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Abstract

The Catalan triangle is an infinite lower-triangular matrix that generalizes the
Catalan numbers. The entries of the Catalan triangle, denoted by cn,k, count the
number of shortest lattice paths from (0, 0) to (n, k) that do not go above the main
diagonal. This paper studies the occurrence of primes and perfect powers in the Catalan
triangle. We prove that no prime powers except 2, 5, 9, and 27 appear in the Catalan
triangle when k ≥ 2. We further prove that cn,k are not perfect semiprime powers
when k ≥ 3. Finally, by assuming the abc conjecture, we prove that aside from perfect
squares when k = 2, there are at most finitely many perfect powers among cn,k when
k ≥ 2.
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1 Introduction

A well-known theorem, first proved by Sylvester [15] and again by Erdős [2], states that for
all n, k ∈ N satisfying 2 ≤ k ≤ n, there is a prime p > k such that p divides

(n+ k)(n+ k − 1)(n+ k − 2) · · · (n+ 1).

Erdős [3] later applied Sylvester’s theorem to prove that if 4 ≤ k ≤ n, then
(

n+k
k

)

is never a
perfect power. In other words, the Diophantine equation

(

n+ k

k

)

= xℓ with x ≥ 1, ℓ ≥ 2, and k ≤ n (1)

has no positive integer solutions for k ≥ 4. Győry [6] extended Erdős’s result to k ≥ 2,
proving the only positive integer solutions to equation (1) occur at

(

50
3

)

= 1402 or when
k = ℓ = 2. These results motivate us to ask the same questions about the Catalan numbers
and the Catalan triangle.

Let n ∈ N ∪ {0}. The Catalan numbers, defined as

Cn =
1

n+ 1

(

2n

n

)

,

form an integer sequence with rich combinatorial implications. They count the number of
Dyck paths, the number of non-crossing partitions, the number of full binary trees, and
the number of ways to insert parentheses, to name only a few examples. The number
theoretic aspect of Catalan numbers is equally interesting, and numerous researches have
been conducted on various divisibility and modulo properties of the Catalan numbers and
their derivatives [8, 9, 10, 16].

The question of whether Catalan numbers can be perfect powers was answered negatively
by Checcoli and D’Adderio [1]. Their proof was a simple application of a strong version of
Bertrand’s postulate by Ramanujan [12], and it is included here for completeness.

Theorem 1 ([1]). For all n ∈ N such that n ≥ 2, the n-th Catalan number Cn is never a
perfect power.

Proof. First, note that C2 = 2, C3 = 5, C4 = 14, and C5 = 42, so none of these are perfect
powers. When n ≥ 6, by Ramanujan’s theorem [12], there are at least two primes in the
open interval (n, 2n). As a result, there is a least one prime p in the interval [n + 2, 2n).
Therefore,

p || Cn =
2n(2n− 1)(2n− 2) · · · (n+ 2)

n!
,

i.e., p | Cn but p2 ∤ Cn. Hence, Cn cannot be a perfect power.
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The Catalan numbers can be generalized to the Catalan triangle. For all n, k ∈ N ∪ {0}
satisfying n ≥ k, the entry cn,k in the Catalan triangle is given by the number of Dyck
paths starting from the upper-left vertex (0, 0) to the vertex (n, k) on the n-th row and the
k-th column. Here, a Dyck path is a lattice path consisting of downward or rightward steps
without visiting the region above the diagonal n = k. The first few rows in the Catalan
triangle are depicted below.

1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42
...

...
...

...
...

...
. . .

(2)

Note that the rows and columns are indexed by N ∪ {0}, so the topmost row and the
leftmost column are referred to as the zeroth row and the zeroth column respectively. The
entry on the n-th row and the k-th column is cn,k. In particular, the diagonal entries are
cn,n = Cn. The general formula for the entries of the Catalan triangle is given by

cn,k =
n− k + 1

n+ 1

(

n+ k

k

)

=
(n+ k)(n+ k − 1)(n+ k − 2) · · · (n+ 2)(n− k + 1)

k!
, (3)

and for all 1 ≤ k < n, they satisfy the recursion relation

cn,k = cn−1,k + cn,k−1. (4)

Observe that the first column of the Catalan triangle in (2) is the sequence (cn,1)n≥1,
where cn,1 = n−1+1

n+1

(

n+1
1

)

= n for all n ∈ N. As a result, every positive integer appears at
least once in the Catalan triangle. Nevertheless, not all positive integers appear more than
once in the Catalan triangle. The sequence of positive integers that appear uniquely in the
Catalan triangle was added by the authors to the On-Line Encyclopedia of Integer Sequences
(OEIS), listed as A275481 [14], and its complement is listed as A275586 [14].

The algorithm to search for positive integers that appear uniquely in the Catalan triangle
is given in the aforementioned OEIS entries, and it relies on the following lemma.

Lemma 2. For all n, k ∈ N such that n ≥ k, the following statements hold.

• For all n′ ∈ N such that n < n′, cn,k < cn′,k.

• For all k′ ∈ N such that k < k′ ≤ n, cn,k ≤ cn,k′, where equality holds if and only if
n = k + 1.

• cn,k < cn+1,k+1.
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Proof. Since every entry in the Catalan triangle is positive by definition, from the recursion
relation in equation (4), we have

cn,k < cn,k + cn+1,k−1 = cn+1,k.

Hence, for any fixed k ∈ N, cn,k strictly increases with n ≥ k. This proves the first statement.
Also, when n > k + 1,

cn,k < cn−1,k+1 + cn,k = cn,k+1.

Together with the observation that

ck+1,k =
2

k + 2

(

2k + 1

k

)

=
2k + 2

(k + 2)(k + 1)
· (2k + 1)!

k!(k + 1)!
=

1

k + 2

(

2k + 2

k + 1

)

= ck+1,k+1,

the second statement follows. Finally, the third statement is an immediate consequence of
the prior two.

By algorithmically computing the sequence A275481, we observe that most perfect powers
appear uniquely in the Catalan triangle. In other words, cn,k are rarely perfect powers when
2 ≤ k ≤ n. We prove in Section 2 that for 2 ≤ k ≤ n, cn,k cannot be prime nor a perfect
prime power except when cn,k = 2, 5, 9, or 27. Furthermore, we prove that for 3 ≤ k ≤ n,
cn,k cannot be a perfect power of semiprimes. We prove in Section 3 there are infinitely
many perfect squares in the Catalan triangle when k = 2. By assuming the abc conjecture,
we then show the scarcity of squarefull numbers among cn,k when k ≥ 4, thus proving that,
other than those cn,2 that are perfect squares, there are at most finitely many perfect powers
when k ≥ 2. A positive integer m is squarefull if for all primes p | m, we also have p2 | m. In
other words, no exponent in the prime power factorization of m is 1. A squarefull number
is also called powerful in the literature. Our proof utilizes a strong result of Granville [5]
related to the abc conjecture.

2 Prime powers and perfect semiprime powers in the

Catalan triangle

We begin with a simple result on the occurrence of primes in the Catalan triangle.

Lemma 3. For all n, k ∈ N such that 2 ≤ k ≤ n, if cn,k is a prime, then cn,k = 2 or 5.

Proof. From the Catalan triangle (2), we observe that the statement is true for n ≤ 4. Hence,
it suffices to prove that cn,k is composite when k ≥ 2 and n ≥ max{k, 5}.

We will proceed by induction on k. When k = 2, by equation (3), cn,2 =
(n+2)(n−1)

2
, which

is composite since both n+ 2 and n− 1 are greater than 2.
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Suppose that for some k ≥ 2, cn,k is composite for all n ≥ max{k, 5}. For all n ≥ k + 1,

cn,k+1 =
n− (k + 1) + 1

n+ 1

(

n+ k + 1

k + 1

)

=
(n− k)(n+ k + 1)

(n+ 1)(k + 1)

(

n+ k

k

)

=
(n− k)(n+ k + 1)

(k + 1)(n− k + 1)
cn,k.

Let (n−k)(n+k+1)
(k+1)(n−k+1)

= a
b
, where a, b ∈ N such that gcd(a, b) = 1. Since cn,k+1 is an integer,

we have b | cn,k. In other words, cn,k+1 is the product of two integers a and
cn,k

b
. If b = 1,

then cn,k+1 = a · cn,k is composite by the induction hypothesis. If b > 1, then a > 1 since
a ≥ b by Lemma 2. Also,

cn,k

b
> 1; otherwise, cn,k = b ≤ (k + 1)(n− k + 1), which implies

k + 1 ≥ (n+ k)(n+ k − 1)(n+ k − 2) · · · (n+ 2)

k!
(k + 1)! ≥ (n+ k)(n+ k − 1)(n+ k − 2) · · · (n+ 2)

≥ (k + 5)(k + 4)(k + 3) · · · 7
≥ 7 · 6 · 5 · 4 · (k + 1)k(k − 1) · · · 7
> (k + 1)k(k − 1) · · · 7 · 6 · 5 · 4 · (3 · 2 · 1) = (k + 1)!,

a contradiction. Therefore, cn,k+1 is composite.

To prove the uniqueness of prime powers in the Catalan triangle, we will use the following
lemma, which is a moderate strengthening of Sylvester’s theorem [15] based on Faulkner’s
results [4].

Lemma 4. For all n, k ∈ N such that 2 ≤ k ≤ n, (n+ k)(n+ k − 1) · · · (n+ 2) has a prime
factor q ≥ k + 1 except when (n, k) = (6, 3) or (2α − 2, 2), where α ≥ 2 is an integer.

Proof. For convenience, let N = n+ k, so that it suffices to prove the following statement.

If k ≥ 2 and N ≥ 2k, then N(N − 1) · · · (N − k+2) has a prime factor q ≥ k+1
except when (N, k) = (9, 3) or (2α, 2), where α ≥ 2 is an integer.

By Faulkner’s result [4], if N ≥ 2K, then
(

N
K

)

, or equivalently, N(N − 1) · · · (N −K+1),
has a prime factor q ≥ 7

5
K. Substituting K = k − 1, if N ≥ 2(k − 1), then

N(N − 1) · · · (N − k + 2)

has a prime factor q ≥ 7
5
(k − 1). Note that 7

5
(k − 1) ≥ k + 1 if and only if k ≥ 6, so our

lemma is proved for k ≥ 6.
When k = 2, then N does not have a prime factor q ≥ 3 if and only if N = 2α for some

integer α ≥ 2.
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When k = 3, if N(N − 1) does not have a prime factor q ≥ 4, then N(N − 1) only has
factors 2 and 3, which happens only when one of N and N − 1 is a power of 2 and the other
is a power of 3. Also, as N ≥ 2k, both numbers are at least 5. Mihăilescu’s theorem [11]
implies that the only pair of consecutive integers (N,N − 1) that satisfies these conditions
is (9, 8), meaning (N, k) = (9, 3).

When k = 4, it follows directly from the case when k = 3, since any prime factor q ≥ 4
is at least 5.

When k = 5, if
∏3

i=0(N − i) does not have a prime factor q ≥ 6, then its only prime
factors are 2, 3, and 5. Let the prime factorization of N − i be 2αi3βi5γi , where i = 0, 1, 2, 3.
Note that exactly two αi’s are positive, with one of them equal to 1. Note also that at most
two βi’s are positive, and if two are positive, then one of them is 1. Finally, at most one γi
is positive. As N ≥ 2k, all four numbers N , N − 1, N − 2, and N − 3 are at least 7. Since
there are at most 5 indices that are positive, we must have three of those four numbers being
divisible by a power of 2, a power of 3, and a power of 5 respectively. Finally, the remaining
number is at most 2× 3 = 6, which is a contradiction.

We are now ready to prove the following two theorems, which are the main results of this
section on the occurrence of prime powers and semiprime powers in the Catalan triangle.

Theorem 5. The only positive integer solutions to the Diophantine equation

cn,k = pℓ

with 2 ≤ k ≤ n, ℓ ≥ 1, and prime p are

(n, k, pℓ) = (2, 2, 2), (3, 2, 5), (3, 3, 5), (4, 2, 9), or (7, 2, 27).

Proof. First, consider the case k = 2. Suppose that

cn,2 =
(n+ 2)(n− 1)

2
= pℓ

for some n, p, ℓ ∈ N such that n ≥ 2 and p is a prime. If n− 1 = 1 or 2, then

(n, k, pℓ) = (2, 2, 2) or (3, 2, 5)

respectively. If n−1 > 2, then p divides n−1 and n+2, implying that p | (n+2)−(n−1) = 3,
i.e., p = 3.

Let n− 1 = 3m for some m ∈ N. Then

3ℓ =
(3m+ 3)(3m)

2
= 9 · (m+ 1)m

2
.

If m > 2, then 3 divides both m and m+ 1, which is impossible. Hence, m = 1 or 2, which
gives (n, k, pℓ) = (4, 2, 9) or (7, 2, 27) respectively.
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Next, consider the case k > 2. If cn,k is a prime, by Lemma 3, cn,k = 2 or 5. From
the Catalan triangle (2), (n, k, pℓ) = (3, 3, 5) is a solution. Also, from Lemma 2, we know
that (n, k, pℓ) = (3, 3, 5) is the only solution when k > 2. If cn,k is a perfect prime power,
by Theorem 1, we have n ≥ k + 1. Furthermore, we can assume that (n, k) 6= (6, 3) since
c6,3 = 48 is not a perfect prime power.

Let S = {n+ k, n+ k − 1, . . . , n+ 2}. By Lemma 4, there exists a prime q ≥ k + 1 such
that q | ∏s∈S s. As q is relatively prime with k!, which is the denominator of equation (3),
in order for cn,k = pℓ, we have p = q. Also, since the difference between the largest and the
smallest elements in S is k − 2 < p, there is a unique element s ∈ S such that p | s, and
∏

s′∈S\{s} s
′ must divide k!. This implies that

k! ≥
∏

s′∈S\{s}

s′

≥ (n+ k − 1)(n+ k − 2)(n+ k − 3) · · · (n+ 2)

≥ 2k(2k − 1)(2k − 2) · · · (k + 3)

> 2k(k − 1)(k − 2) · · · (3) = k!,

which is a contradiction.

Theorem 6. There are no positive integer solutions to the Diophantine equation

cn,k = (pq)ℓ

with 3 ≤ k ≤ n, ℓ ≥ 2, and distinct primes p and q.

Proof. First, consider the case k = 3. Suppose that

cn,3 =
(n+ 3)(n+ 2)(n− 2)

6
= (pq)ℓ

for some n, p, ℓ ∈ N such that n ≥ 3, ℓ ≥ 2, and p and q are distinct primes. By computer
exhaustion, we check that there are no integer solutions for n ≤ 122. Consider n > 122.
Since n + 3 and n + 2 are greater than 6 and are relatively prime, assume without loss of
generality that p | (n+ 3) and q | (n+ 2). As gcd(n+ 3, n− 2) | 5 and gcd(n+ 2, n− 2) | 4,
we have

(n+ 3, n+ 2, n− 2) = (αpℓ, βqℓ, γ), (α5ℓ1 , βqℓ, γ5ℓ−ℓ1),

(αpℓ, β2ℓ2 , γ2ℓ−ℓ2), or (α5ℓ1 , β2ℓ2 , γ5ℓ−ℓ12ℓ−ℓ2),

where α, β, γ ∈ N, αβγ = 6, ℓ1 = 1 or ℓ− 1, and ℓ2 = 1, 2, ℓ− 2, or ℓ− 1. Note that

min{αpℓ, βqℓ, γ} ≤ 6,

min{α5ℓ1 , βqℓ, γ5ℓ−ℓ1} ≤ 6 · 5 = 30,

min{αpℓ, β2ℓ2 , γ2ℓ−ℓ2} ≤ 6 · 4 = 24, and

min{α5ℓ1 , β2ℓ2 , γ5ℓ−ℓ12ℓ−ℓ2} ≤ 6 · 5 · 4 = 120.
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All these violate the condition that n > 122. Hence, no positive integer solutions exist when
k = 3.

Next, consider the case k > 3. Without loss of generality, let p > q. By Lemma 4, it
follows that p > k. Let T = {n+k, n+k− 1, . . . , n+2, n−k+1}. If pℓ | t0 for some t0 ∈ T ,
then

(pℓ − 1)(pℓ − 2) · · · (pℓ − k + 2)(pℓ − 2k + 1) ≤
∏

t∈T\{t0}

t =
pℓqℓk!

t0
≤ qℓ · k!.

Since q < p and k < p, we have qℓ ≤ (p− 1)ℓ < pℓ − 2k + 1 and k2 ≤ (p− 1)2 < pℓ − 2k + 1.
As a result,

k2k−4 < (pℓ − 1)(pℓ − 2) · · · (pℓ − k + 2) < k!,

which is a contradiction since k ≥ 4. Note that the difference between the largest and the
smallest elements in T is 2k− 1 < 2p, and the difference between the largest and the second
smallest elements in T is k − 2 < p. So we must have pℓ1 || (n− k + 1) and pℓ−ℓ1 || t1 for a
unique t1 ∈ T \ {n− k + 1}, where ℓ1 = 1 or ℓ− 1.

When ℓ > 2, depending on ℓ1 = 1 or ℓ− 1, we have either

(pℓ−1 − 1)(pℓ−1 − 2) · · · (pℓ−1 − k + 2)(pℓ−1 − 2k + 1) ≤
∏

t∈T\{t1}

t =
pℓqℓk!

t1
≤ pqℓ · k!

or
(pℓ−1 + 2k − 1)(pℓ−1 + 2k − 2) · · · (pℓ−1 + k − 1) ≤ pqℓ · k!.

In either case, since qℓ−1 ≤ pℓ−1 − 2k + 1, we always have

(pℓ−1 − 1)(pℓ−1 − 2) · · · (pℓ−1 − k + 2) ≤ pq · k!.
Furthermore, as pq < p(p− 1) < pℓ−1 − k + 2, pℓ−1 − 1 ≥ 52 − 1 = 4!, and pℓ−1 − 2 > k, we
have

4! · k(k − 1) · · · 5 < 4! · (pℓ−1 − 2)(pℓ−1 − 3) · · · (pℓ−1 − k + 3) < k!,

a contradiction. When ℓ = 2, note that n ≥ p+ k − 1 and k < p < 2k since p || (n− k + 1)
and p || t1. Hence, if k ≥ 6, then

pq2 · k! ≥ (n+ k)(n+ k − 1) · · · (n+ 2)

≥ (p+ 2k − 1)(p+ 2k − 2) · · · (p+ k + 1)

> (p+ 2k − 1)(p+ 2k − 2) · · · (p+ k + 4)

(

3p

2

)3

>
27

8
(3k)(3k − 1) · · · (2k + 5) · pq2

>
27

8
(3k)(3(k − 1))(k − 2)(k − 3) · · · 5 · pq2 > k! · pq2,

a contradiction. If k ≤ 5, then p ≤ 7, and q ≤ 5. As a result, cn,k ≤ (7 · 5)2 = 1225. Since
c12,4 = 1260 and c10,5 = 1638, by Lemma 2, we only need to consider n < 12 when k = 4
and n < 10 when k = 5. By computer exhaustion, cn,k are never perfect squares for n < 12
when k = 4 and n < 10 when k = 53, which completes our proof.
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3 Scarcity of perfect powers and squarefull numbers

The previous section showed that there are only two perfect prime powers in the Catalan
triangle when k = 2, and no perfect prime powers nor perfect semiprime powers when
k ≥ 3. This section addresses the general question of the occurrence of perfect powers in the
Catalan triangle. One of the authors constructed an algorithm to search for perfect powers
that appear nonuniquely in the Catalan triangle. The sequence, together with the algorithm,
is listed on the OEIS as A317027 [14]. Note that A317027 is an infinite sequence since there
are infinitely many perfect squares in the Catalan triangle when k = 2, due to the following
theorem.

Theorem 7. The Diophantine equation

cn,k = xℓ

has infinitely many integer solutions with x ≥ 1, 2 = k ≤ n, and ℓ = 2.

Proof. For any positive integer solution pair (X0, Y0) to Pell’s equation

X2 − 2Y 2 = 1,

let n = 3X2
0 − 2. Note that n = 6Y 2

0 + 1. Hence,

cn,2 =
(n+ 2)(n− 1)

2
=

3X2
0 · 6Y 2

0

2
= (3X0Y0)

2.

Since Pell’s equation has infinitely many integer solutions, the proof is complete.

The conditions that k = 2 and ℓ = 2 in Theorem 7 are both essential. If either condition
is relaxed, then the results change drastically, as shown in Theorem 8 and Corollary 11.

Theorem 8. There are at most finitely many positive integer solutions to the Diophantine
equation

cn,k = xℓ

with

(a) x ≥ 1, 3 = k ≤ n and ℓ = 2; or

(b) x ≥ 1, 2 ≤ k ≤ 3, k ≤ n, and ℓ ≥ 3.

Proof. (a) When 3 = k ≤ n and ℓ = 2, the equation cn,k = xℓ can be rewritten as

(n+ 3)(n+ 2)(n− 2) = 6x2.

This equation defines a genus 1 curve, and hence by Siegel’s theorem on integral points
[13], there are at most finitely many positive integer solutions for n on this elliptic curve.
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(b) First, consider k = 2. Assume that cn,2 = xℓ for some positive integers n ≥ 2, x, and
ℓ ≥ 3. Then

(n+ 2)(n− 1) = 2xℓ. (5)

Let g = gcd(n+ 2, n− 1). Then clearly g | 3. Equation (5) implies that n+2
g

= aXℓ and
n−1
g

= bY ℓ for some a, b,X, Y ∈ N, where gcd(a, b) = 1 and ab = 2gℓ−2. Hence,

aXℓ − bY ℓ =
3

g
. (6)

Let S = {s ∈ Z : p is a prime and p | s ⇒ p ∈ {2, 3}}, i.e., S is the set of integers
not divisible by primes outside {2, 3}. Since a, b, 3

g
∈ S , Győry and Pintér [7] proved

that there are at most finitely many integer solutions (Xℓ, Y ℓ) with ℓ ≥ 3 for the Thue
equation (6). As a result, there are at most finitely many positive integer solutions for
cn,2 = xℓ.

Next, consider k = 3. Assume that cn,3 = xℓ for some positive integers n ≥ 3, x, and
ℓ ≥ 3. Then

(n+ 3)(n+ 2)(n− 2) = 6xℓ. (7)

Let g1 = gcd(n+3, n−2) and g2 = gcd(n+2, n−2). Then clearly g1 | 5 and g2 | 4. Equa-
tion (7) implies that n+3

g1
= aXℓ, n+2

g2
= bY ℓ, and n−2

g1g2
= cZℓ for some a, b, c,X, Y, Z ∈ N,

where a, b, c are pairwise relatively prime and abc | 6gℓ−2
1 2ℓ−2. Hence,

g1aX
ℓ − g2bY

ℓ = 1. (8)

Let T = {t ∈ Z : p is a prime and p | t ⇒ p ∈ {2, 3, 5}}, i.e., T is the set of integers not
divisible by primes outside {2, 3, 5}. Since g1a, g2b, 1 ∈ T , again by Győry and Pintér’s
results [7], there are at most finitely many integer solutions (Xℓ, Y ℓ) with ℓ ≥ 3 for the
Thue equation (8). As a result, there are at most finitely many positive integer solutions
for cn,3 = xℓ.

To prove that there are at most finitely many perfect powers in the Catalan triangle with
k ≥ 4, we expand our consideration to squarefull numbers. Lemma 4 implies that when
4 ≤ k ≤ n < 2k, cn,k is not squarefull, as cn,k is divisible by a prime q ≥ k + 1 but not
divisible by q2. Assuming the abc conjecture, we can further show that there are at most
finitely many perfect powers in the Catalan triangle with k ≥ 4.

The abc conjecture. For all ǫ > 0, there exists M > 0 such that for all relatively prime
positive integers a, b, c that satisfy a+ b = c,

c1−ǫ ≤ M
∏

p is prime
p|abc

p.
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Granville [5] applied the abc conjecture to prove the following theorem.

Theorem 9 ([5]). For all 3 ≤ k ≤ n, let an,k =
∏

p||(n+k

k ) p. The abc conjecture implies that

an,k >>ǫ

(

n+ k

k

)1−2/k−ǫ

.

In other words, for all ǫ > 0, there exist M,n0 > 0 such that for all n ≥ n0,

an,k ≥ M

(

n+ k

k

)1−2/k−ǫ

.

Note that the above theorem is uniform in k. Now, we use Granville’s result to prove the
following theorem.

Theorem 10. The abc conjecture implies that there are at most finitely many squarefull cn,k
for 4 ≤ k ≤ n.

Proof. First, consider k = 4. The proof technique for the case k = 4 is similar to that in the
proof of Proposition 3 in Granville’s paper [5]. Suppose that cn,4 is squarefull. Then for all
primes p > 4 such that p | (n+ 4)(n+ 3)(n+ 2)(n− 3), we also have

p2 | (n+ 4)(n+ 3)(n+ 2)(n− 3).

Let n− 3 = τ1η1, and n+ i = τiηi for each i = 2, 3, 4, where τi is squarefree, ηi is squarefull,
and gcd(τi, ηi) = 1 for all i = 1, 2, 3, 4. Since (n + 4)− (n− 3) = 7, by the assumptions, all
prime factors of τi are at most 7. Hence,

∏

p is prime
p|τ1τ2τ3τ4

p ≤ 2× 3× 5× 7 = 210.

Let ǫ = 1
5
. Applying the abc conjecture, there exists M > 0 such that if a = (n+4)(n+2),

b = 1, and c = (n+ 3)2, then

(n+ 3)2(1−ǫ) ≤ M
∏

p is prime
p|(n+4)(n+2)(n+3)2

p

= M



















∏

p is prime
p|τ2τ3τ4

p









1

2

∏

p is prime
p|η2η3η4

p



















∏

p is prime
p|τ2τ3τ4

p









1

2

≤ M
(

(n+ 4)(n+ 3)(n+ 2)
) 1

2

√
210 < M

√
210(n+ 4)

3

2 ,
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which is a contradiction for sufficiently large n.
Next, consider k ≥ 5. For all 5 ≤ k ≤ n, let bn,k =

∏

p||cn,k
p. By Theorem 9, the

abc conjecture implies that when ǫ = 1
10
, there exist M,n0 > 0 such that for all n ≥ n0,

an,k ≥ M
(

n+k
k

)1−2/k−1/10
. Hence,

bn,k ≥
an,k

(n+ 1)(n− k + 1)
≥ M

(

n+k
k

)1−2/5−1/10

(n+ 1)(n− k + 1)
≥ M

(

n+5
5

)1/2

(n+ 1)(n− k + 1)
>

Mn5/2

5!n2
=

M

120
n1/2.

Thus bn,k > 1 whenever n ≥ max{n0, (
120
M

)2}, in which case cn,k is not squarefull.

Since a perfect power is squarefull, we immediately have the following corollary.

Corollary 11. The abc conjecture implies that there are at most finitely many positive
integer solutions to the Diophantine equation

cn,k = xℓ

with x ≥ 1, 4 ≤ k ≤ n, and ℓ ≥ 2.

Theorem 7 showed that there are infinitely many perfect squares in the Catalan triangle
when k = 2. Furthermore, we have shown through Theorem 8 and Corollary 11 that, other
than those perfect squares given in Theorem 7, there are at most finitely many perfect powers
when k ≥ 2, provided the abc conjecture holds. However, by observing the list of perfect
powers in the sequence A275481, we conclude our paper with the following conjecture.

Conjecture 12. Consider the Diophantine equation

cn,k = xℓ.

(a) When x ≥ 1, 2 = k ≤ n, and ℓ ≥ 3, the only solutions are (n, xℓ) = (7, 27) and
(126, 8000).

(b) When x ≥ 1, 3 ≤ k ≤ n and ℓ ≥ 2, there are no positive integer solutions.

These results are based upon work supported by the National Science Foundation under
the grant number DMS-1560019, as well as the Kutztown University Bringing Experiences
About Research in Summer (KU BEARS) and the Muhlenberg College Summer Research
Program.
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[7] K. Győry and Á. Pintér, Binomial Thue equations, ternary equations and power values
of polynomials, J. Math. Sci. (N.Y.) 180 (2012), 569–580.

[8] M. Konvalinka, Divisibility of generalized Catalan numbers, J. Combin. Theory Ser. A
114 (2007), 1089–1100.

[9] T. Koshy and Z. Gao, Some divisibility properties of Catalan numbers, Math. Gaz. 95
(2011), 96–102.

[10] S. Liu, and J. C.-C. Yeh, Catalan numbers modulo 2k, J. Integer Seq. 13 (2010), Article
10.5.4.
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