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Abstract

A second-order polynomial sequence is of Fibonacci-type (Lucas-type) if its Binet
formula has a structure similar to that for Fibonacci (Lucas) numbers. Known exam-
ples of these types of sequences are Fibonacci polynomials, Pell polynomials, Fermat
polynomials, Chebyshev polynomials, Morgan-Voyce polynomials, Lucas polynomials,
Pell-Lucas polynomials, Fermat-Lucas polynomials, and Chebyshev polynomials.

The resultant of two polynomials is the determinant of the Sylvester matrix and
the discriminant of a polynomial p is the resultant of p and its derivative. We study
the resultant, the discriminant, and the derivatives of Fibonacci-type polynomials and
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Lucas-type polynomials as well the resultant of combinations of these two types of poly-
nomials. As a corollary, we give explicit formulas for the resultant, the discriminant,
and the derivative for the polynomials mentioned above.

1 Introduction

A second-order polynomial sequence is of Fibonacci-type Fn (Lucas-type Ln), if its Binet
formula has a structure similar to that for Fibonacci (Lucas) numbers. These are known as
generalized Fibonacci polynomials GFPs (see, for example [2, 9, 10, 13, 14]). Some known
examples are Pell polynomials, Fermat polynomials, Chebyshev polynomials, Morgan-Voyce
polynomials, Lucas polynomials, Pell-Lucas polynomials, Fermat-Lucas polynomials, Cheby-
shev polynomials, Vieta polynomials and Vieta-Lucas polynomials.

The resultant of two polynomials p and q, denoted by Res
(

p, q
)

, is the determinant of
the Sylvester matrix (see (7), [1, 4, 12, 23] or [28, p. 426]). Very often in mathematics we
ask the question whether or not two polynomials share a root. In particular, if p and q are
two GFPs, we ask whether or not p and q have a common root. Since the resultant of p and
q is also the product of p evaluated at each root of q, the resultant of two GFPs can be used
to answer this question.

Several authors have been interested in the resultant. The first formula for the resultant
of two cyclotomic polynomials was given by Apostol [3]. Recently Bzdega et al. [5] computed
the resultant of two cyclotomic polynomials in a short way. Some other papers have been
dedicated to the study of the resultant of Chebyshev polynomials [7, 20, 25, 29]. In this paper
we deduce simple closed formulas for the resultants of a big family of GFPs. For example,
the resultant of Fibonacci polynomials Fn and the resultant of Chebyshev polynomials of
second kind Un are given by

Res
(

Fm, Fn

)

= 1 if gcd(m,n) = 1, and Res
(

Fm, Fn

)

= 0 otherwise,

and

Res
(

Um, Un

)

= (−4)(m−1)(n−1)/2 if gcd(m,n) = 1, and Res
(

Um, Un

)

= 0 otherwise.

If ν2(n) is the 2-adic valuation of n, then the resultant of Lucas polynomial Dn(x) and the
resultant of Chebyshev polynomials of the first kind Tn(x) are given by

Res
(

Dm, Dn

)

= 2δ if ν2(m) 6= ν2(n), and Res
(

Dm, Dn

)

= 0 otherwise

and

Res
(

Tm, Tn

)

= (−1)
mn
2 2(m−1)(n−1)−12δ if ν2(m) 6= ν2(n), and Res

(

Tm, Tn

)

= 0 otherwise.

The resultant for the family of Fibonacci-type polynomials is given in Theorem 1 and the
resultant for the family of Lucas-type polynomials is given in Theorem 2. In Tables 1, 2,
and 3 we give the resultants for some known polynomials.
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Note that the resultant has been used to solve systems of polynomial equations (it en-
capsulates the solutions) [4, 21, 24, 27]. The resultant can also be used in combination with
the elimination theory to answer other different types of questions about the multivariable
polynomials.

The discriminant is the resultant of a polynomial and its derivative. If p is a GFP, we
ask the question whether or not p has a repeated root. The discriminant helps to answer this
question. In this paper we find simple closed formulas for the discriminant of both types of
GFPs. For example, the discriminant of Fibonacci polynomials, the Chebyshev polynomials
of the second kind, Lucas polynomials, and the Chebyshev polynomials first kind are given
by

Disc
(

Fn

)

= (−1)(n−2)(n−1)/22n−1nn−3; Disc
(

Un

)

= 2(n−1)2nn−3,

and
Disc

(

Dn

)

= (−1)n(n−1)/22n−1nn; Disc
(

Tn

)

= 2(n−1)2nn.

The Theorems 4 and 5 give the discriminant of both families of Fibonacci-type polynomials
and Lucas-type polynomials. Table 4 shows the discriminant for some known polynomials.

The following formulas generalize the formulas for the derivative of Fibonacci and Lucas
polynomials given by several authors [2, 8, 15, 16, 17, 30] to Fibonacci-type polynomials and
Lucas-type polynomials (for details see Theorem 6).

F ′
n =

d′ (nαLn − dFn)

(a− b)2
and L′

n =
nd′Fn

α
.

2 Main Results

In this section we present the main theorems and corollaries of this paper. Proofs appear else-
where in the paper. We give some brief definitions (needed to make the theorems readable),
all formal definitions are given in Section 3.

For brevity and if there is no ambiguity we present the polynomials without explicit use
of “x”. For example, instead of Fn(x) and Ln(x) we use Fn and Ln.

We say that a polynomial recurrence relation is of Fibonacci-type if it satisfies that (see
also (2))

F0 = 0, F1 = 1, and Fn = dFn−1 + gFn−2 for n ≥ 2,

where d, and g are fixed non-zero polynomials in Q[x]. We say that a polynomial recurrence
relation is of Lucas-type if it satisfies that (see also (3))

L0 = p0, L1 = p1, and Ln = dLn−1 + gLn−2 for n ≥ 2,

where |p0| = 1 or 2 and p1, d = αp1, and g are fixed non-zero polynomials in Q[x] with α an
integer of the form 2/p0. These are called generalized Fibonacci polynomials (GFPs).
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If P is a polynomial, then we use deg(P ) and lc(P ) to mean the degree of P and the
leading coefficient of P . Let

β = lc(d), λ = lc(g), η = deg(d), ω = deg(g), and ρ = Res
(

g, d
)

. (1)

Let P and Q be polynomials with an = lc(P ), bm = lc(Q), n = deg(P ), and m = deg(Q).
If {xi}

n
i=1 and {yi}

m
i=1 are the roots of P and Q in C, respectively, then the resultant of P

and Q is given by Res
(

P,Q
)

= amn b
n
m

∏n
i=1

∏m
j=1(xi − yj) = amn

∏n
i=1 Q(xi) = bnm

∏m
j=1 P (yj).

The discriminant of P , Disc
(

P
)

, is defined by (−1)n(n−1)/2a2n−2
n Πi 6=j(xi − xj).

We use ν2(n) to represent the integer exponent base two of a positive integer n, which is
defined to be the largest integer k such that 2k | n (this concept is also known as the 2-adic
order or 2-adic valuation of n).

2.1 Theorems of the resultant of GFPs

In this subsection we give simple expressions for the resultant of two GFPs of Fibonacci-type,
Res

(

Fn,Fm

)

, the resultant of two GFPs of Lucas-type, Res
(

Ln,Lm

)

, and the resultant of
two equivalent polynomials (Lucas-type and Fibonacci-type), Res

(

Ln,Fm

)

.
The proof of Theorem 1 is in Section 4 on page 16, the proof of Theorem 2 is in Section

5 on page 17, and the proof of Theorem 3 is in Section 6 on page 18.

Theorem 1. Let TF = ((−1)ηωβ2η−ωρ)
(n−1)(m−1)

2 , where n,m ∈ Z>0. Then

Res
(

Fn,Fm

)

=

{

0, if gcd(m,n) > 1;

TF , otherwise.

Theorem 2. Let TL = α−η(n+m)2η gcd(m,n)
(

(−1)ηωβ2η−ωρ
)nm/2

, where m,n ∈ Z>0. Then

Res
(

Lm,Ln

)

=

{

0, if ν2(n) = ν2(m);

TL , if ν2(n) 6= ν2(m).

Theorem 3. Let TLF = 2η gcd(m,n)−ηαη(1−m) ((−1)ηωβ2η−ωρ)
(n(m−1))/2

, where n,m ∈ Z>0.
Then

Res
(

Ln,Fm

)

=

{

0, if ν2(n) < ν2(m);

TLF , if ν2(n) ≥ ν2(m).

2.2 Theorems of the discriminant of GFPs

As an application of the theorems in the previous subsection we give the discriminants of
generalized Fibonacci polynomials. The proofs of Theorems 4 and 5 are in Section 8.2 on
page 25.
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Theorem 4. If deg(d) = 1, g is a constant, and d′ is the derivative of d, then

Disc
(

Fn

)

= (−g)(n−2)(n−1)/22n−1nn−3β(n−1)(n−2).

Theorem 5. If deg(d) = 1, g is a constant, and d′ is the derivative of d, then

Disc
(

Ln

)

= (−g)n(n−1)/22n−1nnα2(1−n)βn(n−1).

2.3 Theorem of the derivative of GFPs

The Theorem 6 gives formulas for the derivatives of Fibonacci-type polynomials and Lucas-
type polynomials. Note that the formulas given here are restricted to the special case in
which g is a constant. The derivatives of a Lucas-type polynomials is given in term of its
equivalent polynomial and the derivative of a Fibonacci-type polynomial is given in terms
of Fibonacci-type and its equivalent.

Here we use F ′
n, L

′
n, a

′, b′ and d′ to mean the derivatives of Fn, Ln, a, b and d with
respect to x, where a and b are given in (4) and (5). The proof of the following theorem is
in Section 7.

Theorem 6. If g is a constant, then

(i)

F ′
n =

d′ (ngFn−1 − dFn + nFn+1)

(a− b)2
=

d′ (nαLn − dFn)

(a− b)2
.

(ii)

L′
n =

nd′Fn

α
.

2.4 Resultants, discriminants, and derivatives of known GFPs

In this subsection we construct several tables with the resultant, the discriminant and the
derivative of some known polynomials (see Table 6).

The Table 1 presents the resultants of some GFPs of Fibonacci-type. The Table 2 presents
the resultants of some GFPs of Lucas-type. The Table 3 presents the resultants of two
equivalent polynomials (Lucas-type and its equivalent polynomial of Fibonacci-type). The
Table 4 gives the discriminants of GFPs of both types. The first half of Table 4 has GFPs
of Fibonacci-type and the second half has GFPs of Lucas-type. The Table 5 gives the
derivatives for GFPs.

Note that the following property can be used to find the discriminant of a product of GFPs
(see [6]). If P and Q are polynomials in Q[x], then Disc

(

PQ
)

= Disc
(

P
)

Disc
(

Q
)

Res
(

P,Q
)

.
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Polynomial gcd(m,n) = 1 gcd(m,n) > 1

Fibonacci Res
(

Fm, Fn

)

= 1 Res
(

Fm, Fn

)

= 0
Pell Res

(

Pm, Pn

)

= 2(m−1)(n−1) Res
(

Pm, Pn

)

= 0
Fermat Res

(

Φm,Φn

)

= (−18)(m−1)(n−1)/2 Res
(

Φm,Φn

)

= 0
Chebyshev 2nd kind Res

(

Um, Un

)

= (−4)(m−1)(n−1)/2 Res
(

Um, Un

)

= 0
Morgan-Voyce Res

(

Bm, Bn

)

= (−1)(m−1)(n−1)/2 Res
(

Bm, Bn

)

= 0

Table 1: Resultants of Fibonacci-type polynomials using Theorem 1.

Polynomial ν2(m) 6= ν2(n), δ = gcd(m,n) ν2(m) = ν2(n)

Lucas Res
(

Dm, Dn

)

= 2δ Res
(

Dm, Dn

)

= 0
Pell-Lucas-prime Res

(

Q′
m, Q

′
n

)

= 2(m−1)(n−1)−12δ Res
(

Q′
m, Q

′
n

)

= 0
Fermat-Lucas Res

(

ϑm, ϑn

)

= (−1)mn/218mn/2 2δ Res
(

ϑm, ϑn

)

= 0
Chebyshev 1st kind Res

(

Tm, Tn

)

= (−1)
mn
2 2(m−1)(n−1)−12δ Res

(

Tm, Tn

)

= 0
Morgan-Voyce Res

(

Cm, Cn

)

= (−1)
mn
2 2δ Res

(

Cm, Cn

)

= 0

Table 2: Resultants of Lucas-type polynomials using Theorem 2.

Polynomials ν2(n) ≥ ν2(m), δ = gcd(n,m) ν2(n) < ν2(m)

Lucas, Fibonacci Res
(

Dn, Fm

)

= 2δ−1 Res
(

Dn, Fm

)

= 0
Pell-Lucas-prime, Pell Res

(

Q′
n, Pm

)

= 2(m−1)(n−1) 2δ−1 Res
(

Q′
n, Pm

)

= 0
Fermat-Lucas, Fermat Res

(

ϑn,Φm

)

= (−18)n(m−1)/2 2δ−1 Res
(

ϑn,Φm

)

= 0
Chebyshev both kinds Res

(

Tn, Um

)

= (−1)n(m−1)/22(m−1)(n−1)2δ−1 Res
(

Tn, Um

)

= 0
Morgan-Voyce both types Res

(

Cn, Bm

)

= (−1)n(m−1)/2 2δ−1 Res
(

Cn, Bm

)

= 0

Table 3: Resultants of two equivalent polynomials using Theorem 3.

Evaluating the derivative of Fibonacci polynomials and the derivative of Lucas polyno-
mials at x = 1 and x = 2 we obtain numerical sequences that appear in [26]. Thus,

d(Fn)

dx

∣

∣

∣

x=1
= A001629;

d(Fn)

dx

∣

∣

∣

x=2
= A006645;

d(Dn)

dx

∣

∣

∣

x=1
= A045925;

d(Dn)

dx

∣

∣

∣

x=2
= A093967.

For the sequences generated by the derivatives of the other familiar polynomials studied
here see: A001871, A317404, A317405, A317408, A317451, 3(A045618), 2(A006645), and
2(A093967).
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Polynomial Discriminants of GFPs The OEIS

Fibonacci Disc
(

Fn

)

= (−1)(n−2)(n−1)/22n−1nn−3 A317403

Pell Disc
(

Pn

)

= (−1)(n−2)(n−1)/22(n−1)2nn−3 A317450
Fermat Disc

(

Φn

)

= 2n(n−1)/23(n−1)(n−2)nn−3 A318184

Chebyshev 2nd kind Disc
(

Un

)

= 2(n−1)2nn−3 A086804
Morgan-Voyce Disc

(

Bn

)

= 2n−1nn−3 A127670

Lucas Disc
(

Dn

)

= (−1)n(n−1)/22n−1nn A193678

Pell-Lucas-prime Disc
(

Q′
n

)

= (−1)n(n−1)/22(n−1)2nn A007701
Fermat-Lucas Disc

(

ϑn

)

= 2(n−1)(n+2)/23n(n−1)nn A318197

Chebyshev 1st kind Disc
(

Tn

)

= 2(n−1)2nn A007701
Morgan-Voyce Disc

(

Cn

)

= 2n−1nn A193678

Table 4: Discriminants of GFPs using Theorems 4 and 5.

Fibonacci-type Derivative Lucas-Type Derivative

Fibonacci d(Fn)
dx

= nDn−xFn

4+x2 Lucas d(Dn)
dx

= nFn

Pell d(Pn)
dx

= nQn−2xPn

2(1+x2)
Pell-Lucas-prime d(Qn)

dx
= 2nPn

Fermat d(Φn)
dx

= 3(nϑn−3xΦn)
−8+9x2 Fermat-Lucas d(ϑn)

dx
= 3nΦm

Chebyshev 2nd kind d(Un)
dx

= 2nTn−2xUn

2(x2−1)
Chebyshev 1st kind d(Tn)

dx
= nUm

Morgan-Voyce d(Bn)
dx

= nCn−(x+2)Bn

x(x+4)
Morgan-Voyce d(Cn)

dx
= nBm

Table 5: Derivatives of GFPs using Theorem 6.

3 Definitions, background, and basic results

In this section we give formal definitions of the concepts that we are going to use in this
paper. Throughout the paper we consider polynomials in Q[x].

3.1 Second order polynomial sequences

In this section we introduce the generalized Fibonacci polynomial sequences. This definition
gives rise to some known polynomial sequences (see, for example, Table 6 or [9, 10, 14, 22]).
The polynomials in this subsection are presented in a formal way (with explicit use of “x”).

For the remaining part of this section we reproduce the definitions given by Flórez et al.
[9, 10] for generalized Fibonacci polynomials. We now give the two second-order polynomial
recurrence relations in which we divide the generalized Fibonacci polynomials.

F0(x) = 0, F1(x) = 1, and Fn(x) = d(x)Fn−1(x) + g(x)Fn−2(x) for n ≥ 2, (2)

where d(x), and g(x) are fixed non-zero polynomials in Q[x].
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We say a polynomial recurrence relation is of Fibonacci-type if it satisfies the relation
given in (2), and of Lucas-type if:

L0(x) = p0, L1(x) = p1(x), and Ln(x) = d(x)Ln−1(x) + g(x)Ln−2(x) for n ≥ 2, (3)

where |p0| = 1 or 2 and p1(x), d(x) = αp1(x), and g(x) are fixed non-zero polynomials in
Q[x] with α an integer of the form 2/p0.

To use similar notation for (2) and (3) on certain occasions we write p0 = 0, p1(x) = 1
to indicate the initial conditions of Fibonacci-type polynomials. Some known examples of
Fibonacci-type polynomials and Lucas-type polynomials are in Table 6 or in [9, 14, 18, 19, 22].

If Gn is either Fn or Ln for all n ≥ 0 and d2(x) + 4g(x) > 0, then the explicit formula
for the recurrence relations in (2) and (3) is given by

Gn(x) = t1a
n(x) + t2b

n(x),

where a(x) and b(x) are the solutions of the quadratic equation associated with the second-
order recurrence relation Gn(x). That is, a(x) and b(x) are the solutions of z2−d(x)z−g(x) =
0. If α = 2/p0, then the Binet formula for Fibonacci-type polynomials is stated in (4) and
the Binet formula for Lucas-type polynomials is stated in (5) (for details on the construction
of the two Binet formulas see [9])

Fn(x) =
an(x)− bn(x)

a(x)− b(x)
(4)

and

Ln(x) =
an(x) + bn(x)

α
. (5)

Note that for both types of sequence:

a(x) + b(x) = d(x), a(x)b(x) = −g(x), and a(x)− b(x) =
√

d2(x) + 4g(x),

where d(x) and g(x) are the polynomials defined in (2) and (3).
A sequence of Lucas-type (Fibonacci-type) is equivalent or conjugate to a sequence of

Fibonacci-type (Lucas-type), if their recursive sequences are determined by the same poly-
nomials d(x) and g(x). Notice that two equivalent polynomials have the same a(x) and
b(x) in their Binet representations. In [9, 10] there are examples of some known equivalent
polynomials with their Binet formulas. The polynomials in Table 6 are organized by pairs of
equivalent polynomials. For instance, Fibonacci and Lucas, Pell and Pell-Lucas, and so on.

Most of the following conditions were required in the papers that we are citing. There-
fore, we require here that gcd(d(x), g(x)) = 1 and deg(g(x)) < deg(d(x)) for both types of
sequences. (For instance these conditions hold for polynomial in Table 6.) The conditions
in (6) also hold for Lucas-type polynomials;

gcd(p0, p1(x)) = 1, gcd(p0, d(x)) = 1, gcd(p0, g(x)) = 1, and that degree of L1 ≥ 1. (6)

Notice that in the definition of Pell-Lucas we have Q0(x) = 2 and Q1(x) = 2x. Thus,
the gcd(2, 2x) = 2 6= 1. Therefore, Pell-Lucas does not satisfy the extra conditions that we
imposed in (6). So, to resolve this inconsistency we use Q′

n(x) = Qn(x)/2 instead of Qn(x).
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Polynomial Initial value Initial value Recursive Formula
G0(x) = p0(x) G1(x) = p1(x) Gn(x) = d(x)Gn−1(x) + g(x)Gn−2(x)

Fibonacci 0 1 Fn(x) = xFn−1(x) + Fn−2(x)
Lucas 2 x Dn(x) = xDn−1(x) +Dn−2(x)
Pell 0 1 Pn(x) = 2xPn−1(x) + Pn−2(x)
Pell-Lucas 2 2x Qn(x) = 2xQn−1(x) +Qn−2(x)
Pell-Lucas-prime 1 x Q′

n(x) = 2xQ′
n−1(x) +Q′

n−2(x)
Fermat 0 1 Φn(x) = 3xΦn−1(x)− 2Φn−2(x)
Fermat-Lucas 2 3x ϑn(x) = 3xϑn−1(x)− 2ϑn−2(x)
Chebyshev second kind 0 1 Un(x) = 2xUn−1(x)− Un−2(x)
Chebyshev first kind 1 x Tn(x) = 2xTn−1(x)− Tn−2(x)
Morgan-Voyce 0 1 Bn(x) = (x+ 2)Bn−1(x)−Bn−2(x)
Morgan-Voyce 2 x+ 2 Cn(x) = (x+ 2)Cn−1(x)− Cn−2(x)
Vieta 0 1 Vn(x) = xVn−1(x)− Vn−2(x)
Vieta-Lucas 2 x vn(x) = xvn−1(x)− vn−2(x)

Table 6: Recurrence relation of some GFPs.

3.2 The resultant and the discriminant

In this section we use the Sylvester determinant to define the discriminant of two polynomials.
For a complete development of the theory of the resultant of polynomials see [12].

Let P and Q be non-zero polynomials of degree n and m in Q[x], with

P = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 and Q = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0.

The resultant of P and Q, denoted by Res
(

P,Q
)

, is the determinant of Syl(P,Q) (see, for
example [1, 4, 20, 28]).

Syl(P,Q) =































an an−1 · · · · · · a0 0 · · · 0
0 an an−1 · · · · · · a0 · · · 0
...

. . . . . . . . . . . .
. . . . . .

...
...

. . . 0 an · · · · · · a0
bm bm−1 · · · · · · b0 0 · · · 0
0 bm bm−1 · · · · · · b0 · · · 0
...

. . . . . . . . . . . .
. . . . . .

...

0
. . . 0 bm bm−1 · · · · · · b0































. (7)

If P ′ is the derivative of P , then the discriminant of P is given by

Disc
(

P
)

= (−1)
n(n−1)

2 a−1
n Res

(

P, P ′
)

.

Note that the discriminant can also be written as a Vandermonde determinant (see [23]).
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3.3 Classic results

In this subsection we give some classic properties of the resultant needed to prove the main
theorems. Most of the parts of the following lemma can be found in [4, 23].

Let f and h be polynomials, where an = lc(f), bm = lc(h), n = deg(f) and m = deg(h).
Note that if k is a constant, then Res

(

k, f
)

= Res
(

f, k
)

= kdeg(f). The following lemma
summarize some classic result about the resultant (see, for example, Jocobs et al. [20]).

Lemma 7. Let f , h, p, and q be polynomials in Q[x]. If n = deg(f), m = deg(h), and
an = lc(f), then

(i) Res
(

f, h
)

= (−1)nmRes
(

h, f
)

,

(ii) Res
(

f, ph
)

= Res
(

f, p
)

Res
(

f, h
)

,

(iii) Res
(

f, pk
)

= Res
(

f, p
)k
,

(iv) if G = fq + h and r = deg(G), then Res
(

f,G
)

= ar−m
n Res

(

f, h
)

,

(v) Res
(

f, h
)

= 0 if and only if f and h have a common divisor of positive degree.

3.4 The GCD of two GFPs and other properties

Most of the results in this subsection are in [9]. Proposition 8 is a result that is in the proof
of [9, Proposition 6] therefore its proof is omitted.

In this paper we use Z≥0 and Z>0 to mean the set of non-negative integers and positive
integers, respectively. Recall that β, λ, η, ω, and ρ are defined in (1) on page 4 and that d,
g and α are defined on page 8.

Proposition 8. Let m, n, r, and q be positive integers. If n = mq + r, then there is a
polynomial T such that Fn = FmT + gFmq−1Fr.

Proposition 9. If m, r, and q are positive integers, then if r < m, then there is a polynomial
T such that for t =

⌈

q
2

⌉

we have

Lmq+r =

{

LmT + (−1)m(t−1)+t+r(g)(t−1)m+rLm−r, if q is odd;

LmT + (−1)(m+1)t(g)mtLr, if q is even.

Proposition 10. If m, q, and r are nonnegative integers with q > 0, then

(i)

Fmq+r =

{

αLmFm(q−1)+r − (−g)mFm(q−2)+r, if q > 1;

αLmFr + (−g)rFm−r, if q = 1.

10



(ii)

αLmq+r =

{

(a− b)2FmFm(q−1)+r + α(−g)mLm(q−2)+r, if q > 1;

(a− b)2FmFr + α(−g)rLm−r, if q = 1.

Proof. We prove Part (i), the proof of Part (ii) is similar and it is omitted. If q = 1, then the
proof follows from [9, Proposition 3]. We now prove the case in which q > 1. Using Binet
formulas (4) and (5) we obtain

αLmFm(q−1)+r = α
(am + bm)

α

(am(q−1)+r − bm(q−1)+r)

a− b
.

Expanding and simplifying we have

αLmFm(q−1)+r = Fmq+r + (ab)m
am(q−2)+r − bm(q−2)+r

a− b
= Fmq+r + (−g)mFm(q−2)+r.

Solving this equation for Fmq+r we have Fmq+r = αLmFm(q−1)+r− (−g)mFm(q−2)+r. This
completes the proof.

Lemma 11. Let k, n ∈ Z>0. Then

(i) deg (Fk) = η(k − 1) and lc (Fk) = βk−1.

(ii) deg (Ln) = ηn and lc(Ln) = βn/α.

Proof. We use mathematical induction to prove all parts. We prove Part (i). Let P (k) be
the statement:

deg (Fk) = η(k − 1) for every k ≥ 1.

The basis step, P (1), is clear, so we suppose that P (k) is true for k = t, where t > 1. Thus, we
suppose that deg (Ft) = η(t−1) and we prove P (t+1). We know that deg(Fn) ≥ deg(Fn−1)
for n ≥ 1. This, deg (d) > deg (g), and (2) imply

deg (Ft+1) = deg (dFt) = deg(d) + deg (Ft) = η + η(t− 1) = ηt.

We now prove the second half of Part (i). Let Q(k) be the statement:

lc(Fk) = βk−1 for every k ≥ 1.

The basis step, Q(1), is clear, so we suppose that Q(k) is true for k = t, where t > 1. Thus,
we suppose that lc (Ft) = βt−1 and we prove Q(t+ 1). We know that deg(Fn) ≥ deg(Fn−1)
for n ≥ 1. This, deg (d) > deg (g), and (2) imply lc(Ft+1) = lc(d) lc(Ft) = lc(d)βt−1 =
ββt−1 = βt.

We prove Part (ii). Let H(n) be the statement: deg (Ln) = ηn for every n > 0. It is easy
to see that H(1) is true. Suppose that H(n) is true for some n = k > 1. Thus, suppose that
deg (Lk) = ηk and we prove H(k + 1). Since Lk+1 = dLk + gLk−1 and deg (d) > deg (g), we
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have deg (Lk+1) = deg (d) + deg (Lk) = η + ηk = η(k + 1). This proves the first half of Part
(ii).

We now prove the second half of Part (ii). Let N(n) be the statement: lc(Ln) = βn for
every n > 0. (for simplicity we suppose that α = 1). It is easy to verify that lc(L1) = β1.
Suppose that N(n) is true for some n = k > 1. Thus, suppose that lc(Lk) = βk. Since
Lk+1 = dLk + gLk−1 and deg (d) > deg (g), we have lc(Lk+1) = lc(d) lc(Lk). This and the
inductive hypothesis imply that lc(Lk+1) = ββk = βk+1.

Proposition 12 plays an important role in this paper. This in connection with Lemma 7
Part (v) gives criterions to determine whether or not the resultant of two GFPs is equal to
zero (see Corollary 14, Corollary 16, and 18).

Recall that definition of ν2(n) was given in Section 2 on page 4.

Proposition 12 ([9]). If m,n ∈ Z>0 and δ = gcd(m,n), then

(i) gcd(Fm,Fn) = 1 if and only if δ = 1.

(ii)

gcd (Lm,Ln) =

{

Lδ, if ν2(m) = ν2(n);

gcd (Lδ,L0) , otherwise.

(iii)

gcd(Ln,Fm) =

{

Lδ, if ν2(m) > ν2(n);

1, otherwise.

3.5 Some resultants of GFPs of Fibonacci-type polynomials

In this subsection we give some properties of the resultant of two GFPs and some results
needed to prove Theorem 1.

Proposition 13. For m and n in Z≥0 these hold

(i) If n > 0, then Res
(

g,Fn

)

= ρn−1,

(ii) Res
(

Fm, gFn

)

= (−1)ωη(m−1)ρm−1Res
(

Fm,Fn

)

,

(iii) Res
(

Lm, gLn

)

= (−1)ωηmρmRes
(

Lm,Ln

)

.

Proof. We prove Part (i) using mathematical induction. Let P (n) be the statement:

Res
(

g,Fn

)

= ρn−1 for every n ≥ 1.

Since F1 = 1 the basis step, P (1), is clear. Suppose that P (n) is true for n = k, where
k > 1. Thus, suppose that Res

(

g,Fk

)

= ρk−1, and we prove P (k+1). From (2) and Lemma
7 Parts (ii) and (iv) we have

Res
(

g,Fk+1

)

= Res
(

g, dFk + gFk−1

)

= ληk−(η+η(k−1))Res
(

g, d
)

Res
(

g,Fk

)

.
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This and P (k) imply Res
(

g,Fn

)

= Res
(

g, d
)

Res
(

g,Fn−1

)

= ρn−1.
We prove Part (ii), the proof of Part (iii) is similar and it is omitted. From Lemma 7

Part (i) and Part (ii), and Lemma 11 Part (i), we have

Res
(

Fm, gFn

)

= Res
(

Fm, g
)

Res
(

Fm,Fn

)

= (−1)ωη(m−1)Res
(

g,Fm

)

Res
(

Fm,Fn

)

= (−1)ωη(m−1)ρm−1Res
(

Fm,Fn

)

.

This completes the proof.

The proof of the following corollary is straightforward from Proposition 12 Part (i) and
Lemma 7 Part (v).

Corollary 14. Let m,n ∈ Z>0. Then gcd (m, n) = 1 if and only if Res
(

Fm,Fn

)

6= 0.

Proposition 15. If m, n and q are positive integers, with n > 1 and mq > 1, then

(i) Res
(

Fn,Fn−1

)

= ((−1)ωηβ2η−ωρ)
(n−2)(n−1)/2

,

(ii) Res
(

Fm,Fmq−1

)

= ((−1)ηωβ2η−ωρ)
(m−1)(mq−2)/2

.

Proof. We prove all parts by mathematical induction. Proof of Part (i). Let Q(n) be the
statement:

Res
(

Fn,Fn−1

)

=
(

(−1)ωηβ2η−ωρ
)(n−2)(n−1)/2

for every n ≥ 2.

Since F1 = 1, the basis step, Q(2), is clear. Suppose that Q(n) is true for n = k − 1, where

k > 2. Thus, suppose that Res
(

Fk−1,Fk−2

)

= ((−1)ωηβ2η−ωρ)
(k−3)(k−2)/2

. We prove Q(k).
Using Lemma 11 Part (i) and Lemma 7 Part (i) we get

Res
(

Fn,Fn−1

)

= (−1)η
2(n−1)(n−2)Res

(

Fn−1,Fn

)

= Res
(

Fn−1, dFn−1 + gFn−2

)

.

This, Lemma 7 Part (iv), Lemma 11 Part (i) and Proposition 13 Part (ii) imply

Res
(

Fn,Fn−1

)

= (βn−2)η(n−1)−(ω+η(n−3))Res
(

Fn−1, gFn−2

)

= (−1)ωη(n−2)β(n−2)(2η−ω)ρn−2Res
(

Fn−1,Fn−2

)

.

Simplifying we have

Res
(

Fn,Fn−1

)

=
(

(−1)ωηβ2η−ωρ
)n−2

Res
(

Fn−1,Fn−2

)

.

This and Q(k − 1) give

Res
(

Fn,Fn−1

)

=
(

(−1)ωηβ2η−ωρ
)n−2 (

β2η−ω(−1)ωηρ
)

(n−3)(n−2)
2

=
(

(−1)ωηβ2η−ωρ
)

(n−2)(n−1)
2 .
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Proof of Part (ii). The proof is straightforward when m = 1 and q > 1. Therefore, we
suppose that m > 1. Let W (q) be the statement: for a fixed integer m we have

Res
(

Fm,Fmq−1

)

=
(

(−1)ηωβ2η−ωρ
)(m−1)(mq−2)/2

for every q ≥ 1.

From Part (i) it follows that W (1) is true. Suppose that W (q) is true for q = k, where

k > 1. Thus, suppose that Res
(

Fm,Fmk−1

)

= ((−1)ηωβ2η−ωρ)
(m−1)(mk−2)/2

. We prove
W (k+ 1). From Proposition 8 we know that there is a polynomial T such that Fm(k+1)−1 =
FmT + gFkm−1Fm−1. This, Lemma 7 Part (ii) and Part (iv) and Proposition 13 Part (ii)
imply

Res
(

Fm,Fm(k+1)−1

)

= Res
(

Fm,FmT + gFkm−1Fm−1

)

= (βm−1)η(mk+m−2)−(ω+η(mk+m−4))Res
(

Fm, gFkm−1Fm−1

)

= β(m−1)(2η−ω)Res
(

Fm, gFkm−1Fm−1

)

= (−1)ωη(m−1)β(m−1)(2η−ω)ρm−1Res
(

Fm,Fm−1

)

Res
(

Fm,Fkm−1

)

.

From this, Part (i), and W (k) we conclude

Res
(

Fm,Fmk+m−1

)

=
(

(−1)ωηβ2η−ωρ
)m−1 (

(−1)ωηβ2η−ωρ
)

(m−1)(m−2)
2 Res

(

Fm,Fkm−1

)

=
(

(−1)ωηβ2η−ωρ
)

(m−1)m
2 Res

(

Fm,Fkm−1

)

=
(

(−1)ωηβ2η−ωρ
)

(m−1)m
2

(

(−1)ωηβ2η−ωρ
)

(m−1)(mk−2)
2 .

Simplifying the last expression, we have

ressFmFmk+m−1 =
(

(−1)ηωβ2η−ωρ
)

(m−1)(m(k+1)−2)
2 .

This completes the proof.

3.6 Some resultants of GFPs of Lucas-type polynomials

In this subsection we give some properties of the resultant of two GFPs of Lucas-type and
some results needed to prove Theorem 2.

Recall that a GFP of Lucas-type is a polynomial sequence such that L0 ∈ {1, 2}, L1 =
2−1L0d, and Ln = dLn−1 + gLn−2 for n > 1.

Note that if we take the particular case of the Lucas-type sequence Ln in which L0 = 1
and L1 = 2−1d, then using the initial conditions we define a new Lucas-type sequence as
follows: Let L0 = 2L0, L1 = 2L1 = d and Ln = dLn−1 + gLn−2 for n > 1. It is easy to verify
that Ln = 2Ln for n ≥ 0. Therefore, to find the resultant of a polynomial of Lucas-type Ln,
it is enough to find the resultant for Ln in which L0 = 2.

The following corollary is a direct consequence of Proposition 12 Part (ii), Lemma 7 Part
(v), and Lemma 11 Part (ii). So, we omit its proof.
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Corollary 16. Let m,n ∈ Z>0. ν2(n) = ν2(m) if and only if Res
(

Lm,Ln

)

= 0.

Proposition 17. If n ∈ Z>0 and L0 = 2, then

(i) Res
(

g,Ln

)

= ρn,

(ii)

Res
(

L1,Ln

)

=

{

0, if n is odd;

2η ((−1)ηωβ2η−ωρ)
n
2 , if n is even.

Proof. We prove Part (i) by mathematical induction on n. Since Res
(

g,L1

)

= Res
(

g, d
)

= ρ,
it holds that the result is true for n = 1. Suppose that for some integer n = k > 1,
Res

(

g,Lk

)

= ρk holds. From (3) and Lemma 7 Parts (ii) and (iv) we have

Res
(

g,Lk+1

)

= Res
(

g, dLk + gLk−1

)

= αη(k+1)−η(k+1)Res
(

g, d
)

Res
(

g,Lk

)

.

This and the inductive hypothesis imply that

Res
(

g,Lk+1

)

= Res
(

g, d
)

Res
(

g,Lk

)

= Res
(

g, d
)k+1

,

which is our claim.
We prove Part (ii) by induction on n. Let Q(n) be the statement:

Res
(

L1,Ln

)

=

{

0, if n is odd;

2η ((−1)ηωβ2η−ωρ)
n
2 , if n is even.

Since Res
(

L1,L1

)

= 0, Q(1) holds. Note that L1 = (p0/2)d = d. This and Lemma 7 Parts
(ii) and (iv) imply that

Res
(

L1,L2

)

= Res
(

L1, dL1 + gL0

)

= β2η−ωRes
(

d, 2g
)

= 2η(−1)ηωβ2η−ωρ.

This proves Q(2).
Suppose that Q(k− 2) and Q(k− 1) is true and we prove Q(k). Note that if k is odd by

Corollary 16 we have that Res
(

L1,Ln

)

= 0. We suppose that k is even. Lemma 7 Parts (ii)
and (iv), L1 = d, Lemma 11 Part (ii), and (5) imply

Res
(

L1,Lk

)

= Res
(

d, dLk−1 + gLk−2

)

= β2η−ωRes
(

d, gLk−2

)

= β2η−ωRes
(

d, g
)

Res
(

d,Lk−2

)

=
(

(−1)ηωβ2η−ωρ
)

Res
(

L1,Lk−2

)

.

Note that k − 2 and k have the same parity. This and Q(k − 2) imply that

Res
(

L1,Lk

)

=
(

(−1)ηωβ2η−ωρ
)

2η
(

(−1)ηωβ2η−ωρ
)

k−2
2 = 2η

(

(−1)ηωβ2η−ωρ
)

k
2 .

This proves Q(k).
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4 Proof of Theorem 1

In this section we prove the theorem about the resultant of two GFPs of Fibonacci-type (see
Section 2).

Proof of Theorem 1. Let A be the set of all i ∈ Z>0 such that for every j ∈ Z>0 we have

Res
(

Fi,Fj

)

=

{

0, if gcd(m,n) > 1;

((−1)ηωβ2η−ωρ)
(i−1)(j−1)

2 , otherwise.
(8)

Since 1 ∈ A, we have that A 6= ∅. The following claim completes the proof of the
Theorem.
Claim. A = Z>0.
Proof of Claim. Suppose B := Z>0 \ A is a non-empty set. Let n 6= 1 be the least element
of B. So, there is h ∈ Z>0 such that Res

(

Fn,Fh

)

does not satisfy Property (8) (if m = n,
then Res

(

Fi,Fj

)

= 0). Let m be the least element of the non-empty set H = {h ∈ Z>0 |
Res

(

Fn,Fh

)

does not satisfy (8)}. Note that Corollary 14 and (8) imply that gcd(m,n) = 1.
We now consider two cases.

Case m < n. Since n is the minimum element of B, m ∈ A. Either m or n is odd,
because gcd(m,n) = 1. We know, from Lemma 11 Part (i), that deg(Fm) = η(m− 1). This
implies that Res

(

Fn,Fm

)

= Res
(

Fm,Fn

)

. Since m ∈ A, we have that (8) holds for j ∈ Z>0,
in particular (8) holds when j = n. That is a contradiction.

Case n < m. The Euclidean algorithm and gcd(m,n) = 1 guarantee that there are
q, r ∈ Z such that m = nq + r with 0 < r < n. We now can proceed analogously to the
proof of Proposition 15 Part (ii). From the Euclidean algorithm, Proposition 8 and Lemma
7 Part (iv) we have

Res
(

Fn,Fm

)

= Res
(

Fn,Fnq+r

)

= Res
(

Fn,FnT + gFnq−1Fr

)

= (βn−1)η(m−1)−(ω+η(nq−2+r−1))Res
(

Fn, gFnq−1Fr

)

.

This, Lemma 7 Part (ii) and Proposition 13 Part (ii) imply

Res
(

Fn,Fm

)

= β(n−1)(2η−ω)Res
(

Fn, gFr

)

Res
(

Fn,Fnq−1

)

= (−1)ωη(n−1)β(n−1)(2η−ω)ρn−1
(

(−1)ηωβ2η−ωρ
)

(n−1)(nq−2)
2 Res

(

Fn,Fr

)

=
(

(−1)ηωβ2η−ωρ
)

(n−1)nq

2 Res
(

Fn,Fr

)

. (9)

Since gcd(n,m) = gcd(n, r) = 1, either n or r is odd. So, Res
(

Fn,Fr

)

= Res
(

Fr,Fn

)

. It is
easy to verify that r ∈ A, because r < n and n is the minimum element of B. Set j = n, so

Res
(

Fr,Fn

)

= ((−1)ηωβ2η−ωρ)
(n−1)(r−1)/2

. This and (9) imply that

Res
(

Fn,Fm

)

=
(

(−1)ηωβ2η−ωρ
)

(m−1)(n−r)
2

(

(−1)ηωβ2η−ωρ
)

(r−1)(m−1)
2

=
(

(−1)ηωβ2η−ωρ
)

(n−1)(m−1)
2 .
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That is a contradiction. This implies that A = Z>0.

5 Proof of Theorem 2

In this section we prove the theorem about the resultant of two GFPs of Lucas-type (see
Section 2).

Proof of Theorem 2. We consider two cases: L0 = 2 and L0 = 1. We first prove the case
L0 = 2. Let A = {i ∈ Z>0 | ∀j ∈ Z>0,Property (10) holds for Res

(

Li,Lj

)

}.

Res
(

Li,Lj

)

=

{

0, if ν2(i) = ν2(j);

2η gcd(i,j) ((−1)ηωβ2η−ωρ)
ij/2

, if ν2(i) 6= ν2(j).
(10)

From Proposition 17 Part (ii) we have that i = 1 ∈ A. So, A 6= ∅. The following claim
completes the proof part L0 = 2.
Claim. A = Z>0.
Proof of Claim. SupposeB := Z>0\A is a non-empty set. Let n 6= 1 be the least element ofB.
So, there is h ∈ Z>0 such that Res

(

Ln,Lh

)

does not satisfy Property (10). Let m be the least
element of the non-empty set H = {h ∈ Z>0 | Res

(

Ln,Lh

)

does not satisfy Property (10)}.
Note that if ν2(n) = ν2(m), then Res

(

Ln,Lm

)

= 0 (by Corollary 16). That is a contradiction
by the definition of H. Therefore, we have that ν2(n) 6= ν2(m). So, n 6= m, where at least
one of them is even. This implies that Res

(

Lm,Ln

)

= (−1)η
2mnRes

(

Ln,Lm

)

= Res
(

Ln,Lm

)

.
Therefore, Res

(

Lm,Ln

)

does not satisfy (10). So, m /∈ A. Since n 6= m is the least element
of B, we have m > n. From the Euclidean algorithms we know that there are q, r ∈ Z≥0

such that m = nq + r with 0 ≤ r < n.
We now proceed by cases over q.
Case q odd Suppose that q = 2t − 1. Note that t = ⌈q/2⌉ and that (m − n + r)/2 =

(t− 1)n + r. Since ν2(n) 6= ν2(m), r 6= 0 and n(n− r) is even. This, Proposition 9 for odd
case, and Lemma 7 Part (ii) and Part (iv) imply that Res

(

Ln,Lm

)

equals

Res
(

Ln,Lnq+r

)

= Res
(

Ln,LnT + (−1)t(n+1)+r−ng(t−1)n+rLn−r

)

= Res
(

Ln,LnT + (−1)t(n+1)+r−ng
m−n+r

2 Ln−r

)

= (βn)ηm−
ω(m−n+r)

2
−η(n−r)Res

(

Ln, (−1)t(n+1)+r−ng
m−n+r

2 Ln−r

)

= β
n(m−n+r)(2η−ω)

2 Res
(

Ln, (−1)t(n+1)+r−ng
m−n+r

2 Ln−r

)

.

Note that Res
(

Ln, (−1)t(n+1)+r−n
)

= (−1)ηn(t(n+1)+r−n) = (−1)ηn(r−n) = 1. This, Lemma 7
Parts (iii) and (iv) and Proposition 17 Part (i) imply

Res
(

Ln,Lm

)

= β
n(m−n+r)(2η−ω)

2 Res
(

Ln, g
m−n+r

2 Ln−r

)

= β
n(m−n+r)(2η−ω)

2 Res
(

Ln, g
)

n−m+r
2 Res

(

Ln,Ln−r

)

= β
n(m−n+r)(2η−ω)

2 ((−1)ηnωρn)
m−n+r

2 Res
(

Ln,Ln−r

)

.
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Thus,

Res
(

Ln,Lm

)

=
(

(−1)ηωβ2η−ωρ
)

(m−n+r)
2

n
Res

(

Ln−r,Ln

)

. (11)

Since n(n − r) is even, we have that Res
(

Ln−r,Ln

)

= Res
(

Ln,Ln−r

)

. This and m > n − r
imply that Res

(

Ln,Ln−r

)

satisfies (10). From this and (11) we have

Res
(

Ln,Lm

)

=
(

(−1)ηωβ2η−ωρ
)

(m−n+r)
2

n
2η gcd(n−r,n)

(

(−1)ηωβ2η−ωρ
)

n(n−r)
2

= 2η gcd(n,m)
(

(−1)ηωβ2η−ωρ
)

nm
2 .

Thus, Res
(

Ln,Lm

)

satisfies (10). That is a contradiction.
Case q is even Let q = 2t. Note that t = ⌈q/2⌉. Using Proposition 9 for the even case,

Lemma 7 Parts (ii) and (iv) and following a similarly procedure as in the proof of the case
q = 2t+1 we obtain Res

(

Ln,Lm

)

= β(2η−ω)(m−r)n/2Res
(

Ln, (−1)(n+1)t
)

Res
(

Ln, g
ntLr

)

. This,

the fact that Res
(

Ln, (−1)(n+1)t
)

= 1 and following a similar procedure as in the proof of

the case q = 2t+1 we obtain that Res
(

Ln,Lm

)

= ((−1)ηωβ2η−ωρ)(m−r)n/2Res
(

Lr,Ln

)

. Since
r < n, we have r /∈ B. Therefore, r ∈ A. This implies that

Res
(

Ln,Lm

)

= ((−1)ηωβ2η−ωρ)
(m−r)n

2 Res
(

Lr,Ln

)

= ((−1)ηωβ2η−ωρ)
(m−r)n

2

(

(−1)ηω2η gcd(r,n)β2η−ωρ
)

nr
2

= 2η gcd(n,m)
(

(−1)ηωβ2η−ωρ
)

mn
2 .

Thus, Res
(

Ln,Lm

)

satisfies (10). That is a contradiction. This completes the proof that
A = Z>0.

We now prove the case L0 = 1. It is easy to see that Ln = 2Ln is a GFP sequence of
Lucas-type, where L0 = 2. This and the previous case imply

Res
(

Lm,Ln

)

=

{

0, if ν2(n) = ν2(m);

2η gcd(m,n) ((−1)ηωβ2η−ωρ)
nm
2 , if ν2(n) 6= ν2(m).

Since Res
(

Lm,Ln

)

= Res
(

2Lm, 2Ln

)

, we have

Res
(

Lm,Ln

)

= Res
(

2,Ln

)

Res
(

Lm, 2
)

Res
(

Lm,Ln

)

= 2(n+m)ηRes
(

Lm,Ln

)

.

Therefore, Res
(

Lm,Ln

)

= 2−(n+m)ηRes
(

Lm,Ln

)

, completing the proof.

6 Proof of Theorem 3

In this section we prove the theorem about the resultant of two equivalent polynomials (see
Section 2).

The following corollary is a consequence of Proposition 12 Part (iii). So, we omit its
proof.
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Corollary 18. Let m,n ∈ Z>0. ν2(n) < ν2(m) if and only if Res
(

Ln,Fm

)

= 0.

Proof of Theorem 3. We consider two cases: α = 1 and α = 2. We prove the case α = 1,
the case α = 2 is similar and it is omitted. Let

A = {i ∈ Z>0 | ∀j ∈ Z>0, Property (12) holds for Res
(

Lj,Fi

)

}.

Res
(

Lj,Fi

)

=

{

0, if ν2(j) < ν2(i);

2η gcd(i,j)−η ((−1)ηωβ2η−ωρ)
(j(i−1))/2

, if ν2(j) ≥ ν2(i).
(12)

Since Res
(

Lj, 1
)

= 1, we have i = 1 ∈ A. So, A 6= ∅. The following claim completes the
proof.
Claim. A = Z>0.
Proof of Claim. Suppose B := Z>0 \ A is a non-empty set. Let m 6= 1 be the least element
of B. So, there is h ∈ Z>0 such that Res

(

Lh,Fm

)

does not satisfy (12). Let n be the least
element of the non-empty set H = {h ∈ Z>0 | Res

(

Lh,Fm

)

does not satisfy (12)}.
If ν2(n) < ν2(m), then by Corollary 18 it holds Res

(

Ln,Fm

)

= 0. This and (12) imply
that m ∈ A. That is a contradiction. Let us suppose that ν2(n) ≥ ν2(m).

We now analyze cases on m.
Case m = n. Note that Res

(

Ln,Fn

)

= Res
(

Fn,Ln

)

. From Proposition 10 Part (i) with
r = q = α = 1 (if α 6= 1 is similar) we have Ln = Fn+1 + gFn−1 = dFn +2gFn−1. Therefore,
Res

(

Fn,Ln

)

equals

Res
(

Fn, dFn + 2gFn−1

)

= (βn−1)ηn−(ω+η(n−2))Res
(

Fn, 2gFn−1

)

= β(n−1)(2−ω)2η(n−1)Res
(

Fn, gFn−1

)

.

By Lemma 7 Part (ii) and Proposition 15 Part (i), we have

Res
(

Fn, dFn + 2gFn−1

)

= 2η(n−1)(−1)ωη(n−1)(β(n−1)(2η−ω))ρn−1
(

(−1)ωηβ2η−ωρ
)

(n−2)(n−1)
2 .

= 2η(n−1)
(

(−1)ωηβ2η−ωρ
)

n(n−1)
2 .

So, Res
(

Ln,Fn

)

satisfies Property (12). That is contradiction. Therefore m 6= n.
Case m > n. From the Euclidean algorithm we know that m = nq + r for 0 ≤ r < n.

We consider two sub-cases on q.
Sub-case q = 1. Note that 0 < r < n. So, m = n+r and Res

(

Ln,Fm

)

= Res
(

Ln,Fn+r

)

.
This and Proposition 10 Part (i) imply that Res

(

Ln,Fm

)

= Res
(

Ln, αLnFr + (−g)rFn−r

)

.
Therefore,

Res
(

Ln,Fm

)

= βnη(n+r−1)−(ωr+η(n−r−1)Res
(

Ln, (−g)rFn−r

)

= βn(2η−ω)rRes
(

Ln, (−g)rFn−r

)

= βn(2η−ω)rRes
(

Ln, (−g)r
)

Res
(

Ln,Fn−r

)

.
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This and Lemma 7 Part (iii) imply

Res
(

Ln,Fm

)

= βn(2η−ω)r
(

Res
(

Ln,−g
))r

Res
(

Ln,Fn−r

)

= βn(2η−ω)r
(

Res
(

Ln,−1
))r (

Res
(

Ln, g
))r

Res
(

Ln,Fn−r

)

= βn(2η−ω)r(−1)rηn(−1)ηnωrRes
(

g,Ln

)r
Res

(

Ln,Fn−r

)

.

Therefore,
Res

(

Ln,Fm

)

= (−1)ηnr(ω+1)βn(2η−ω)rρnrRes
(

Ln,Fn−r

)

. (13)

Since m > n − r is the least element of B, we have n − r ∈ A. Therefore, it holds

Res
(

Ln,Fn−r

)

= 2η(gcd(n,n−r)−1) ((−1)ηωβ2η−wρ)
n(n−r−1)/2

. This and (13) (after simplifica-
tions) imply that

Res
(

Ln,Fm

)

= 2η(gcd(n,n−r)−1)
[

β2η−ω(−1)ηωρ
]

n(n+r−1)
2 .

Therefore, Res
(

Ln,Fm

)

satisfies Property (12). That is a contradiction. Thus, m 6= n+ r.
Sub-case q > 1. Since Res

(

Ln,Fm

)

= Res
(

Ln,Fnq+r

)

, by Proposition 10 Part (i) we
have Res

(

Ln,Fm

)

= Res
(

Ln, αLnFn(q−1)+r− (−g)nFn(q−2)+r

)

. This, Lemma 7 Part (iv) and
the fact that nη(nq + r − 1)− (ωn+ η(n(q − 2) + r − 1)) = (2η − ω)n2, imply that

Res
(

Ln,Fm

)

= βn(2η−ω)nRes
(

Ln,−(−g)nFn(q−2)+r

)

.

So, by Lemma 7 we have

Res
(

Ln,Fm

)

= β(2η−ω)n2

Res
(

Ln,−1
)

Res
(

Ln, (−g)n
)

Res
(

Ln,Fn(q−2)+r

)

= β(2η−ω)n2

(−1)ηn
(

Res
(

Ln,−g
))n

Res
(

Ln,Fn(q−2)+r

)

= β(2η−ω)n2

(−1)ηn(−1)ηn
2 (

Res
(

Ln, g
))n

Res
(

Ln,Fn(q−2)+r

)

= β(2η−ω)n2

(−1)ηn(n+1)
(

Res
(

Ln, g
))n

Res
(

Ln,Fn(q−2)+r

)

= β(2η−ω)n2 (

Res
(

Ln, g
))n

Res
(

Ln,Fn(q−2)+r

)

.

Since m is the least element of B and n(q− 2)+ r < m, we have that n(q− 2)+ r ∈ A. This
and ν2(n) ≥ ν2(m) = ν2(n(q − 2) + r) imply that

Res
(

Ln,Fn(q−2)+r

)

= 2η(gcd(n,n(q−2)+r)−1)
[

(−1)ηωβ2η−ωρ
]

n(n(q−2)+r−1)
2 .

Note that gcd(n, n(q − 2) + r) = gcd(n, nq + r). Therefore,

Res
(

Ln,Fm

)

= β(2η−ω)n2

(−1)ηnωρn
2

2η(gcd(n,n(q−2)+r)−1)
[

(−1)ηωβ2η−ωρ
]

n(n(q−2)+r−1)
2

= β
(2η−ω)n(nq+r−1)

2 (−1)
ηωn(nq+r−1)

2 ρ
n(nq+r−1)

2 2η(gcd(n,nq+r)−1)

= 2η(gcd(n,nq+r)−1)
[

(−1)ηωβ2η−ωρ
]

n(nq+r−1)
2 .
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From this we conclude that Res
(

Ln,Fm

)

= 2η(gcd(n,m)−1) [β2η−ω(−1)ηωρ]
n(m−1)

2 . Therefore,
m ∈ A. That is is a contradiction.

Case m < n. From the Euclidean algorithm we know that n = mq + r for 0 ≤ r < m.
There are two sub-cases to consider, q = 1 and q > 1. However, we prove only the case in
which q = 1, the other case is similar and it is omitted.

Sub-case q = 1. In this case r 6= 0, for r = 0 see the case m = n. Therefore,
Res

(

Ln,Fm

)

= Res
(

Lm+r,Fm

)

. This, Proposition 10 Part (ii) and Lemma 7 Parts (i) imply
that

Res
(

Ln,Fm

)

= Res
( (

(a− b)2/α
)

FmFr + (−g)rLm−r,Fm

)

= (−1)η
2(m+r)(m−1)Res

(

Fm,
(a− b)2

α
FmFr + (−g)rLm−r

)

.

Note that (m ± r)(m − 1) and r(m − 1) are even (it is clear if m is odd), if m is
even, then 1 ≤ ν2(m) ≤ ν2(n = m + r). So, both n and r are even. Therefore, we have
(−1)η

2(m+r)(m−1) = (−1)η(m−1)r = (−1)η(m−1)ωr = 1.
From Lemma 7 Parts (ii), (iii), and (iv) we have

Res
(

Ln,Fm

)

= (βm−1)η(m+r)−(η(m−r)+ωr)Res
(

Fm, (−g)rLm−r

)

= β(m−1)(2η−ω)rRes
(

Fm, (−g)r
)

Res
(

Fm,Lm−r

)

= β(m−1)(2η−ω)rRes
(

Fm, (−g)r
)

Res
(

Fm,Lm−r

)

= β(m−1)(2η−ω)rRes
(

Fm, (−1)r
)

Res
(

Fm, g
r
)

Res
(

Fm,Lm−r

)

= β(m−1)(2η−ω)r(−1)η(m−1)r(−1)η(m−1)ωrRes
(

g,Fm

)r
Res

(

Fm,Lm−r

)

= β(m−1)(2η−ω)rρr(m−1)(−1)η
2(m−1)(m−r)Res

(

Lm−r,Fm

)

= (−1)η(m−1)(1+ω)rβ(m−1)(2η−ω)rρr(m−1)Res
(

Lm−r,Fm

)

.

Since n = m + r is the least element of H, we have that (m − r) 6∈ H. Therefore,
Res

(

Lm−r,Fm

)

satisfies (12). So,

Res
(

Ln,Fm

)

= β(m−1)(2η−ω)rρr(m−1)2η(gcd(m−r,m)−1)
(

β2η−ωρ
)(m−r)(m−1)/2

.

Since 0 < r < m, the gcd(m − r,m) = 1. This (after some simplifications) implies that

Res
(

Ln,Fm

)

= ((−1)ηωβ2η−ωρ)
(m−1)(m+r)/2

. Therefore, m ∈ A. That is a contradiction.
This completes the proof of the claim.

7 Proof of Theorem 6

In this section we prove a theorem that gives closed formulas for the derivatives of GFPs.
Recall that from (4) and (5) we have d = a + b, b = −g/a, where d and g are the

polynomials defined in (2) and (3). This implies that a− b = a + ga−1. Here F ′
n, L

′
n, a

′, b′

and d′ are the derivatives of Fn, Ln, a, b and d with respect to x.
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Proof of Theorem 6. We prove Part (i). From Binet formula (4) and b = −g/a we have

Fn =
(

an − (−g)na−n
)

/
(

a− (−g)a−1
)

.

Differentiating Fn with respect to x, using a− b = a+ ga−1 and simplifying we have

F ′
n =

na′ (an−1 + (−g)na−n−1)

(a− b)2
−

a′(1− ga−2) (an − (−g)na−n)

(a− b)2
. (14)

Since d = a+ b, and b = −g/a, we have a′ + b′ = d′, and b′ = ga−2a′. These imply that

a′ =
ad′

a+ ga−1
and 1− ga−2 =

d

a
.

Substituting these results in (14) and simplifying we have

F ′
n =

nad′ (an−1 + (−g)na−n−1)

(a− b)2
−

d · d′

(1 + ga−1)2
(an − (−g)na−n)

(a− b)
.

Thus,

F ′
n =

nd′ (an + bn)

(a− b)2
−

d · d′

(a− b)2
(an − (−g)na−n)

(a− b)
.

It is known that (see, for example [11]) an + bn = gFn−1 + Fn+1. So,

F ′
n =

nd′ (gFn−1 + Fn+1)− d · d′Fn

(a− b)2
.

This completes the proof of Part (i).
We now prove Part (ii). From [11] we know that Ln = (gFn−1 + Fn+1) /α. Differentiating

Ln with respect to x, we have (recall that g is constant) L′
n =

(

gF ′
n−1 + F ′

n+1

)

/α. This and
Part (i) imply that

L′
n =

gd′ ((n− 1)αLn−1 − dFn−1)

α(a− b)2
+

d′ ((n+ 1)αLn+1 − dFn+1)

α(a− b)2
.

Simplifying we have

L′
n =

d′

α(a− b)2

(

(n− 1)αgLn−1 + (n+ 1)αLn+1 − dα
gFn−1 + Fn+1

α

)

.

This and Ln = (gFn−1 + Fn+1) /α imply that

L′
n =

d′ ((n− 1)gLn−1 + (n+ 1)Ln+1 − dLn)

(a− b)2
.

Therefore,

L′
n =

d′ (n(gLn−1 + Ln+1) + (Ln+1 − gLn−1)− dLn)

(a− b)2
. (15)

From [11] we know that

gLn−1 + Ln+1 = (a− b)2Fn/α, Ln+1 − gLn−1 = αLnL1, and αL1 − d = 0.

Substituting these identities in (15) completes the proof.
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8 Proof of Theorems 4 and 5

In this section we prove Theorems 4 and 5. We first prove some basic lemmas needed for
the main proof.

8.1 Basic lemmas for the discriminant

Recall that one of the expressions for the discriminant of a polynomial f is given by Disc
(

f
)

=

(−1)n(n−1)/2a−1Res
(

f, f ′
)

, where a = lc(f), n = deg(f) and f ′ the derivative of f .

Lemma 19. For n ∈ Z≥0 we have

Fn mod d2 + 4g ≡

{

n(−g)(n−1)/2, if n is odd;

(−1)(n+2)/2
(

ndg(n−2)/2
)

/2, if n is even.

Proof. We use mathematical induction. Let S(k) be statement:

Fk mod d2 + 4g ≡

{

(−1)(k−1)/2kg(k−1)/2, if k is odd;

(−1)(k+2)/2
(

kdg(k−2)/2
)

/2, if k is even.

Since F1 = 1 and F2 = d, we have S(1) and S(2) are true. Suppose that the statement is
true for some k = n− 1 and k = n. Thus, suppose that S(n− 1) and S(n) are true and we
prove S(n+ 1). We consider two cases on the parity of n.

Case n even. Recall that Fn+1 = dFn + gFn−1. This and S(n − 1) and S(n) (with n
even and n−1 odd) imply that Fn+1 ≡ (−1)(n+2)/2

(

nd2g(n−2)/2/2
)

+(n−1)(−g)(n−2)/2g mod
d2 + 4g. Simplifying

Fn+1 ≡ (−1)(n+2)/2nd
2g(n−2)/2

2
+ (2n− (n+ 1))(−1)(n−2)/2gn/2 mod d2 + 4g.

It is easy to see that

(−1)(n+2)/2nd
2g(n−2)/2

2
+ 2n(−1)(n−2)/2gn/2 = (−1)(n+2)/2ng

(n−2)/2

2

(

d2 + 4g
)

.

Thus,

Fn+1 ≡ (−1)(n+2)/2ng
(n−2)/2

2

(

d2 + 4g
)

+ (n+ 1)(−g)n/2 mod d2 + 4g.

This implies that Fn+1 ≡ (n+ 1)(−g)n/2 mod d2 + 4g.
Case n odd. S(n− 1) and S(n) (with n odd and n− 1 even) and Fn+1 = dFn + gFn−1,

imply that

Fn+1 ≡ n(−g)(n−1)/2d+ (−1)(n+1)/2

(

(n− 1)dg(n−3)/2

2

)

g mod d2 + 4g

≡ dg(n−1)/2

(

(−1)(n−1)/22n− (−1)(n−1)/2(n− 1)

2

)

mod d2 + 4g

≡
(−1)(n+3)/2(n+ 1)dg(n−1)/2

2
mod d2 + 4g.
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This completes the proof.

Lemma 20. If n ∈ Z≥0, then Res
(

(a− b)2,Fn

)

= (β2η−ωρ)(n−1)n2η.

Proof. From [11] we know that (a− b)2 = d2 + 4g. This and Lemma 19 imply that there is
a polynomial T such that

Fn =

{

(a− b)2T + n(−g)(n−1)/2, if n is odd;

(a− b)2T + (−1)(n+2)/22−1dg(n−2)/2n, if n is even.
(16)

Using Lemma 7 Parts (i), (iii) and (iv) and simplifying we have

Res
(

d2+4g, gm
)

= Res
(

d2+4g, g
)m

= Res
(

d2+4g, g
)m

= (λ2η−2ηRes
(

g, d
)2
)m = ρ2m. (17)

To find Res
(

(a− b)2,Fn

)

we consider two cases, depending on the parity of n.
Case n is even. From (16) we have

Res
(

(a− b)2,Fn

)

= Res
(

(a− b)2, (a− b)2T + (−1)(n+2)/22−1dg(n−2)/2n
)

.

This and Lemma 7 Parts (i), (ii) and (iv) imply that

Res
(

(a− b)2,Fn

)

= β(2η−ω)(n−2)Res
(

(a− b)2, (−1)(n+2)/22−1n
)

Res
(

(a− b)2, dg(n−2)/2
)

= β(2η−ω)(n−2)(2−1n)2ηRes
(

(a− b)2, d
)

Res
(

(a− b)2, g(n−2)/2
)

= β(2η−ω)(n−2)(2−1n)2ηRes
(

d, d2 + 4g
)

Res
(

(a− b)2, g(n−2)/2
)

.

Using similar analysis as in (17) we have Res
(

(a− b)2, g(n−2)/2
)

= ρn−2. It is easy to see that
Res

(

(a− b)2, d
)

= Res
(

d, d2 + 4g
)

= β2n−ω2η. Therefore,

Res
(

(a− b)2,Fn

)

= β(2η−ω)(n−1)n2ηρρn−2 = (β2η−ωρ)(n−1)n2η.

Case n is odd. From (16) we have

Res
(

(a− b)2,Fn

)

= Res
(

(a− b)2, (a− b)2T + (−1)(n+2)/22−1dg(n−2)/2n
)

.

This and Lemma 7 Parts (i), (ii) and (iv) imply that

Res
(

(a− b)2,Fn

)

= (β2)η(n−1)−ω(n−1)/2Res
(

d2 + 4g, n(−g)(n−1)/2
)

= β(2η−ω)(n−1)n2ηRes
(

d2 + 4g, g(n−1)/2
)

= (β2η−ωρ)(n−1)n2η.

This completes the proof.
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8.2 Proof of main theorems about discriminant

Proof of Theorem 4. From Theorem 6 we have

Res
(

Fn, (a− b)2F ′
n

)

= Res
(

Fn, d
′(nαLn − dFn)

)

.

Since deg(d) = 1, we have that d′ is a constant. (Recall that when Fn and Ln are together
in a resultant, they are equivalent.) Therefore,

Res
(

Fn, (a− b)2F ′
n

)

= (d′)n−1Res
(

Fn, nαLn − dFn

)

.

Since deg(Fn) = η(n−1) and deg(Ln) = ηn, we have Res
(

Fn, nαLn−dFn

)

= Res
(

Fn, nαLn

)

.
So, Res

(

Fn, (a − b)2F ′
n

)

= (αd′n)n−1Res
(

Fn,Ln

)

= (αd′n)n−1Res
(

Ln,Fn

)

. This and Theo-
rem 3 imply that

Res
(

Fn, (a− b)2F ′
n

)

= (αd′n)n−12n−1α1−n
(

β2ρ
)n(n−1)/2

= (2d′n)n−1
(

β2ρ
)n(n−1)/2

. (18)

On the other hand, from Lemma 20 and the fact that deg(a− b)2 is even we have

Res
(

Fn, (a− b)2F ′
n

)

= Res
(

Fn, (a− b)2
)

Res
(

Fn,F
′
n

)

= n2(β2ρ)(n−1)Res
(

Fn,F
′
n

)

.

This and (18) imply that

Res
(

Fn,F
′
n

)

=
(2d′n)n−1

(

β2ρ
)n(n−1)/2

n2(β2ρ)(n−1)
= nn−3(2d′)n−1(β2ρ)(n−1)(n−2)/2.

Therefore,

Disc
(

Fn

)

= (−1)
(n−1)(n−2)

2 β1−nRes
(

Fn,F
′
n

)

= β1−nnn−3(2d′)n−1(−β2ρ)(n−1)(n−2)/2.

This completes the proof.

Proof of Theorem 5. From the definition of the discriminant we have

Disc
(

Ln

)

= (−1)n(n−1)/2αβ−nRes
(

Ln,L
′
n

)

.

This and Theorem 6 imply that Disc
(

Ln

)

= (−1)n(n−1)/2αβ−nRes
(

Ln, (nd
′Fn)/α

)

. Since

(nd′)/α is a constant, Disc
(

Ln

)

= (−1)n(n−1)/2αβ−n(nd′/α)nRes
(

Ln,Fn

)

. This and Theorem
3 imply that

Disc
(

Ln

)

= (−1)
n(n−1)

2 αβ−n
(nd′

α

)n

2n−1α1−n
(

β2ρ
)(n(n−1))/2

= βn(n−2)
(

nd′
)n

2n−1α2−2n
(

− ρ
)(n(n−1))/2

.

Completing the proof.
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Theorems 4 and 5 generalize as follows.
If deg(d) = m, g is a constant and d′ is the derivative of d, then

Disc
(

Fn

)

= (−ρ)(n−2)(n−1)/22n−1nn−3β(n−1)(n−3)Res
(

Fn, d
′
)n−1

.

If deg(d) = m, g is a constant and d′ is the derivative of d, then

Disc
(

Ln

)

= (−ρ)n(n−1)/2 2n−1nnα2−2nβn(n−2)Res
(

Ln, d
′
)n
.

Open question. In this paper we did not investigate the case deg(g) ≥ deg(d). This
property is satisfied by Jacobsthal polynomials.
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