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Abstract

Given a polynomial f(x1, x2, . . . , xt) in t variables with integer coefficients and
a positive integer n, let α(n) be the number of integers 0 ≤ a < n such that the
polynomial congruence f(x1, x2, . . . , xt) ≡ a (mod n) is solvable. We describe a method
that allows us to determine the function α associated with polynomials of the form
c1x

k
1 + c2x

k
2 + · · ·+ ctx

k
t . Then, we apply this method to polynomials that involve sums

and differences of squares, mainly to the polynomials x2+y2, x2−y2, and x2+y2+z2.

1 Introduction

For a polynomial f(x1, x2, . . . , xt) in t variables with integer coefficients, consider the poly-
nomial congruence

f(x1, x2, . . . , xt) ≡ a (mod n) (1)
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where n is a positive integer and a is an integer. Since the congruence (1) has solution for a
if and only if it has solution for a+ qn for any integer q, we can assume that a belongs to a
complete residue system modulo n. We will use the system of residues In = {0, 1, , . . . , n−1}.

For any positive integer n, we set An to be the set of all a ∈ In for which (1) has solution.
We define α(n) = |An|, where |An| stands for the size of An. The following natural questions
about the sets An and their sizes α(n) guide our work:

1. Give explicit descriptions of An for all n.

2. Find a formula for α(n).

3. Determine or describe all the values of n such that α(n) = n. This is equivalent to
determine if the polynomial f(x1, x2, . . . , xt) is surjective when it is considered as a
map f : Zt

n → Zn. When this map is surjective, we will say that f(x1, x2, . . . , xt) is
surjective on n.

Some results related to these questions with respect to the polynomials x2+y2 and x3+y3

are found in [2, 3, 4].
Harrington, Jones, and Lamarche [4] solved the problem of characterizing all positive

integers n such that every element in the ring Zn can be represented as the sum of two
squares in Zn, or, in our terms, that x2 + y2 is surjective on n. Such integers n are those
satisfying the following two conditions:

(i) n 6≡ 0 (mod 4) and

(ii) n 6≡ 0 (mod p2) for any prime p ≡ 3 (mod 4) with n ≡ 0 (mod p).

They also solved the problem of finding all positive integers n such that every element in
Zn is expressible as a sum of two squares without allowing zero as a summand. We are
interested in the case where zero is allowed as a summand because in that case the sizes
α(n) define a multiplicative function.

Burns [3] considered the general problem of representing elements of Zn as the sum of two
squares. He determined the sizes of the sets Apn associated with x2+ y2 as follows: First, he
gave explicit descriptions of the sets Apn , and then, found the size of Apn , that is, α(n). One
key property Burns uses is that the numbers α(n) define a multiplicative function, which
implies that for finding α(n) for all positive integers n, it suffices to find α(pn) where p is
prime and n ≥ 1.

Explicit formulas for the numbers α(n) associated with the polynomial x3+y3 were found
by Broughan [2]. Broughan considered the fraction δ(n) = α(n)/n instead of α(n). There is
no explicit description of the sets Apn associated with x3 + y3, but some properties of δ(n)
give, essentially, recursive formulas for finding δ(pn). Again, as in [3], the associated function
α is multiplicative.

For a general polynomial f(x1, x2, . . . , xt), if every nonnegative integer is of the form
f(x1, x2, . . . , xt), then α(n) = n for every n ≥ 1. This is the case for some polynomials as
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x2 + y2 + z2 + w2 or x2 + y2 − z2. There are theorems that characterize all nonnegative
integers that are of the form f(x1, x2, . . . , xt), for a given polynomial f(x1, x2, . . . , xt). Three
well known theorems that are important for us are the following.

Theorem 1. (Euler) A positive integer n is expressible as a sum of two squares if and only
if each prime of the form 4k + 3 appears to an even exponent in the prime decomposition of
n.

Theorem 2. (Gauss-Legendre) A nonnegative integer is the sum of three squares if and only
if it is not of the form 4a(8b+ 7).

Theorem 3. (Lagrange) Every nonnegative integer is expressible as the sum of four squares.

A consequence of Lagrange’s theorem is that for t ≥ 4, the polynomial x2
1+x2

2+ · · ·+x2
t is

surjective on n for all n ≥ 1. Thus, concerning sums of squares, we are interested in finding
formulas for α(n) and descriptions of the sets An associated with the polynomials x2 + y2

and x2 + y2 + z2.
We prove that for a general polynomial f(x1, x2, . . . , xt), the sizes α(n) define a multi-

plicative function. Therefore, for determining α(n) for all n, it suffices to determine α(pn)
for any prime number p and n ≥ 1. This makes us focus on studying the sets Apn , where p
is a prime number and n ≥ 1.

In the case of polynomials of the form c1x
k
1 + c2x

k
2 + · · ·+ ctx

k
t , we prove some structural

results that will permit us to find recurrence formulas for α(pn), for a given prime p and
n ≥ 1. Then, we apply these results to find explicit formulas for α(pn), where α is the
function associated with one of the polynomials x2+ y2, x2− y2, and x2+ y2+ z2. With this
method, we deduce some of the results related to x2 + y2 proved in [3].

The polynomials x2− y2 and x2+ y2+ z2 share the following property: if n = 2sm where
s ≥ 0 and m is odd, then α(n) = α(2s)m.

In the case of x2−y2, we show that α(2) = 2 and α(2s) = 3 ·2s−2 for s ≥ 2. In particular,
x2 − y2 is surjective on n if and only if n 6≡ 0 (mod 4).

For the polynomial x2 + y2 + z2, we find the explicit formula

α(2s) =

{

1
3
(5 · 2s−1 + 1), if s is odd;

2
3
(5 · 2s−2 + 1), if s is even.

It follows, from this formula, that x2+y2+ z2 is surjective on n if and only if n 6≡ 0 (mod 8).

2 The multiplicative family associated with a polyno-

mial

For an arbitrary family of nonempty sets {An}n∈Z+ , where An ⊆ In for all n, we define
the function α : Z+ → Z

+ associated with {An}n by α(n) = |An| for all n. Note that
α(1) = 1. The first thing we do is to define suitable conditions on the family {An}n so that
the associated function α is multiplicative.
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2.1 Multiplicative families and polynomials

If n and m are integers such that 1 ≤ m ≤ n, we define

An(m) := {s ∈ In : s ≡ a (mod m) for some a ∈ Am}

= {a+ jm : a ∈ Am, 0 ≤ j < n/m}.

We call a family {An}n multiplicative, if whenever n = m1m2 with m1 and m2 relatively
prime, the equality An = An(m1)∩An(m2) holds. This condition on the family of sets {An}n
guaranties that the associated function α is multiplicative.

Lemma 4. If {An}n is a multiplicative family, then the associated function α is multiplica-
tive.

Proof. Let n = m1m2 where m1 and m2 are relatively prime. We decompose An(m1) as the
disjoint union of subsets B(a,m1) := {a + jm1 : 0 ≤ j < m2}, where a ∈ Am1

. Similarly,
An(m2) is the disjoint union of subsets B(b,m2) = {b+ jm2 : 0 ≤ j < m1}, where b ∈ Am2

.
Then,

An(m1) ∩ An(m2) =
⋃

a∈Am1
,b∈Am2

(B(a,m1) ∩B(b,m2)).

Note that c ∈ B(a,m1) ∩ B(b,m2) if and only if c ≡ a (mod m1) and c ≡ b (mod m2);
moreover, by the Chinese remainder theorem, there is exactly one solution in In of the system
of congruences x ≡ a (mod m1), x ≡ b (mod m2). This means that B(a,m1) ∩ B(b,m2)
has exactly one element. Since the sets B(a,m1) ∩ B(b,m2), for a ∈ Am1

, b ∈ Am2
, are

pairwise disjoint, we have |An(m1) ∩ An(m2)| = |Am1
| · |Am2

|. Now, if the family {An}n is
multiplicative, then we have α(n) = |An| = |An(m1)∩An(m2)| = |Am1

|·|Am2
| = α(m1)α(m2).

Thus, the associated function α is multiplicative.

Now we define two conditions on {An}n that will be sufficient to show that {An}n is
multiplicative.

MT1. For positive integers m and n, if m divides n and a ∈ An, then a mod m ∈ Am,
where a mod m is the residue of a when a is divided by m.

MT2. If n = m1m2 where m1 and m2 are relatively prime, and if a1 ∈ Am1
, a2 ∈ Am2

and a is the unique solution in In to the system of congruences x ≡ a1 (mod m1), x ≡
a2 (mod m2), then a ∈ An.

Note that if {An}n satisfies condition MT1 and m divides n, then An ⊆ An(m).

Lemma 5. If {An}n satisfies MT1 and MT2, then {An}n is multiplicative.

Proof. Let us suppose that n = m1m2 for relatively prime m1 and m2. Since {An}n satisfies
MT1, we have An ⊆ An(m1) ∩ An(m2). To prove the other inclusion, let us take a ∈
An(m1) ∩ An(m2). Then, there exist a1 ∈ Am1

and a2 ∈ Am2
such that a ≡ a1 (mod m1)

and a ≡ a2 (mod m2) and, since {An}n satisfies MT2, it follows that a ∈ An. This shows
that An = An(m1) ∩ An(m2). Hence, {An}n is multiplicative.
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If we assume that the family of sets {An}n satisfy conditions MT1 and MT2, then, by
Lemmas 4 and 5, the associated function α is multiplicative. Thus, to determine the values
of α on all positive integers, it is enough to determine α(pn) for all primes p, and n ≥ 1.
This leads us to study the sets Apn for powers of primes pn.

Condition MT1 on the family {An}n implies that if p is prime and n ≥ 1, then Apn ⊆
Apn(p

n−1). For n ≥ 1, we define Npn := Apn(p
n−1) \ Apn and call these sets, the N -sets of

the prime p.

Lemma 6. Let p be a prime number and n ≥ 1. Then

α(pn) = pα(pn−1)− |Npn|.

Proof. The size of Apn(p
n−1) is p · |Apn−1| = pα(pn−1). Then

α(pn) = |Apn(p
n−1) \Npn| = |Apn(p

n−1)| − |Npn| = pα(pn−1)− |Npn|.

Now, we focus on the sizes of the sets Npn for n ≥ 1.

We are interested in those families of sets {An}n, where An is the set of elements a ∈ In
such that the congruence f(x1, x2, . . . , xt) ≡ a (mod n) is solvable. We refer to the function
α associated with this family {An}n, as the function associated with f(x1, x2, . . . , xt).

Proposition 7. The family {An}n associated with a polynomial f(x1, x2, . . . , xt) is multi-
plicative. In particular, the function α associated with f(x1, x2, . . . , xt) is multiplicative.

Proof. The family {An}n associated with f(x1, x2, . . . , xt) trivially satisfies MT1. Towards
MT2, assume that f(a1, a2, . . . , at) ≡ a1 (modm1) and f(b1, b2, . . . , bt) ≡ a2 (modm2), where
ai, bj ∈ Z, m1 andm2 are relatively prime, n = m1m2, ai ∈ Imi

, i = 1, 2. Let a be the only so-
lution in In of the system of congruences x ≡ a1 (mod m1), x ≡ a2 (mod m2). By the Chinese
remainder theorem, for each j = 1, 2, . . . , t, there exists cj ∈ Z such that cj ≡ aj (mod m1)
and cj ≡ bj (mod m2). Since f is a polynomial, f(c1, c2, . . . , ct) ≡ f(a1, a2, . . . , at) ≡ a1 ≡
a (mod m1) and f(c1, c2, . . . , ct) ≡ f(b1, b2, . . . , bt) ≡ a2 ≡ a (mod m2). It follows that
f(c1, c2, . . . , ct) ≡ a (mod n), that is, a ∈ An. The result follows by Lemmas 4 and 5.

Remark 8. Let us consider r families {A
(i)
n }n, i = 1, 2, . . . , r, where A

(i)
n ⊆ In. For each

n ≥ 1, we set An :=
⋂r

i=1 A
(i)
n . Assume that An 6= ∅ for all n. If the r families satisfy MT1

(resp. MT2), then the family {An}n satisfy MT1 (resp. MT2).

When {A
(i)
n }n is the family associated with some polynomial fi(x

(i)
1 , . . . , x

(i)
ti
), and the

intersections An =
⋂r

i=1 A
(i)
n are nonempty, the family {An}n is multiplicative. In this case,

the associated function α counts the number of elements a ∈ In such that the system of
congruences

fi(x
(i)
1 , . . . , x

(i)
ti
) ≡ a (mod n), i = 1, 2, . . . , r

is solvable.
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2.2 The multiplicative family associated with c1x
k
1 + c2x

k
2 + · · ·+ ctx

k
t

We now study the multiplicative function α and the sets Apn associated with a polynomial
of the form f(x1, x2, . . . , xt) = c1x

k
1 + c2x

k
2 + · · · + ctx

k
t , where c1, c2, . . . , ct ∈ Z, k ≥ 1. To

determine the value of α at prime powers, we need to understand the sets Apn and Npn . The
following lemmas give useful properties of these sets.

Lemma 9. Let {An}n be the family associated with the polynomial c1x
k
1 + c2x

k
2 + · · ·+ ctx

k
t .

Let p be a prime number that does not divide c1, c2, . . . , ct and let s be the highest nonnegative
integer such that ps divides k. Suppose a ∈ Apn and

c1m
k
1 + c2m

k
2 + · · ·+ ctm

k
t ≡ a (mod pn),

where m1,m2 . . . ,mt ∈ Z, and suppose that at least one mi is not divisible by p. If n ≥ 2s+1,
then a+ jpn ∈ Apn+1 for all j such that 0 ≤ j < p.

Proof. Suppose that c1m
k
1 + c2m

k
2 + · · ·+ ctm

k
t ≡ a (mod pn). Then, there is some integer w

such that c1m
k
1 + c2m

k
2 + · · · + ctm

k
t = a + wpn. Assume that p does not divide m1. Write

k = psk0, where s ≥ 0 and p does not divide k0. Let 0 ≤ j < p. Since p does not divide
c1m

k−1
1 k0, the congruence c1m

k−1
1 k0x+ w ≡ j (mod p) has solution for x in Z; so, there are

integers d and e such that c1m
k−1
1 k0d+ w = j + ep. By the binomial theorem,

(m1 + dpn−s)k = mk
1 + kmk−1

1 dpn−s +
∑

2≤t≤k

(

k

t

)

mk−t
1 dtpt(n−s)

= mk
1 +mk−1

1 k0dp
n +

∑

2≤t≤k

(

k

t

)

mk−t
1 dtpt(n−s).

Since n ≥ 2s+ 1, for t ≥ 2 we have t(n− s) ≥ 2(n− s) = n+ (n− 2s) ≥ n+ 1. Then

(m1 + dpn−s)k ≡ (mk
1 +mk−1

1 k0dp
n) (mod pn+1).

Therefore, modulo pn+1, we have

c1(m1 + dpn−s)k + · · ·+ ctm
k
t ≡ (c1m

k
1 + · · ·+ ctm

k
t ) + c1m

k−1
1 k0dp

n

≡ a+ wpn + c1m
k−1
1 k0dp

n

≡ a+ (w + c1m
k−1
1 k0d)p

n

≡ a+ jpn + epn+1

≡ a+ jpn.

Hence, a+ jpn ∈ Apn+1 .

Lemma 10. Let p be a prime number and consider the N -sets Npn associated with the
polynomial c1x

k
1 + c2x

k
2 + · · ·+ ctx

k
t . If p does not divide c1, . . . , ct, then

Npn ⊆ {pka : a ∈ Npn−k},

for every n > k + 1.
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Proof. If b ∈ Npn , then b ∈ Apn(p
n−1) and thus, b = c+jpn−1 for some c ∈ Apn−1 and 0 ≤ j <

p. Since c ∈ Apn−1 , there are integers m1, . . . ,mt such that c1m
k
1+ · · ·+ctm

k
t ≡ c (mod pn−1).

Note that if ps is the highest power of p that divides k, then k ≥ ps ≥ 2s ≥ 2s; thus, if
n > k + 1, then n− 1 ≥ 2s+ 1. Therefore, if some mi is not divisible by p, then by Lemma
9, b = c + jpn−1 ∈ Apn , a contradiction. It follows that all the mi are divisible by p. Since
n − 1 > k, we have pk divides c and we get the congruence c1(m1/p)

k + · · · + ct(mt/p)
k ≡

c/pk (mod pn−k−1). Hence c/pk ∈ Apn−k−1 .
We claim that c/pk + jpn−k−1 ∈ Npn−k . On the contrary, if c1q

k
1 + · · · + ctq

k
t ≡ c/pk +

jpn−k−1 (mod pn−k) for some integers q1, . . . , qt, then by multiplying by pk we obtain that
c1(pq1)

k + · · ·+ ct(pqt)
k ≡ c+ jpn−1 (mod pn), that is, b = c+ jpn−1 ∈ Apn , a contradiction.

Thus, if a := c/pk + jpn−k−1, then a ∈ Npn−k and b = c + jpn−1 = pka. This ends the
proof.

We now define a condition on the prime p and the polynomial, in such a way that the
reverse inclusion in Lemma 10 holds. Most of the cases we are interested in satisfy this
condition. When this condition fails, we must find another way to tackle the problem of
finding α(pn) for n ≥ 1.

Let p be a prime and f(x1, . . . , xt) be any polynomial with coefficients in Z. We say
that a non-negative integer e is an exponent of p in f(x1, . . . , xt), if whenever p

e divides an
integer of the form f(m1, . . . ,mt), then the quotient f(m1, . . . ,mt)/p

e is also of the form
f(q1, . . . , qt) for some integers q1, . . . , qt.

Lemma 11. The following statements are true.

1. For every prime number p and k ≥ 1, k is an exponent of p in xk.

2. If p = 2 or p is prime with p ≡ 1 (mod 4), then 1 is an exponent of p in the polynomial
x2 + y2.

3. If p is prime and p ≡ 3 (mod 4), then 2 is an exponent of p in the polynomial x2 + y2.

4. The integer 2 is an exponent of the prime number 2 in the polynomial x2 + y2 + z2.

Proof. (1) If pk divides mk, then p divides m and mk/pk = (m/p)k.
(2) If p divides an integer of the form x2 + y2, then (x2 + y2)/p is a sum of two squares

by Theorem 1.
(3) If p ≡ 3 (mod 4) divides an integer of the form x2 + y2, then (x2 + y2)/p2 is a sum of

two squares by Theorem 1.
(4) Suppose 4 divides m2

1 +m2
2 +m2

3 for integers m1,m2 and m3. Then m2
1 +m2

2 +m2
3 is

even, which implies that two out of the three integers m1,m2 and m3 are odd and one is even,
or the three, m1,m2 and m3 are even. In the first case, say m1 = 2w1 +1,m2 = 2w2 +1 and
m3 = 2w3. Then, we have m

2
1+m2

2+m2
3 = 4(w2

1+w2
2+w1+w2+w2

3)+2, which is not divisible
by 4. Hence, m1,m2 and m3 are even. So, we can write m1 = 2w1,m2 = 2w2,m3 = 2w3 and,
therefore, m2

1 +m2
2 +m2

3 = 4(w2
1 + w2

2 + w2
3). This ends the proof.
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Note that if e is an exponent of a prime p in a polynomial f(x1, x2, . . . , xt), then any
positive multiple of e is also an exponent of p in f(x1, x2, . . . , xt).

Lemma 12. If an exponent e of a prime p in the polynomial c1x
k
1 + · · · + ctx

k
t divides k,

then {pka : a ∈ Npn−k} ⊆ Npn for n > k.

Proof. If pka ∈ Apn where a ∈ Npn−k , then there are integers m1, . . . ,mt such that c1m
k
1 +

· · ·+ctm
k
t ≡ pka (mod pn). Since e divides k, we have k is an exponent of p in c1x

k
1+· · ·+ctx

k
t .

Then, we can write (c1m
k
1 + · · · + ctm

k
t )/p

k = c1q
k
1 + · · · + ctq

k
t for some integers q1, . . . , qt.

Therefore, c1q
k
1 + · · · + ctq

k
t ≡ a (mod pn−k), that is, a ∈ Apn−k , a contradiction. Thus,

pka ∈ Npn for all a ∈ Npn−k .

An application of Lemma 10 and 12 tells us that if there is an exponent of p in c1x
k
1 +

c2x
k
2 + · · ·+ ctx

k
t that divides k, then for all n > k + 1 we have

Npn = {pka : a ∈ Npn−k}. (2)

For a set of integers A, mA denote the set {ma : a ∈ A}. Then Npn = pkNpn−k for all
n > k + 1. Therefore, if n = qk + r, where 2 ≤ r ≤ k + 1, we have

Npn = pkNpn−k = p2kNpn−2k = · · · = pkqNpr . (3)

We set nr := |Npr |, for 2 ≤ r ≤ k+1. By (3), it follows that if n > 1 and n ≡ r (mod k),
then |Npn| = |Npr | = nr.

Proposition 13. Let p be a prime and k ≥ 1. Suppose that some exponent e of p in the
polynomial c1x

k
1 + · · ·+ ctx

k
t divides k, and p does not divide c1, . . . , ct. Then

α(pn) = pα(pn−1)− nr (4)

for all n > 1 such that n ≡ r (mod k).

Proof. The result follows from the fact that |Npn| = |Npr | = nr and Lemma 6.

It is not difficult to deduce, from (4), the following explicit formulas for α(pn).

Corollary 14. Let p be a prime and k be a positive integer. Suppose that some exponent e
of p in the polynomial c1x

k
1 + · · ·+ ctx

k
t divides k, and p does not divide c1, . . . , ct. Let n be

a positive integer.

(i) If n ≡ 1 (mod k), then

α(pn) = pn−1α(p)−
pn−1 − 1

pk − 1

k+1
∑

j=2

njp
k−j+1;
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(ii) If n ≡ r (mod k) where 2 ≤ r ≤ k, then

α(pn) = pn−1α(p)−
pn−1 − pr−1

pk − 1

k+1
∑

j=2

njp
k−j+1 −

r
∑

j=2

njp
r−j.

For the sets Npr with 2 ≤ r ≤ k + 1, we have the following result.

Proposition 15. Consider the N -sets associated with the polynomial c1x
k
1+c2x

k
2+ · · ·+ctx

k
t .

Let p be a prime number that does not divide c1, . . . , ct and let ps be the highest power of p
that divides k. If 2s+ 2 ≤ r ≤ k + 1, then

Npr ⊆ {jpr−1 : 0 < j < p}.

Moreover,
Npk+1 ⊆ {jpk : j /∈ Ap, 0 < j < p},

and if some exponent of p in c1x
k
1 + c2x

k
2 + · · ·+ ctx

k
t divides k, then

Npk+1 = {jpk : j /∈ Ap, 0 < j < p}.

Proof. Recall that Apr ⊆ Apr(p
r−1) and Npr = Apr(p

r−1)\Apr . We show that a+jpr−1 ∈ Apr

for any a ∈ Apr−1 with a 6= 0 and 0 ≤ j < p. In fact, if a ∈ Apr−1 and a 6= 0, then there are
integers m1, . . . ,mt such that

c1m
k
1 + c2m

k
2 + · · ·+ ctm

k
t ≡ a (mod pr−1).

If p divides all the mi, then pr−1 divides a, since r − 1 ≤ k. But 0 ≤ a < pr−1 and
a ≡ 0 (mod pr−1) imply a = 0, a contradiction. We conclude that some mi is not divisible
by p. So, by Lemma 9, we have a+ jpr−1 ∈ Apr for any 0 ≤ j < p.

This implies that if a + jpr−1 ∈ Npr , then a = 0; therefore, all elements in Npr have the
form jpr−1, where 0 ≤ j < p. Thus, we have Npr ⊆ {jpr−1 : 0 ≤ j < p}. Since 0 /∈ Npr , we
conclude that Npr ⊆ {jpr−1 : 0 < j < p}.

In the case where r = k+1, if j ∈ Ap, 0 < j < p, then c1m
k
1+c2m

k
2+· · ·+ctm

k
t ≡ j (mod p)

for some integers m1, . . . ,mt. Hence, c1(pm1)
k+ c2(pm2)

k+ · · ·+ ct(pmt)
k ≡ jpk (mod pk+1),

and this shows that jpk ∈ Apk+1 . Thus, Npk+1 ⊆ {jpk : j /∈ Ap, 0 < j < p}.
Finally, if we have c1m

k
1 + c2m

k
2 + · · ·+ ctm

k
t ≡ jpk (mod pk+1) for some m1,m2, . . . ,mt,

and (c1m
k
1 + c2m

k
2 + · · ·+ ctm

k
t )/p

k = c1q
k
1 + c2q

k
2 + · · ·+ ctq

k
t for some integers q1, q2, . . . , qt,

then c1q
k
1 + c2q

k
2 + · · ·+ ctq

k
t ≡ j (mod p), which shows that j ∈ Ap if and only if jpk ∈ Apk+1 .

Hence, Npk+1 = {jpk : j /∈ Ap, 0 < j < p}.

If p does not divide k in Proposition 15, then s = 0 and the inclusion Npr ⊆ {jpr−1 : 0 <
j < p} holds for 2 ≤ r ≤ k + 1.

To determine the values α(pn) for all n ≥ 1 (if the conditions of Proposition 13 hold),
our strategy is composed by the following steps:

9



1. Determine α(p) = |Ap|. Here, we have to determine Ap separately.

2. Determine the sets Npr for r = 2, . . . , k + 1. Then nr = |Npr | for r = 2, . . . , k + 1

3. We apply (4) to obtain a recurrence formula for α(pn).

4. We find an explicit formula for α(pn) from the recurrence formula in step (3), or using
Corollary 14.

2.3 The polynomial xk

We illustrate our ideas by considering the multiplicative function α of the polynomial f(x) =
xk, where k ≥ 1 is a given integer. For simplicity, we assume that p is any prime that does
not divide k.

The steps we follow are

1. Determine Ap and α(p).

2. Determine Np2 , . . . , Npk+1 and the numbers n2, . . . , nk+1.

3. Determine the recurrence given by (4).

4. Give explicit formulas for α(pn).

For the first step, we have Ap is the set of elements a ∈ Ip = {0, 1, . . . , p − 1} such
that the congruence xk ≡ a (mod p) is solvable. If a 6= 0, then a is a k-th power residue
modulo p. Therefore, we have Ap = {a ∈ Ip : a is a k-th power residue modulo p} ∪ {0}. If
d = gcd(k, p− 1), then there are (p− 1)/d k-th power residues modulo p and so

α(p) = (p− 1)/d+ 1. (5)

Now, for the N -sets Np2 , . . . , Npk+1 we have the following result.

Lemma 16. Assume that p does not divide k. For r = 2, . . . , k,

Npr = {jpr−1 : 0 < j < p}.

Moreover
Npk+1 = {jpk : 0 < j < p and j /∈ Ap}.

Proof. Since p does not divide k and k is an exponent of p in xk, by Proposition 15 we have
Npr ⊆ {jpr−1 : 0 < j < p} for r = 2, . . . , k and Npk+1 = {jpk : 0 < j < p and j /∈ Ap}.

To prove that {jpr−1 : 0 < j < p} ⊆ Npr when 2 ≤ r ≤ k, let us take 0 < j < p and
assume that jpr−1 ∈ Apr . Then mk ≡ jpr−1 (mod pr) for some integer m. So, p divides
m and since k ≥ r, we deduce that pr divides jpr−1. Therefore, p divides j, which is a
contradiction. Hence jpr−1 ∈ Npr .

10



For r = 2, . . . , k + 1, we set nr = |Npr |. From Lemma 16 and (5) it follows that

nr =

{

p− 1, for r = 2, . . . , k;

(d− 1)(p− 1)/d, for r = k + 1.

By Proposition 13 and Corollary 14 we get our recurrence formula, and it is not difficult
to deduce the explicit formula in the following proposition.

Proposition 17. Let p be a prime, n, k ≥ 1 and d = gcd(k, p− 1). If α is the multiplicative
function associated with the polynomial xk, then we have the following recurrence formula

α(pn) =

{

pα(pn−1)− (d− 1)(p− 1)/d, if n ≡ 1 (mod k);

pα(pn−1)− p+ 1, if n 6≡ 1 (mod k).

Moreover, if n ≡ r (mod k) where 1 ≤ r ≤ k, then

α(pn) =
pn+k−1 − pr−1

d ·
(

pk−1
p−1

) + 1. (6)

Remark 18. We can determine α(pn) in the general case (without the restriction that p does
not divide k) in the following way. Let P (k,m) be the set of k-th power residues modulo
m. We have that, for 0 < a < pn, the congruence xk ≡ a (mod pn) is solvable if and only
if there exist r ≥ 0 such that rk ≤ n and b ∈ P (k, pn−rk) such that a = prkb. To see this,
if xk ≡ a (mod pn) is solvable and p does not divide a, we take r = 0 and b = a. In case p
divides a, we find that p divides x and the congruence (x/p)k ≡ a/pk (mod pn−k) is solvable.
If p does not divide a/pk, we take r = 1 and b = a/pk. If we continue in this way we obtain
the desired result. It follows that

Apn = {0} ∪

⌊n

k
⌋

⋃

r=0

prkP (k, pn−rk),

and therefore,

α(pn) = 1 +

⌊n

k
⌋

∑

r=0

|P (k, pn−rk)|.

For instance, assume p is odd, k = ps where s ≥ 1 and k does not divide n. Then, for r ≥ 0
we have

|P (k, pn−rk)| =
pn−rk−1(p− 1)

gcd(pn−rk−1(p− 1), ps)
=

{

p− 1, if n− rk − 1 ≤ s;

pn−rk−s−1(p− 1), if n− rk − 1 > s.

See, for example, [5, Chapter 4, Sec. 2]. So, we can write

α(pn) = 1 +
∑

0≤r<⌈n−s−1

k
⌉

pn−rk−s−1(p− 1) +
∑

⌈n−s−1

k
⌉≤r≤⌊n

k
⌋

(p− 1).
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3 Sums and differences of squares

In this section we apply our ideas to the polynomials x2 + y2, x2 + y2 + z2 and x2 − y2. In
each case, we determine formulas for α(pn). We also show how to determine explicitly the
sets Apn and answer the question about determining all n such that the given polynomial is
surjective on n.

3.1 The polynomial x2 + y2

We consider the polynomial f(x, y) = x2 + y2 and its associated function α. By using our
method, we obtain the results about the size of the sets Apn found in [3, 4].

Lemma 19. For any prime number p, we have α(p) = p.

Proof. Let us show that every element in Ip = {0, 1, . . . , p− 1} is expressible as the sum of
two squares modulo p. It is known that there are (p + 1)/2 elements in Ip that are squares
modulo p. Then, for a given a ∈ Ip, there are (p + 1)/2 elements in Ip that are expressible
as a− x2 modulo p. Since 2(p + 1)/2 = p + 1 and Ip has p elements, there is an element in
Ip that is expressible simultaneously as a − x2 and y2 modulo p, for some x, y ∈ Ip. This
implies that x2 + y2 ≡ a (mod p).

We now calculate α(2n) for all n ≥ 1. By Lemma 11, the prime 2 has exponent 1 in
x2 + y2.

An easy computation gives us the following:

A2 = {0, 1}, A4 = {0, 1, 2}, A8 = {0, 1, 2, 4, 5}.

and
A4(2) = {0, 1, 2, 3}, A8(4) = {0, 1, 2, 4, 5, 6}.

Then, N4 = {3} and N8 = {6}, that is, n2 = 1 and n3 = 1. Now, by applying Corollary 14,
for n odd we have

α(2n) = 2n−1α(2)−
2n−1 − 1

22 − 1
(2 + 1)

= 2n − (2n−1 − 1)

= 2n−1 + 1,

and for n even

α(2n) = 2n−1α(2)−
2n−1 − 2

22 − 1
(2 + 1)− 1

= 2n − (2n−1 − 2)− 1

= 2n−1 + 1.

Therefore, for all n ≥ 1
α(2n) = 2n−1 + 1.

12



Remark 20. By applying our method we obtain explicit descriptions of the sets A2n for all
n ≥ 1, as follows. First of all, we determine N2n for all n ≥ 2. Note that N22 = {3 · 22−2}
and N23 = {3 · 23−2}. For n > 3, we can write n = 2q+ r, where r ∈ {2, 3}. It follows by (3)
that N2n = {22qa : a ∈ N2r} = {2n−ra : a ∈ N2r}. Then, it is easy to see that

N2n = {3 · 2n−2} = {2n−2 + 2n−1}

for all n ≥ 2.
We recall that

A2n = {a+ an−12
n−1 : a ∈ A2n−1 , an−1 ∈ {0, 1}} \N2n .

By an induction argument on n, it is not difficult to show that for all n ≥ 1, A2n consists of
all elements of the form

a0 + a1 · 2 + a2 · 2
2 + · · ·+ an−1 · 2

n−1 (7)

where

1. a0, a1, a2, . . . , an−1 ∈ {0, 1},

2. a0 + a1 · 2 + a2 · 2
2 + · · ·+ ai−1 · 2

i−1 ∈ A2i , i = 1, . . . , n− 1.

Now, assume that an element of the form (7) is not in A2n . Then there is some i, 2 ≤ i ≤ n,
such that a0 + a1 · 2 + a2 · 2

2 + · · ·+ ai−1 · 2
i−1 ∈ N2i . Since N2i = {2i−2 + 2i−1}, we see that

a0 = · · · = ai−3 = 0 and ai−2 = ai−1 = 1. So,

a0 + a1 · 2 + a2 · 2
2 + · · ·+ an−1 · 2

n−1 = 2i−2 + 2i−1 + ai2
i + · · ·+ an−12

n−1.

Conversely, all elements of the form 2i−2+2i−1+ai2
i+· · ·+an−12

n−1, where ai, . . . , an−1 ∈
{0, 1} are not in A2n . Therefore, A2n is the set of all integers of the form (7) such that the
first two nonzero coefficients are not consecutive.

With this description of A2n , we can also calculate α(2n). In fact, there are 2n−i−2

elements of the form 2i−2 + 2i−1 + ai2
i + · · ·+ an−12

n−1 for 2 ≤ i ≤ n. So,

α(2n) = 2n −
n

∑

i=2

2n−i = 2n − (2n−1 − 1) = 2n−1 + 1.

Now, we compute α(pn) where p is an odd prime. In this case, the highest power of p
that divides 2 is p0, so by Proposition 15 we have Np2 ⊆ {jp : 0 < j < p} and Np3 = ∅,
since Ap = Ip by Lemma 19.

Proposition 21. Let p be a prime such that p ≡ 3 (mod 4) and n ≥ 2. Then Np2 = {jp :
0 < j < p} and Np3 = ∅. The recurrence formula for α(pn) is given by

α(pn) =

{

pα(pn−1), if n is odd;

pα(pn−1)− p+ 1, if n is even.

13



An explicit formula for α(pn) is

α(pn) =

{

p

p+1
(pn + 1), if n is odd;

1
p+1

(pn+1 + 1), if n is even.

Proof. It only remains to prove that {jp : 0 < j < p} ⊆ Np2 , that is, jp /∈ Ap2 if 0 < j < p.
By contradiction, assume that jp ∈ Ap2 . Then, there are integers m1, m2 and w such that
m2

1+m2
2 = jp+wp2. This implies that p divides m2

1+m2
2, and by Theorem 1, p appears with

even exponent in the prime decomposition of m2
1 +m2

2. In particular, p2 divides m2
1 +m2

2,
and the equation m2

1 +m2
2 = jp+wp2 implies that p divides j, a contradiction. This proves

that Np2 = {jp : 0 < j < p}.
We have n2 = p− 1 and n3 = 0. By Proposition 13, we obtain a recurrence formula for

α(pn)

α(pn) =

{

pα(pn−1), if n is odd;

pα(pn−1)− p+ 1, if n is even.

Note that α(p0) = 1. Then, it is easy to deduce the explicit formula

α(pn) =

{

p

p+1
(pn + 1), if n is odd;

1
p+1

(pn+1 + 1), if n is even.

Let p be a prime number such that p ≡ 3 (mod 4). We can give a description of the set
Apn for n ≥ 1. By proceeding as in the case of A2n , we have Apn consists of all integers of
the form

a0 + a1 · p+ a2 · p
2 + · · ·+ an−1 · p

n−1 (8)

where

1. a0, a1, a2, . . . , an−1 ∈ {0, 1, . . . , p− 1},

2. a0 + a1 · p+ a2 · p
2 + · · ·+ ai−1 · p

i−1 ∈ Api , i = 1, . . . , n− 1.

By induction on n, and using that Npn = p2Npn−2 for n > 3, Np2 = {jp : 0 < j < p} and
Np3 = ∅, we obtain that

Npn =

{

∅, if n > 1 is odd;

{jpn−1 : 0 < j < p}, if n is even.

This implies that an element of the form (8) is in Apn if and only if its first nonzero term
has the form aip

i with i even.

Proposition 22. Let p be a prime such that p ≡ 1 (mod 4) and n be a positive integer.
Then, Np2 = Np3 = ∅. Moreover, α(pn) = pn for all n ≥ 1.
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Proof. We know that Np3 = ∅. To prove that Np2 = ∅, it remains to prove that jp ∈ Ap2 if
0 < j < p. In fact, if 0 < j < p, then, by Lemma 19, there are integers w1, w2 and w such that
w2

1+w2
2 = j+wp. Since p ≡ 1 (mod 4), by Theorem 1, the product p(w2

1+w2
2) is a sum of two

squares, say p(w2
1+w2

2) = m2
1+m2

2. Therefore, m
2
1+m2

2 = p(w2
1+w2

2) = p(j+wp) = jp+wp2.
Thus, we have shown Ap2 = Ip2 and therefore, Np2 = ∅.

By Proposition 13, the following recurrence formula holds

α(pn) =

{

p, if n = 1;

pα(pn−1), if n > 1.

This implies that α(pn) = pn for all n ≥ 1.

3.2 The polynomial x2 + y2 + z2

In this section we consider the polynomial f(x, y, z) = x2+y2+z2 and its associated function
α.

By Lemma 11 we have 2 is an exponent of the prime 2 in x2 + y2 + z2. By direct
computations, we check easily that A2 = {0, 1}, A4 = {0, 1, 2, 3}, A8 = {0, 1, 2, 3, 4, 5, 6},
and we see that N4 = ∅ and N8 = {7}. From Proposition 13, it follows that

α(2n) =











2, if n = 1;

2α(2n−1), if n is even;

2α(2n−1)− 1, if n > 2 is odd.

The corresponding explicit formula is

α(2n) =

{

1
3
(5 · 2n−1 + 1), if n is odd;

2
3
(5 · 2n−2 + 1), if n is even.

We now describe explicitly the sets A2n . It is not difficult to show that

N2n =

{

∅, if n is even;

{7 · 2n−3}, if n ≥ 2 is odd.

For n ≥ 2 odd, we have N2n = {2n−3 + 2n−2 + 2n−1}. So the set A2n consists of all integers
a0+ a12+ · · ·+ an−12

n−1 that are not of the form 2i +2i+1+2i+2+ ai+32
i+3 + · · ·+ an−12

n−1

for some odd i with 0 ≤ i ≤ n− 3.

Now, we consider the case where p is an odd prime. We cannot apply Proposition 13
because there is no exponent of p in x2 + y2 + z2, so we treat this case in a slightly different
way using Lemma 10. In order to do this, we take into account that odd primes are divided
into 4 families depending on their residue modulo 8. The multiplication table of {1, 3, 5, 7}
modulo 8 is shown in Table 1.
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1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Table 1: Multiplication modulo 8

Recall that, by Theorem 2, a nonnegative integer is representable as the sum of three
squares if and only if it is not of the form 4a(8b + 7). From Table 1, we can deduce the
following facts:

1. Dividing a number that is not of the form 4a(8b + 7) by a prime of the form 8k + 1,
gives a number that is not of the form 4a(8b + 7). That is, if p is a prime of the form
8k + 1, then 1 is an exponent of p in x2 + y2 + z2.

2. Dividing a number that is not of the form 4a(8b + 7) by the square of a prime of the
form 8k+3, 8k+5 or 8k+7 gives a number that is not of the form 4a(8b+7). Thus, if p
is a prime of the form 8k+3, 8k+5 or 8k+7, then 2 is an exponent of p in x2+y2+z2.

Lemma 23. If p is an odd prime and m is a sum of three squares, then there exists c ∈ Z

such that pm− cp2 is the sum of three squares.

Proof. If pm is a sum of three squares, then we can take c = 0. Suppose that pm is not the
sum of three squares. Then one of the following cases holds:

1. p is of the form 8k + 3 and m is of the form 4a(8b+ 5),

2. p is of the form 8k + 5 and m is of the form 4a(8b+ 3),

3. p is of the form 8k + 7 and m is of the form 4a(8b+ 1).

We will show that in any case, pm−2p2 is not of the form 4a(8b+7). If a > 0, then pm−2p2

is not divisible by 4, so pm− 2p2 is not of the form 4a(8b+7). Therefore, pm− 2p2 is a sum
of three squares.

Now, assume that a = 0. In case 1 we have pm− 2p2 = (8k + 3)(8b+ 5)− 2(8k + 3)2 =
(8k + 3)[8(b− 2k − 1) + 7], which is a number of the form 8k + 5 and it is the sum of three
squares. In case 2, pm− 2p2 = (8k + 5)(8b + 3)− 2(8k + 5)2 = (8k + 5)[8(b− 2k − 1) + 1],
which is a number of the form 8k + 5 and it is also the sum of three squares. In case 3,
pm− 2p2 = (8k + 7)(8b + 1)− 2(8k + 7)2 = (8k + 7)[8(b− 2k − 2) + 3], which is a number
of the form 8k + 5 and it is the sum of three squares.

Proposition 24. Let p be an odd prime number. Then α(pn) = pn for all n ≥ 1.
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Proof. First of all, by Lemma 19, every element in Ip = {0, 1, . . . , p − 1} is the sum of two
squares modulo p and so, every element in Ip is the sum of three squares. This means that
Ap = {0, 1, . . . , p− 1} and α(p) = p.

By Proposition 15, we have Np2 ⊆ {jp : 0 < j < p} and Np3 = ∅.
We show that jp ∈ Ap2 for all 0 < j < p. In fact, since j ∈ Ap, there are integers

w1, w2, w3 and w4 such that w2
1 + w2

2 + w2
3 = j + w4p. By Lemma 23, there exists c ∈ Z

such that p(w2
1 + w2

2 + w2
3) − cp2 = u2

1 + u2
2 + u2

3 for some integers u1, u2 and u3. Hence,
u2
1+u2

2+u2
3 = p(w2

1+w2
2+w2

3)− cp2 = pj+w4p
2− cp2 = jp+(w4− c)p2, and this shows that

jp ∈ Ap2 . Thus, Np2 = ∅ and, consequently, Npn = ∅ for all n ≥ 2. From this, it follows
that α(pn) = pn for all n ≥ 1.

Now we can determine all integers n such that x2+ y2+ z2 is surjective on n. If we write
n = 2sm, where m is odd, then we have α(n) = α(2s)α(m) = α(2s)m. Thus, α(n) = n if
and only if α(2s) = 2s, and this last equality holds if and only if s ≤ 2. Then, x2 + y2 + z2

is surjective on n if and only if n 6≡ 0 (mod 8).

3.3 The polynomial x2 − y2

We make the computations of α(pn) for the function associated with the polynomial x2−y2.
We will use the following result [1, Theorem 13.4].

Theorem 25. A positive integer n can be represented as the difference of two squares if and
only if n is not of the form 4k + 2.

By Theorem 25, each element a ∈ In that is not of the form 4k+2 belongs to An. So the
only elements in In that possibly do not belong to An are those that have the form 4k + 2.
It is easy to see that A2 = {0, 1}. So, α(2) = 2.

Proposition 26. For any integer n ≥ 2, A2n is the set of all elements in I2n that are not
of the form 4k + 2. Moreover, for each n ≥ 2

α(2n) = 3 · 2n−2. (9)

Proof. Let n ≥ 2. By Theorem 25, it only remains to prove that no element of the form
4k + 2 is in A2n . Suppose, on the contrary, that 4k + 2 ∈ A2n for some k. Then there are
integers m1,m2, w such that m2

1 − m2
2 = 4k + 2 + w2n. It follows that m2

1 − m2
2 is even.

Then, m1 and m2 are even or both of them are odd. In any case we obtain that m2
1 −m2

2 is
divisible by 4. This yields that 4 divides 2, which is absurd.

Now, we determine the size of A2n . The elements in I2n of the form 4k+2 are 2, 6, . . . , 2n−
2. Then, there are 2n−2 elements in I2n of the form 4k + 2. Thus, α(2n) = 2n − 2n−2 =
3 · 2n−2.

Lemma 27. If p is an odd prime, then p has exponent 1 in x2 − y2.
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Proof. Suppose p = 2r + 1 and p divides m2
1 −m2

2 for integers m1 and m2. If (m2
1 −m2

2)/p
is not a difference of two squares, then m2

1 − m2
2 = p(4k + 2) for some k, and m2

1 − m2
2 =

(2r + 1)(4k + 2) = 4(2rk + r + k) + 2. This contradicts Theorem 25.

Proposition 28. If p is an odd prime, then α(pn) = pn for all n ≥ 1.

Proof. Let p be an odd prime. The proof that every element in Ip = {0, 1, . . . , p − 1} is a
difference of two squares modulo p is similar to the proof of Lemma 19. In particular, it
follows that α(p) = p.

By Proposition 15, we have Np2 ⊆ {jp : 0 < j < p} and Np3 = ∅.
We show that if 0 < j < p, then jp ∈ Ap2 . Since p is odd, p does not divide 4. This fact

implies that there exists an integer b such that 4b ≡ j (mod p). Then 4b = j + wp for some
w and

(p+ b)2 − (p− b)2 = 4bp = jp+ wp2,

which shows that jp ∈ Ap2 .
Thus, we have Np2 = ∅. It follows that Npn = ∅ for all n ≥ 2 and α(pn) = pn for all

n ≥ 1.

We now determine all integers n ≥ 1 such that x2 − y2 is surjective on n. Again, if we
write n = 2sm, where m is odd, then we have α(n) = α(2s)m. Therefore, α(n) = n if and
only if α(2s) = 2s, which holds if and only if s ≤ 1. Thus, x2 − y2 is surjective on n if and
only if n 6≡ 0 (mod 4).

Remark 29. For the function α associated with a polynomial of the form ±x2
1±x2

2±· · ·±x2
t

with t ≥ 2, different from x2 + y2, x2 − y2 and x2 + y2 + z2, we have α(n) = n for all n. This
is a consequence of Lagrange’s four-square theorem and the fact that every integer can be
expressed in the form x2 + y2 − z2.
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