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Abstract

Let f0(z) = exp(z/(1 − z)), f1(z) = exp(1/(1 − z))E1(1/(1 − z)), where E1(x) =∫∞
x e−tt−1 dt. Let an = [zn]f0(z) and bn = [zn]f1(z) be the corresponding Maclaurin
series coefficients. We show that an and bn may be expressed in terms of confluent
hypergeometric functions.
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We consider the asymptotic behaviour of the sequences (an) and (bn) as n → ∞,
showing that they are closely related, and proving a conjecture of Bruno Salvy regarding
(bn).

Let ρn = anbn, so
∑

ρnz
n = (f0⊙f1)(z) is a Hadamard product. We obtain an

asymptotic expansion 2n3/2ρn ∼ −∑ dkn
−k as n → ∞, where dk ∈ Q, d0 = 1. We

conjecture that 26kdk ∈ Z. This has been verified for k ≤ 1000.

1 Introduction

We consider two analytic functions,

f0(z) := ez/(1−z) = e−1 e1/(1−z)

and

f1(z) := exE1(x), where x := 1/(1− z) and E1(x) :=

∫ ∞

x

e−t

t
dt.

These functions are regular in the open diskD = {z ∈ C : |z| < 1}. We write their Maclaurin
coefficients as an := [zn]f0(z) and bn = [zn]f1(z). Thus, in the disk D, f0(z) =

∑
n≥0 anz

n

and f1(z) =
∑

n≥0 bnz
n.

The functions f0(z) and f1(z) satisfy the same third-order linear differential equation
with polynomial coefficients. Thus, the sequences (an) and (bn) are D-finite and satisfy the
same recurrence relation (for sufficiently large n).

There are several entries in the On-Line Encyclopedia of Integer Sequences (OEIS) related
to the rational sequence (an)n≥0. The numerators are OEIS A067764, and the denominators
are OEIS A067653. The integers n!an are given by OEIS A000262 and, with alternating
signs, by OEIS A293125. The numbers (bn)n≥0 are unlikely to be rational.1

The numbers an and bn may be expressed in terms of confluent hypergeometric functions.
If M(a, b, z) = 1F1(a; b; z) and U(a, b, z) are standard solutions of Kummer’s differential
equation, then Lemmas 1–2 show that an = e−1M(n+ 1, 2, 1) and bn = −Γ(n)U(n, 0, 1).

We are interested in the asymptotics of an and bn for large n. Perron [17], following
Fejér [8], showed that

an ∼ e2
√
n

2n3/4
√
πe

.

Salvy2 conjectured that bn is of order e−2
√
nn−3/4. We have verified this conjecture. In

fact,

bn ∼ −
√
πe

n3/4e2
√
n
.

1In particular, b0 = G, where G := eE1(1) ≈ 0.596 is the Euler-Gompertz constant, whose decimal digits
are given by OEIS A073003. We have bn = anG − a′

n
, where a′

n
∈ Q and a′

n
satisfies essentially the same

recurrence as an, but with different initial conditions. Clearly bn ∈ Q if and only if G ∈ Q. All that is known
is that at least one of γ and G is irrational [1, 18].

2Bruno Salvy, email to A. J. Guttmann et al., May 28, 2018.
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A function of the form f(n) = exp(αnθ+o(1)) for α 6= 0, θ ∈ (0, 1), is called a stretched
exponential in the physics/statistics literature (the term sub-exponential is used in complexity
theory). Thus, an and bn are stretched exponentials, with α = ±2 and θ = 1/2.

The motivation for this paper stems from some enumeration problems in algebraic com-
binatorics and mathematical physics. Many such problems involve ordinary generating func-
tions of power series A(x) =

∑
n≥0 Anx

n in which An ∼ cµnng. In such cases, assuming that
g is not a negative integer, one can write

A(x) ∼ cΓ(1 + g)(1− µx)−(1+g)

as x → 1/µ. However, in recent years there have been a number of examples, such as
Av(1324) pattern-avoiding permutations [5], interacting partially-directed self-avoiding walks
[16], and Dyck paths enumerated by maximum height [12], in which the corresponding
generating function has coefficients behaving as Bn ∼ cµn exp(αnθ)ng, with α < 0. The
question then arises as to the asymptotic form of the generating function. The coefficients
bn considered in this paper are of the form just described, with θ = 1/2, and the underlying
generating function is found. Corresponding results for other values of θ remain to be
discussed.

Theorem 5 gives complete asymptotic expansions of an and bn. These may be written as

an =
F (n1/2)

2n3/4
√
πe

and bn = −
√
πe

n3/4
F (−n1/2),

where F (x) ∼ e2x
∑

k≥0 ckx
−k, for certain constants ck ∈ Q, c0 = 1. The ck may be computed

using Theorem 5 or Lemma 7.
The Hadamard product f0 ⊙f1 of f0 and f1 is the analytic function defined for z ∈ D by

(f0 ⊙f1)(z) =
∑

n≥0

anbnz
n.

The asymptotic expansions of an and bn imply an asymptotic expansion for ρn := anbn of
the form

ρn ∼ − 1

2n3/2

∑

k≥0

dkn
−k,

where dk ∈ Q, d0 = 1 (see Corollary 9).
A dyadic rational is a rational number of the form p/q, where q is a power of two. Let

Q2 := {j/2k : j, k ∈ Z} denote the set of dyadic rationals.
We conjecture, from numerical evidence for k ≤ 1000, that dk ∈ Q2. More precisely,

defining rk := 26kdk, Conjecture 10 is that rk ∈ Z. Remark 11 gives numerical evidence for a
slightly stronger conjecture. In Theorem 17 we prove the weaker (but still nontrivial) result
that k!rk ∈ Z.

In Remark 13 we mention an analogous (easily proved) result for modified Bessel func-
tions, where the product Iν(x)Kν(x) for fixed ν ∈ Z has an asymptotic expansion whose
coefficients are in Q2.
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The connection with confluent hypergeometric (Kummer) functions is discussed in §2,
and asymptotic expansions for an and bn are considered in §3. In §4 we mention various
recurrence relations, continued fractions, and closed-form expressions related to an and bn.
Finally, in §§5–6, we consider Hadamard products and discuss the conjecture mentioned
above.

Some comments on notation: f(x) ∼
∑

k≥0 fkx
−k means that the sum on the right

is an asymptotic series for f(x) in the sense of Poincaré. Thus, for any fixed m > 0,
f(x) =

∑m−1
k=0 fkx

−k + O(x−m) as x → ∞. The letters j, k,m, n always denote integers
(except for n in Remark 4). The notation (x)n for n ≥ 0 denotes the ascending factorial or
Pochhammer symbol, defined by (x)n := x(x+ 1) · · · (x+ n− 1).

2 Connection with hypergeometric functions

The numbers an and bn may be expressed in terms of confluent hypergeometric functions
(Kummer functions), for which we refer to [15, §13.2]. If M(a, b, z) and U(a, b, z) are stan-
dard solutions w(a, b, z) of Kummer’s differential equation zw′′ + (b − z)w′ − aw = 0, then
Lemmas 1–2 below express an and bn in terms of M(n+ 1, 2, 1) and U(n, 0, 1).

Kummer [13] considered

M(a, b, z) = 1F1(a; b; z) =
∑

k≥0

(a)k z
k

(b)k k!
, (1)

which is undefined if b is zero or a negative integer. In the case a 6= b = 0, we can use the
solution

zM(a+ 1, 2, z) = lim
b→0

b

a
M(a, b, z).

Tricomi [22] introduced the function U(a, b, z) as a second (minimal) solution of Kummer’s
differential equation. For our purposes it is convenient to use the integral representation [15,
(13.4.4)] (valid for ℜ(a) > 0, ℜ(z) > 0)

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−zt ta−1 (1 + t)b−a−1 dt. (2)

We remark that the functionsM and U satisfy recurrence relations, known as “connection
formulas”. For example, we mention [15, (13.3.1) and (13.3.7)], both (essentially) due to
Gauss (see Erdélyi [7, §6.4 and §6.6]):

(b− a)M(a− 1, b, z) + (2a− b+ z)M(a, b, z)− aM(a+ 1, b, z) = 0, (3)

U(a− 1, b, z) + (b− 2a− z)U(a, b, z) + a(a− b+ 1)U(a+ 1, b, z) = 0. (4)

Lemmas 1–2 express an and bn in terms of the Kummer functions M and U , respectively.
Lemma 1 was stated, without proof, by Covo [6].
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Lemma 1. If n ∈ Z, n ≥ 1, and an is as above, then

an = e−1M(n+ 1, 2, 1). (5)

Proof. If we put a = n + 1, b = 2, and z = 1 in the connection formula (3), we see that
ãn := e−1M(n+1, 2, 1) satisfies the same recurrence (21) as an. Thus, to show that an = ãn
for all n ≥ 1, it is sufficient to show that an = ãn for n ∈ {1, 2}. Now

ã1 = e−1M(2, 2, 1) = e−1
∑

k≥0

(2)k
(2)k k!

= 1 = a1,

and, similarly,

ã2 = e−1M(3, 2, 1) = e−1
∑

k≥0

(3)k
(2)k k!

= e−1
∑

k≥0

k + 2

2 k!
= 3/2 = a2,

so the result follows.

Lemma 2. If n ∈ Z, n ≥ 1, and bn is as above, then

bn = −Γ(n)U(n, 0, 1). (6)

Proof. We start with [15, (6.7.1)]:

I(a, b) :=

∫ ∞

0

e−at

t+ b
dt = eabE1(ab), a, b > 0.

Note that, by definition, bn = [zn]I(1, 1/(1 − z)). Setting a = 1, b = 1/(1 − z), the term
1/(t+ b) inside the integral can be rearranged as follows:

(
t+

1

1− z

)−1

=
1− z

1 + t− tz
=

1

1 + t
− 1

t(1 + t)

(
1

1− zt/(1 + t)
− 1

)
,

and making the substitution s = t/(1 + t) gives

I(1, 1/(1− z)) =

∫ ∞

0

e−t

1 + t
dt−

∫ 1

0

e−s/(1−s)

(
z

1− zs

)
ds =

∑

n≥0

bn z
n.

Thus, b0 = eE1(1) and, for n > 0,

bn = −
∫ 1

0

e−s/(1−s) sn−1 ds. (7)

Writing e−s/(1−s) = e1−1/(1−s) gives, for n > 0,

bn = −e

∫ 1

0

e−1/(1−s) sn−1 ds. (8)
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Substitute t = s/(1− s) in (2), giving

Γ(a)U(a, b, z) = ez
∫ 1

0

e−z/(1−s) sa−1 (1− s)−b ds. (9)

Comparison of (8) and (9) now gives bn = −Γ(n)U(n, 0, 1).

Remark 3. We could prove Lemma 2 in the same manner as Lemma 1, using the connection
formula (4) instead of (3), and the recurrence (23) instead of (21), but in order to verify the
initial conditions we would have to resort to some explicit representation for U , such as the
integral representation (2), so the proof would be no simpler.

Remark 4. We can generalize our definitions of an and bn to permit n ∈ C, using Lemmas 1–
2. Such generalizations do not seem particularly useful, so in what follows we continue to
assume that n ∈ Z.

3 Asymptotic expansions of an and bn

Theorem 5 gives the complete asymptotic expansions of an and bn in ascending powers of
n−1/2. Wright [25] proved the existence of an asymptotic expansion of the form (10) for an,
but did not state an explicit formula or algorithm for computing the constants cm occurring
in the expansion. For a more “algorithmic” approach, see Wyman [26].

Theorem 5. For positive integer n, if an and bn are as above, then

an ∼ e2
√
n

2n3/4
√
πe

∑

m≥0

cmn
−m/2 (10)

and

bn ∼ −
√
πe

n3/4e2
√
n

∑

m≥0

(−1)mcmn
−m/2, (11)

where

cm = (−1)m
m∑

j=0

[hm−j ] exp(µ(h))
(m− 2j + 3/2)2j

4jj!
(12)

and
µ(h) = h−1 − (eh − 1)−1 − 1

2
. (13)

Remark 6. The function µ(h) defined by (13) could also be defined using Bernoulli numbers,
since

µ(h) = −
∞∑

k=1

B2k

(2k)!
h2k−1 = − h

12
+

h3

720
−O(h5). (14)
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The function exp(µ(h)) occurring in (12) has the Maclaurin expansion

exp(µ(h)) = 1− h

12
+

h2

288
+

67h3

51840
+O(h4). (15)

The numerators and denominators of the coefficients [hn] exp(µ(h)) have been added to the
OEIS as A321937 and A321938, respectively.

Proof of Thm. 5. We first prove (11). From Lemma 2, bn = −Γ(n)U(n, 0, 1). Temme [21,
Sec. 3] gives a general asymptotic result for U(a, b, z2) as a → ∞. We state Temme’s result
for the case (a, b, z) = (n, 0, 1), which is what we need. Let c′k := [hk] exp(µ(h)). (Temme
uses ck, but this conflicts with our notation.) From Temme [21, (3.8)–(3.10)], we have

U(n, 0, 1) ∼
√
e

Γ(n)

∑

k≥0

c′kΦk(n), (16)

where
Φk(n) = 2n−(k+1)/2Kk+1(2n

1/2),

and Kν denotes the usual modified Bessel function.
From [15, (10.40.2)], Kν(z) has an asymptotic expansion

Kν(z) ∼ e−z

√
π

2z

∑

j≥0

(ν − j + 1/2)2j
j! (2z)j

. (17)

Setting ν = k and z = 2n1/2 in (17), we obtain

Φk−1(n) = 2n−k/2Kk(2n
1/2) ∼

√
πe−2

√
n

n1/4

∑

j≥0

(k − j + 1/2)2j
j! 4j n(j+k)/2

.

Substituting this expression into (16), and grouping like powers of n, we obtain

bn = −Γ(n)U(n, 0, 1) ∼ −
√
πe

n3/4e2
√
n

∑

m≥0

m∑

j=0

c′m−j (m− 2j + 3/2)2j

j! 4j nm/2
.

Now, comparison with (11) shows that

(−1)mcm =
m∑

j=0

c′m−j (m− 2j + 3/2)2j

j! 4j
,

which completes the proof of (11).
The proof of (10) is similar. We use Lemma 1 instead of Lemma 2, and Temme’s

asymptotic result [21, (3.29)] for M(a, b, z2) as a → ∞ instead of (16); the modified Bessel
function Iν replaces Kν . From [15, (10.40.1)], Iν(z) has an asymptotic expansion

Iν(z) ∼
ez√
2πz

∑

j≥0

(−1)j
(ν − j + 1/2)2j

j! (2z)j
, (18)

which replaces (17).
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Theorem 5 gives an expression for cm which (indirectly) involves Bernoulli numbers, in
view of (14). Lemma 7 gives a different expression for cm that is recursive, as the expression
for cm depends on the values of cj for j < m, but has the advantage of avoiding reference
to Bernoulli numbers. The idea of the proof is similar to that used in the “method of
Frobenius” [10]. We omit the details, which may be found in [3, pp. 10–11].

Lemma 7. We have c0 = 1 and, for all m ≥ 1,

mcm = [hm+3]
m−1∑

j=0

cjh
j
∑

s∈{±1}
(1 + sh2)

1−2j

4 exp

(
2

h

(
(1 + sh2)

1

2 − 1
))

. (19)

Remark 8. Computation using (12) and, as a check, (19), gives

(ck)k≥0 =

(
1,− 5

48
,− 479

4608
,− 15313

3317760
,

710401

127401984
,− 3532731539

214035333120
, . . .

)
.

The numerators and denominators have been added to the OEIS as A321939 and A321940,
respectively. With the exception of c0 and c4, the ck all appear to be negative. This has
been verified numerically for k ≤ 1000.

4 The Maclaurin coefficients an and bn

The function f0(z) is the exponential generating function counting several combinatorial
objects, such as the number of “sets of lists”, i.e., the number of partitions of {1, 2, . . . , n}
into ordered subsets, see Wallner [24, §5.3].

Observe that f0(z) satisfies the differential equation

(1− z)2f ′
0(z)− f0(z) = 0, (20)

and from this it is easy to see that the an satisfy a three-term recurrence

nan − (2n− 1)an−1 + (n− 2)an−2 = 0 for n ≥ 2. (21)

The initial conditions are a0 = a1 = 1. Thus

(an)n≥0 = (1, 1, 3/2, 13/6, 73/24, 167/40, . . .).

The recurrence (21) holds for n ≥ 0 provided that we define an = 0 for n < 0. A closed-form
expression, valid for n ≥ 1 (but not for n = 0), is

an =
n∑

k=1

1

k!

(
n− 1

k − 1

)
.
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The constants an may be expressed in terms of the generalized Laguerre polynomials
L
(α)
n (x) which, from [15, (18.12.13)], have a generating function

∑

n≥0

znL(α)
n (x) = (1− z)−(α+1)e−xz/(1−z).

With α = x = −1 we obtain
∑

n≥0 z
nL

(−1)
n (−1) = ez/(1−z), so an = L

(−1)
n (−1).

Using the chain rule and the definition of f1(z) in §1, we see that f1(z) satisfies the
differential equation

(1− z)2f ′
1(z)− f1(z) = z − 1, (22)

which differs from (20) only in the right-hand side z − 1. Differentiating twice more with
respect to z, we see that f0(z) and f1(z) both satisfy the same third-order differential equation

(1− z)2f ′′′ + (4z − 5)f ′′ + 2f ′ = 0.

From (22), the bn satisfy a recurrence

nbn − (2n− 1)bn−1 + (n− 2)bn−2 =

{
1, if n = 2;

0, if n ≥ 3.
(23)

This is essentially (i.e., for n ≥ 3) the same recurrence as (21), but the initial conditions
b0 = G, b1 = G − 1 are different. Here G := eE1(1) ≈ 0.596 is the Euler-Gompertz
constant [14, §2.5].

We remark that computation of the bn using the recurrence (23) in the forward direction
is numerically unstable. A stable method of computation is to use an adaptation of Miller’s
algorithm, originally used to compute Bessel functions. See Gautschi [11, §3] and Temme [20,
§4].

As noted in §1, the bn may be expressed as anG−a′n, where an is as above, and a′n satisfies
essentially the same recurrence with different initial conditions. In fact,

na′n − (2n− 1)a′n−1 + (n− 2)a′n−2 =

{
−1, if n = 2;

0, if n ≥ 3.

The initial conditions are a′0 = 0, a′1 = 1. Thus

(a′n)n≥0 = (0, 1, 1, 4/3, 11/6, 5/2, 121/36, . . .).

From (11), bn → 0 as n → ∞, so the sequence (a′n/an)n≥1 is a convergent sequence of ra-
tional approximations toG. The sequence of approximants is (1, 2/3, 8/13, 44/73, 100/167, . . .).

Bala [2] gives the continued fraction

1−G = 1/(3− 2/(5− 6/(7− · · · − n(n+ 1)/(2n+ 3)− · · · ))),
with convergents 1/3, 5/13, 28/73, 201/501, etc. The corresponding convergents to G are
2/3, 8/13, 45/73, 100/167, etc. We see that the n-th convergent is just a′n+1/an+1. Theorem 5
implies that

G− a′n/an = bn/an ∼ −2πe1−4
√
n as n → ∞.

We have contributed the sequence (n!a′n)n≥1 to the OEIS as A321942.
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5 The Hadamard product of f0 and f1

Define ρn := anbn. Thus
∑∞

n=0 ρnz
n is the Hadamard product (f0 ⊙f1)(z). From Lemmas 1–

2, we have
ρn = −e−1Γ(n)M(n+ 1, 2, 1)U(n, 0, 1).

Using Theorem 5, we can obtain a complete asymptotic expansion for ρn in decreasing powers
of n. This is given in Corollary 9.

Corollary 9. We have

ρn ∼ − 1

2n3/2

∑

k≥0

dkn
−k,

where

dk =
2k∑

j=0

(−1)jcjc2k−j,

and c0, . . . , c2k are as in Theorem 5.

A computation shows that

(dk)k≥0 = (1,−7/32, 43/2048,−915/65536, . . .).

We observe that the dk appear to be dyadic rationals More precisely, it appears that 26kdk ∈
Z. Define a scaled sequence (rk)k≥0 by rk := 26kdk. Computation gives

(rk)k≥0 = (1,−14, 86,−3660,−1042202,−247948260,−108448540420, . . .).

This leads naturally to the following conjecture.

Conjecture 10. For all k ≥ 0, rk ∈ Z.

The sequence of numerators of rk has been added to the OEIS as A321941. If Conjecture
10 holds, then the denominators are all 1, i.e., the denominators are given by A000012.

Remark 11. Conjecture 10 has been verified for all k ≤ 1000. We also showed numerically,
for 3 ≤ k ≤ 1000, that rk < 0 and rk ≡

(
2k
k

)
(mod 32).

Remark 12. A problem that is superficially similar to our conjecture was solved by Tulyakov [23].
However, we do not see how to adapt his method to prove our conjecture.

Remark 13. Corollary 9 is reminiscent of the result

I0(x)K0(x) ∼
1

2x

∑

k≥0

ek,0 x
−2k

in the theory of Bessel functions [4, (1.2)]. The coefficients ek,0 are given by

ek,0 =
(2k)!3

26kk!4
,
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so 24kek,0 ∈ Z. The modified Bessel functions I0(x) and K0(x) are solutions of the same
ordinary differential equation xy′′ + y′ − xy = 0, but I0(x) increases with x while K0(x)
decreases. This is analogous to the behaviour of an, which increases as n → ∞, and |bn|,
which decreases as n → ∞.

More generally, from [15, (10.40.6)], we have

Iν(x)Kν(x) ∼
1

2x

∑

k≥0

ek,νx
−2k,

where

ek,ν = (−1)k2−2k(ν − k + 1/2)2k

(
2k

k

)
,

and 24kek,ν ∈ Z for ν ∈ Z.

6 Other expressions for dn

Since (an) and (bn) are D-finite, it follows that (ρn) is D-finite.3 In fact, ρn satisfies the
4-term recurrence

n2(n− 1)(2n− 3)ρn = (n− 1)(2n− 1)(3n2 − 5n+ 1)ρn−1

− (n− 2)(2n− 3)(3n2 − 5n+ 1)ρn−2

+ (n− 2)(n− 3)2(2n− 1)ρn−3 (24)

for n ≥ 3, with initial conditions ρ0 = G, ρ1 = G− 1, ρ2 = (9G− 6)/4.
The recurrence (24) can be simplified by defining σn := nρn. Then σn satisfies the slightly

simpler recurrence

n(n− 1)(2n− 3)σn = (2n− 1)(3n2 − 5n+ 1)σn−1

− (2n− 3)(3n2 − 5n+ 1)σn−2 + (n− 2)(n− 3)(2n− 1)σn−3 (25)

for n ≥ 3, with initial conditions σ0 = 0, σ1 = G− 1, σ2 = 9G/2− 3. Also, Corollary 9 gives
an asymptotic series for σn:

σn ∼ − 1

2n1/2

∑

k≥0

dkn
−k. (26)

Using (25), we can give a recursive algorithm for computing the sequence (dn) (and hence
(rn)) directly, without computing the sequence (cn).

3See Flajolet and Sedgewick [9, Appendix B.4], and Stanley [19, Theorem 2.10], for relevant background
on D-finite sequences.
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Lemma 14. We have d0 = 1 and, for all k ≥ 1,

8kdk = − [hk+2]

(
k−1∑

j=0

djh
j

(
B(h)(1− h)−(j+1/2)

+ C(h)(1− 2h)−(j+1/2) +D(h)(1− 3h)−(j+1/2)

))
, (27)

where

B(h) = −6 + 13h− 7h2 + h3 = −(2− h)(3− 5h+ h2),

C(h) = +6− 19h+ 17h2 − 3h3 = (2− 3h)(3− 5h+ h2), and

D(h) = −2 + 11h− 17h2 + 6h3 = −(1− 2h)(1− 3h)(2− h).

Proof. Define h := n−1, so h → 0 as n → ∞. From Corollary 9, there exists an asymptotic
series of the form

−2σn ∼
∑

j≥0

djn
−j−1/2

as n → ∞. Moreover, d0 = 1. Define A(h) := (1− h)(2− 3h) in addition to B(h), C(h) and
D(h). Using the recurrence (25) and the elementary identity 1/(n −m) = h/(1 −mh) for
m ∈ {0, 1, 2, 3}, we have

∑

j≥0

dj

(
A(h)hj+1/2 + B(h)

(
h

1− h

)j+1/2

+ C(h)

(
h

1− 2h

)j+1/2

+ D(h)

(
h

1− 3h

)j+1/2
)

∼ 0.

Now, dividing both sides by h1/2, we obtain

∑

j≥0

djh
j

(
A(h) + B(h)(1− h)−(j+1/2)

+ C(h)(1− 2h)−(j+1/2) +D(h)(1− 3h)−(j+1/2)

)
∼ 0. (28)

An easy computation shows that

A(h) + B(h) + C(h) +D(h) = −4h2 +O(h3),

B(h) + 2C(h) + 3D(h) = 8h+O(h2), and

B(h) + 22C(h) + 32D(h) = O(h).

Thus, for all j ≥ 1, the terms involving dj in (28) are 8jhj+2+O(hj+3). (The “8j” arises from
−4+8(j+1/2) = 8j.) This shows that the choice of dk in (27) is necessary and sufficient to
give an asymptotic series of the required form. Finally, we note that [hk+2−j]A(h) = 0, since
j ≤ k− 1 and deg(A(h)) = 2. Thus, a term involving A(h) has been omitted from (27).
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Using Lemma 14, we computed the sequences (dn) and (rn) for n ≤ 1000, and verified
the values previously computed (more slowly) via Corollary 9.

Since the power series occurring in (27) have a simple form, we can extract the coefficients
of the required powers of h to obtain a recurrence for the dk, as in Corollary 15. This gives
a third way to compute the sequence (dn).

Corollary 15. We have d0 = 1 and, for all k ≥ 1,

8k dk =
k−1∑

j=0

αj,k dj.

Here

αj,k = (−1 + 3 · 2m−1 − 2 · 3m)(τ)m−1/(m− 1)!

+ (7− 17 · 2m + 17 · 3m)(τ)m/m!

+ (−13 + 38 · 2m − 33 · 3m)(τ)m+1/(m+ 1)!

+ 6(1− 4 · 2m + 3 · 3m)(τ)m+2/(m+ 2)!, (29)

where m := k − j and τ := j + 1/2.

Proof (sketch). To prove Corollary 15, we apply the binomial theorem to the power series
in (27), multiply by the polynomials B(h), C(h), and D(h), and extract the coefficient of
hk+2−j.

The following corollary is an easy deduction from Corollary 15, and gives an explicit
recurrence for rk = 26kdk.

Corollary 16. We have r0 = 1 and, for all k ≥ 1,

k rk =
k−1∑

j=0

βj,k rj, where βj,k = 82k−2j−1 αj,k .

Although we have not proved Conjecture 10, the following result goes part of the way.

Theorem 17. For all k ≥ 0, we have k! rk ∈ Z.

Proof. Let Rk := k!rk. We show that Rk ∈ Z. From Corollary 16, R0 = 1 and, for k ≥ 1,
Rk satisfies the recurrence

Rk =
k−1∑

j=0

βj,k Rj
(k − 1)!

j!
. (30)

The ratio of factorials in (30) is an integer, since j ≤ k − 1. Thus, in order to prove the
result by induction on k, it is sufficient to show that βj,k ∈ Z. Now, elementary number
theory shows that 4ℓ(j + 1/2)ℓ/ℓ! ∈ Z for all j, ℓ ≥ 0. Thus, the expressions of the form

13



(τ)m+δ/(m + δ)! in (29) are in Z provided that m + δ ≥ 0. This is true as m ≥ k − j ≥ 1
and δ ≥ −1. To show that βj,k ∈ Z, it is sufficient to have 82m−1 ≥ 4m+2, which holds for
all m ≥ 2. In the case m = 1, it is easy to see that all the terms in (29) are in Z/4, so
βm−1,k = 8αm−1,k ∈ Z. Thus, βj,k ∈ Z for 0 ≤ j < k, and the result follows by induction
on k.

Remark 18. The proof actually shows that βj,k ∈ 2Z, which implies that Rk ∈ 2Z for all
k > 0.
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