 3, 5, . . . ,

where the sequence
1, 1,−1, 1, 2,−1,−3,−5, . . .

which is A006769 is the elliptic divisibility sequence [18] associated with the elliptic curve

E : y2 − y = x3 − x.

This is a (1, 1) Somos-4 sequence. It is the Hankel transform of the expansion of

f(x) =
2x√

1− 4x3 + 4x4 + 2x− 1
.

This expansion begins

1, 0, 1,−1, 1,−1, 0, 0, 0,−2, 4,−4,−1, 11,−16, . . . .
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We note finally that the generating function

g(x) =
1

1− (2− a)x− (1− a)x2
C

(−x2((1− a)− (1− 3a+ a2)x)

(1− (2− a)x− (1− a)x2)2

)

can be put in the form of the continued fraction [3, 17]

1

1 + (a− 2)x+ (a− 1)x2 −
x2(a− 1 + (1− 3a+ a2)x)

1 + (a− 2)x+ (a− 1)x2 − · · ·

.

8 Conclusions

In this note, we have exhibited a three-parameter family of involutory generating functions
defined by the B-sequence with generating function

B =
a− cx

1 + bx
.

A special feature of this family is that, via Hankel transforms, it is closely linked to Somos-4
sequences. In turn, these Somos sequences are linked to elliptic curves. We have shown that
it is possible in certain circumstances to start with an elliptic curve, and by a sequence of
transformations, arrive at an involutory power series. In particular, we have shown that the
one-parameter family of elliptic curves E : y2−axy−y = x3−x gives rise to a corresponding
family of Bell pseudo-involutions in the Riordan group.
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