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Abstract

The prefix palindromic length PPLu(n) of an infinite word u is the minimal number
of concatenated palindromes needed to express the prefix of length n of u. In a 2013
paper with Puzynina and Zamboni we stated the conjecture that PPLu(n) is unbounded
for every infinite word u that is not ultimately periodic. Up to now, the conjecture has
been proven for almost all words, including all words avoiding some power p. However,
even in that simple case the existing upper bound for the minimal number n such that
PPLu(n) > K is greater than any constant to the power K. Precise values of PPLu(n)
are not known even for simplest examples like the Fibonacci word.

In this paper, we give the first example of such a precise computation and compute
the function of the prefix palindromic length of the Thue-Morse word, a famous test
object for all functions on infinite words. It happens that this sequence is 2-regular,
which raises the question if this fact can be generalized to all automatic sequences.

1 Introduction

By the usual definition, a palindrome is a finite word p = p[1] · · · p[n] over a finite alphabet
such that p[i] = p[n − i + 1] for every i, like level or abba. We consider decompositions, or
factorizations, of a finite word into a concatenation of palindromes: for example, acbcadd =
(a)(cbc)(a)(dd) and, at the same time, acbcadd = (acbca)(dd). In particular, we are interested
in the minimal number of palindromes needed for such a decomposition, which we call a
palindromic length of a word. For example, the palindromic length of abbaba is equal to
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3, since this word is not a concatenation of two palindromes, but abbaba = (abba)(b)(a) =
(a)(bb)(aba).

A decomposition into a minimal possible number of palindromes is called optimal.
In this paper, we are interested in the palindromic length of prefixes of an infinite word

u = u[1] · · · u[n] · · · , denoted by PPLu(n). The length of the shortest prefix of u of palin-
dromic length k is denoted by SPu(k) and can be considered as a kind of an inverse function
to PPLu(n). Clearly, SPu(k) can be infinite: for example, if u = abababab · · · , SPu(k) = ∞
for every k ≥ 3.

The following conjecture was first formulated, in slightly different terms, in our 2013
paper with Puzynina and Zamboni [13].

Conjecture 1. For every non ultimately periodic word u, the function PPLu(n) is un-
bounded, or equivalently, SPu(k) < ∞ for every k ∈ N.

In fact, there were two versions of the conjecture considered in our paper [13], one con-
cerning the prefix palindromic length and the other concerning the palindromic length of
any factor of u. However, Saarela [15] later proved the equivalence of these two statements.

In the same initial paper [13], the conjecture was proved for the case when u is p-power-
free for some p, as well as for the more general case when a so-called (p, l)-condition holds for
some p and l. Due to the above-mentioned result by Saarela, this means that the conjecture
is proven for almost all words, since almost all words contain as long p-power-free factors
as needed. However, for some cases, the conjecture remains unsolved, and, for example, its
proof for all Sturmian words [11] required a special technique.

Most published papers on palindromic length concern algorithmic aspects; in particular,
there are several fast effective algorithms for computing PPLu(n) [9, 5, 14].

The original proof of Conjecture 1 for the p-power-free words is not constructive. The
upper bound for a length N such that PPL(N) ≥ K for a given K is given as a solution of a
transcendental equation and grows with K faster than any exponential function. However,
this does not look to be the best possible bound. So, it is reasonable to state the following
conjecture:

Conjecture 2. If a word u is p-power free for some p, then

lim sup
PPLu(n)

lnn
> 0,

or, equivalently, SPu(k) ≤ Ck for some C. The constant C can be chosen independently of
u as a function of p.

In this paper, we consider in detail the case of the Thue-Morse word A010060, a classical
example of a word avoiding powers greater than 2 [3]. We give precise formulas for its prefix
palindromic length and discuss its properties. This is a simple but necessary step before
considering all p-power-free words, or all fixed points of uniform morphisms, or any other
family of words containing the Thue-Morse word.
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The results of this paper, in less detail, have been announced in the proceedings of DLT
2019 [10], together with some other results on the prefix palindromic length.

Throughout this paper, we use the notation w(i..j] = w[i+1]..w[j] for a factor of a finite
or infinite word w starting at position i+ 1 and ending at j.

The following lemma is a particular case of a statement by Saarela [15, L. 6]. We give
its proof for the sake of completeness.

Lemma 3. For every word u and for every n ≥ 0, we have

PPLu(n)− 1 ≤ PPLu(n+ 1) ≤ PPLu(n) + 1.

Proof. Consider the prefixes v and va of u of length n and n + 1 respectively. Clearly, for
any decomposition u = p1 · · · pk into k palindromes ua = p1 · · · pka is a decomposition of ua
into k+1 palindrome. On the other hand, for any palindromic decomposition ua = q1 · · · qk,
we have either qk = a, and then u = q1 · · · qk−1, or qk = apka, for a (possibly empty)
palindrome pk, and then u = q1 · · · qk−1apk is a decomposition of u into k+1 palindromes. If
initial decompositions were optimal, this gives PPLu(n+ 1) ≤ PPLu(n) + 1 and PPLu(n) ≤
PPLu(n+ 1) + 1.

So, the first differences of the prefix palindromic length can be equal only to −1, 0, or 1,
and the graph never jumps.

In this paper, it is convenient to consider the famous Thue-Morse word A010060

t = abbabaabbaababba · · ·

as the fixed point starting with a of the morphism

τ :

{

a → abba,

b → baab.

Both images of letters under this morphism, which is the square of the usual Thue-Morse
morphism a → ab, b → ba, are palindromes.

It is thus easy to see that every prefix of the Thue-Morse word of length 4k is a palindrome,
so that PPLt(4

k) = 1 for all k ≥ 0. The first values of PPLt(n) and of SPt(k) are given
below; also see the A307319 entry of the On-Line Encyclopedia of Integer Sequences (OEIS)
[16].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PPLt(n) 1 2 2 1 2 3 3 2 3 4 3 2 3 3 2 1

As for the shortest prefix of a given palindromic length, we give its length in decimal and
quaternary notation; also see A320429 in the OEIS [16].

k 1 2 3 4 5 6 7 8
SPt(k) 1 2 6 10 26 90 154 410
4-ary 1 2 12 22 122 1122 2122 12122

Now we are going to prove the self-similarity properties which we observe.
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2 Recurrence relations

Theorem 4. The following identities hold for all n ≥ 0:

PPLt(4n) = PPLt(n), (1)

PPLt(4n+ 1) = PPLt(n) + 1, (2)

PPLt(4n+ 2) = min(PPLt(n),PPLt(n+ 1)) + 2, (3)

PPLt(4n+ 3) = PPLt(n+ 1) + 1. (4)

To prove Theorem 4, we need several observations. First of all, the shortest non-empty
palindrome factors in the Thue-Morse word are a, b, aa, bb, aba, bab, abba, baab. All
palindromes of length more than 3 are of even length and have aa or bb in the center: if
t(i..i+ 2k] is a palindrome, then t(i+ k − 1, i+ k + 1] = aa or bb.

Let us say that an occurrence of a palindrome t(i..j] is of type (i′, j′) if i′ is the residue
of i and j′ is the residue of j modulo 4. For example, the palindrome t(5..7] = aa is of type
(1, 3), the palindrome t(4, 8] = baab is of type (0, 0), and the palindrome t(7..9] = bb is of
type (3, 1).

Proposition 5. Every occurrence of a palindromic factor of length not equal to one or three

in the Thue-Morse word is of a type (m, 4−m) for some m ∈ {0, 1, 2, 3}.

Proof. Every such palindrome in the Thue-Morse word is of even length which we denote by
2k, and every occurrence of it is of the form t(i..i+2k]. Its center t(i+k−1, i+k+1] is equal
to aa or bb, and these two words always appear in t at positions of the form t(2l− 1, 2l + 1]
for some l ≥ 1. So, i + k − 1 = 2l − 1, meaning that i = 2l − k and i + 2k = 2l + k. So,
modulo 4, we have i+ (i+ 2k) = 4l ≡ 0, that is, i ≡ −(i+ 2k).

Note that the palindromes of odd length in the Thue-Morse word are, first, a and b,
which can be of type (0, 1), (1, 2), (2, 3) or (3, 0), and second, aba and bab, which can only
be of type (2, 1) or (3, 2).

Proposition 6. Let t(i..i+k] for i > 0 be a palindrome of length k > 0 and of type (m, 4−m)
for some m 6= 0. Then t(i− 1..i+ k + 1] is also a palindrome, as well as t(i+ 1..i+ k − 1].

Proof. The type of the palindrome is not (0, 0), meaning that its first and last letters t[i+1]
and t[i+ k] are not the first and the last letters of τ -images of letters. Since these first and
last letters are equal and their positions in τ -images of letters are symmetric and determine
their four-blocks abba or baab, the letters t[i] and t[i + k + 1] are also equal, and thus
t(i−1..i+k+1] is a palindrome. As for t(i+1..i+k−1], it is a palindrome since is obtained
from the palindrome t(i..i+ k] by erasing the first and the last letters.

Let us say that a decomposition of t(0..4n] into palindromes is a 0-decomposition if all
palindromes in it are of type (0, 0). The minimal number of palindromes in a 0-decomposition
is denoted by PPL0

t (4n).
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Proposition 7. For every n ≥ 1, we have PPLt(n) = PPL0

t (4n) ≥ PPLt(4n).

Proof. It is sufficient to note that τ is a bijection between all palindromic decompositions of
t(0..n] and 0-decompositions of t(0..4n].

Proposition 8. If (3) holds for n = N − 1, then

PPLt(4N − 2) > PPLt(4N). (5)

Proof. The equality (3) means that PPLt(4N − 2) = min(PPLt(N − 1),PPLt(N)) + 2, but
since due to Lemma 3 we have PPLt(N) ≤ PPLt(N − 1) + 1, we also have min(PPLt(N −
1),PPLt(N)) + 2 ≥ PPLt(4N) + 1.

Now we can start the main proof of Theorem 4.
The proof is done by induction on n. Clearly, PPLt(0) = 0, PPLt(1) = PPLt(4) = 1,

and PPLt(2) = PPLt(3) = 2, the equalities (1)–(4) hold for n = 0, and moreover, (1) is
true for n = 1. Now suppose that they all, and, by Proposition 8, the equality (5), hold for
all n < N , and (1) holds also for n = N . We fix an N > 0 and prove for it the following
sequence of propositions.

Proposition 9. An optimal decomposition into palindromes of the prefix t(0..4N+1] cannot
end with a palindrome of length 3.

Proof. Suppose the opposite: some optimal decomposition of t(0..4N + 1] ends with the
palindrome t(4N − 2..4N +1]. This palindrome is preceded by an optimal decomposition of
t(0..4N − 2]. So, PPLt(4N + 1) = PPLt(4N − 2) + 1; but by (5) applied to N − 1, which
we can use by the induction hypothesis, PPLt(4N − 2) > PPLt(4N). So, PPLt(4N + 1) >
PPLt(4N) + 1, contradicting to Lemma 3.

Proposition 10. There exists an optimal decomposition into palindromes of the prefix

t(0..4N + 2] that does not end with a palindrome of length 3.

Proof. The opposite would mean that all optimal decompositions of t(0..4N + 2] end with
the palindrome t(4N − 1..4N + 2] preceded by an optimal decomposition of t(0..4N − 1].
So, PPLt(4N + 2) = PPLt(4N − 1) + 1; by the induction hypothesis, PPLt(4N − 1) =
PPLt(4N)+1. So, PPLt(4N +2) = PPLt(4N)+2, and thus another optimal decomposition
of t(0..4N + 2] can be obtained as an optimal decomposition of t(0..4N ] followed by two
palindromes of length 1. A contradiction.

Proposition 11. For every m ∈ {1, 2, 3}, the equality holds

PPLt(4N +m) = min(PPLt(4N +m− 1),PPLt(4N +m+ 1)) + 1.

Proof. Consider an optimal decomposition t(0..4N+m] = p1 · · · pk, where k = PPLt(4N+m).
Denote the ends of palindromes as 0 = e0 < e1 < · · · < ek = 4N +m, so that pi = t(ei−1, ei]
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for each i. Since m 6= 0 and due to Proposition 5, there exist some palindromes of length 1
or 3 in this decomposition. Let pj be the last of them.

Suppose first that j = k. Then due to the two previous propositions, pk can be taken of
length 1 not 3, so that t(0..4N +m− 1] = p1 · · · pk−1 is decomposable to k− 1 palindromes.
Due to Lemma 3, we have PPLt(4N+m−1) = k−1, and thus PPLt(4N+m) = PPLt(4N+
m − 1) + 1. Again due to Lemma 3, we have PPLt(4N + m + 1) ≥ PPLt(4N + m) − 1 =
PPLt(4N +m− 1), and so the statement holds.

Now suppose that j < k, so that ej ≡ −ej+1 ≡ ej+2 ≡ · · · ≡ (−1)k−jek (mod 4). Here
pj is the last palindrome in an optimal decomposition of p1 · · · pj and it is of length 1 or 3.
But if ej ≡ 1 or 2 (mod 4), pj can be taken of length 1 due to the two previous propositions
applied to some smaller length; and if ej ≡ 3 (mod 4), it is of length 1 since the suffix of
length 3 of t(0..4n+ 3]) is equal to abb or to baa, so, it is not a palindrome. So, anyway, we
can take pj of length one: pj = t(ej − 1, ej ].

Since ej ≡ ±ek and ek ≡ m 6= 0 (mod 4), we may apply Proposition 6 and see that
p′j = t(ej − 1..ej+1 + 1] is a palindrome, as well as p′j+1 = t(ej+1 + 1..ej+2 − 1] and so on
up to p′k−1

= t(ek−1 + (−1)k−j..ek − (−1)k−j]. So, p1 · · · pj−1p
′
j · · · p

′
k−1

is a decomposition of
t(0..4N +m− (−1)k−j] into k− 1 palindromes. So, as above, PPLt(4N +m) = PPLt(4N +
m− (−1)k−j) + 1, and since PPLt(4N +m+ (−1)k−j) ≥ PPLt(4N +m)− 1 = PPLt(4N +
m− (−1)k−j), the proposition holds.

Proposition 12. Every optimal palindromic decomposition of t(0..4N+4] is a 0-decomposition,

and thus PPLt(4N + 4) = PPLt(N + 1).

Proof. Suppose the opposite; then the last palindrome in the optimal decomposition that
is not of type (0, 0) is of type (m, 0) and thus is of length 1 or 3. Since the proof of
Theorem 4 proceeds by induction on N , this proposition is true for all n < N , and thus the
palindrome of type (m, 0) is the very last palindrome of the optimal decomposition. Since
the suffix of length 3 of t(0..4N + 4] is equal to bba or aab and thus is not a palindrome,
the last palindrome of the optimal decomposition is of length 1, meaning that PPLt(4N +
4) = PPLt(4N + 3) + 1. Now let us use Proposition 11 applied to m = 3, 2, 1; every time
we get PPLt(4N + m) = PPLt(4N + m − 1) + 1. Using all these equalities together, we
get PPLt(4N + 4) = PPLt(4N) + 4, which is impossible since PPLt(4N) = PPLt(N) and
PPLt(4N + 4) ≤ PPLt(N + 1) ≤ PPLt(N) + 1. A contradiction.

We have proven (1) for n = N + 1. It remains to prove (2)–(4) for n = N . Indeed, we
know that

− 1 ≤ PPLt(4N + 4)− PPLt(4N) = PPLt(N + 1)− PPLt(N) ≤ 1. (6)

Now to prove (2) suppose by contrary that PPLt(4N + 1) ≤ PPLt(4N) = PPLt(N). Due
to Proposition 11, this means that PPLt(4N + 1) = PPLt(4N + 2) + 1, that is, PPLt(4N +
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2) < PPLt(4N), and, again by Proposition 11, PPLt(N + 1) = PPLt(4N + 2) − 2. Thus,
PPLt(N)− PPLt(N + 1) ≥ 3, a contradiction to (6). So, (2) is proven.

The equality (4) is proven symmetrically. Now (3) follows from both these equalities in
combination with Proposition 11, completing the proof of Theorem 4.

3 Corollaries

The first differences (dt(n))
∞
n=0 of the prefix palindromic length are defined by dt(n) =

PPLt(n+ 1)−PPLt(n); here we set PPLt(0) = 0. Due to Lemma 3, dt(n) ∈ {−1, 0,+1} for
every n; so, it is a sequence over a finite alphabet, which we prefer to denote by { , , }.
We write these symbols joining the ends of intervals from left to right, so that the sequence
(dt(n)) becomes the plot of PPLt(n).

The following corollary of Theorem 4 is more or less straightforward.

Corollary 13. The sequence (dt(n)) is the fixed point of the morphism

δ :



















→

→

→

Proof. Theorem 4 immediately means that PPLt(4n), . . . ,PPLt(4n + 4) are determined by
PPLt(n) and PPLt(n + 1), and moreover, dt(4n), . . ., dt(4n + 3) are determined by dt(n).
This means exactly that the sequence dt(n) is a fixed point of a morphism of length 4. The
equality (2) means that the first symbol of any morphic image of δ is ; the equality (4)
means that the last symbol of any morphic image of δ is ; the two symbols in the middle
can be found from (3) and depend on dt(n).

With the previous corollary, we can draw the plot of PPLt(n) as the fixed point of δ.

PPLt(n)

n
4 16 64

Figure 1: PPLt(n)

The next proposition can be obtained from Theorem 4 by elementary computations.
Recall that SP(k) = SPt(k) is the length n of the shortest prefix of t such that its palindromic
length PPLt(n) is equal to k.

Proposition 14. We have SP(1) = 1, SP(2) = 2, SP(3) = 6 and for all k > 0,

SP(k + 3) = 16 SP(k)− 6.
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Proof. Let us introduce SP2(k) as the minimal number n such that PPLt(n) = PPLt(n+1) =
k. By definition, SP2(k) ≥ SP(k). The first values of SP(k) and SP2(k) are given below.

k 1 2 3 4 5
SP(k) 1 2 6 10 26
SP2(k) ∞ 2 6 22 38

From the definition of the morphism δ we immediately see that a new value n = SP(k)
can appear either in the middle of the δ-image of dt(n

′) = dt(SP2(k − 2)), or in the middle
of the δ-image of dt(n

′′), where n′′ = SP(k− 1)− 1. The latter case is also the only possible
way to get a new value n = SP2(k). So,

SP(k) = min(4 SP2(k − 2) + 2, 4 SP(k − 1)− 2), (7)

SP2(k) = 4 SP(k − 1)− 2. (8)

As we see from the table, for 3 ≤ k ≤ 5, we have SP(k − 1) ≤ SP2(k − 1) < SP(k).
The first inequality is obvious, but let us prove the second one by induction. Its base is
observed for 3 ≤ k ≤ 5, so, consider k ≥ 6 such that for all k′ = k − 3, k − 2, k − 1 we have
SP2(k

′ − 1) < SP(k′).
In particular, SP2(k−4) < SP(k−3), so due to (7), we have SP(k−2) = 4 SP2(k−4)+2,

and so due to (8),
SP2(k − 1) = 16 SP2(k − 4) + 6. (9)

On the other hand, we have SP2(k−2) < SP(k−1), so, (7) becomes SP(k) = 4 SP2(k−2)+2,
and together with (8) this gives

SP(k) = 16 SP(k − 3)− 6. (10)

Combining (9), (10), the induction base SP2(k − 4) < SP(k − 3) and the fact that all the
values are integers, we obtain that SP2(k − 1) < SP(k) for all k ≥ 3. We also see that (10)
is true for all k ≥ 4, proving this proposition.

The following corollary of the previous proposition can be proved by straightforward
induction.

Corollary 15. In the 4-ary numeration system, we have SP(3k + 2) = ((12)k2)4 for all

k ≥ 0; SP(3k) = (1(12)k−12)4 for all k ≥ 1; SP(3k + 1) = (2(12)k−12)4 for all k ≥ 1.

Another direct consequence of Proposition 14 is

Corollary 16. We have

lim sup
PPLt(n)

lnn
=

3

4 ln 2
,

whereas lim inf
PPLt(n)

lnn
= 0 since PPLt(4

m) = 1 for all m.
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4 Regularity

The sequence (PPLt(n)) is closely related to the Thue-Morse word, the most classical example
of a 2-automatic sequence. In general, a sequence w = (w[n]) is called k-automatic if there
exists a finite automaton such that for the input equal to the k-ary representation of n,
the output is equal to w[n]. Equivalently, due to a theorem by Cobham [7], a sequence is
k-automatic if and only if it is an image under a coding c : Σ → ∆ of a fixed point of a
k-uniform morphism ϕ: w = c(w′), where w′ = ϕ(w′) [1, Ch. 6]. So, the Thue-Morse word
is 2-automatic since it is a fixed point of the 2-uniform morphism a → ab, b → ba, and the
sequence (dt(n)) is 4-automatic since it is a fixed point of δ. In both cases, the coding can
be taken to be trivial: c(x) = x for every letter x. It is also well-known that a sequence is
k-automatic if and only if it is km-automatic for any integer m, so, in particular, being 2-
and 4-automatic is the same property. So, the Thue-Morse word is also 4-automatic and the
sequence (dt(n)) is 2-automatic.

A more general notion of a k-regular sequence was introduced by Allouche and Shallit
[2]; also see [1, Ch. 16]. A sequence (a(n)) is called k-regular (on Z) if there exists a finite
number of sequences {(a1(n)), . . . , (as(n))} such that for every integer i ≥ 0 and 0 ≤ b < ki

there exist c1, . . . , cs ∈ Z such that for all n ≥ 0 we have

a(kin+ b) =
∑

1≤j≤s

cjaj(n).

It is also known that a sequence is k-automatic if and only if it is k-regular and takes on
finitely many values [1, Thm. 16.1.4]. Moreover, a sequence a = (a(n)) is k-regular if and
only if there exist r sequences a1 = a, . . . , ar and a matrix-valued morphism µ such that if

V (n) =









a1(n)
a2(n)
· · ·

ar(n)









,

then
V (kn+ b) = µ(b)V (n)

for 0 ≤ b < k [1, Thm. 16.1.3]. Many sequences related to k-automatic words are k-regular,
as it was shown by Charlier, Rampersad and Shallit [6]. However, it seems that the general
approach from the mentioned paper does not directly work for the palindromic length, so,
we have to prove the following corollary only for the Thue-Morse word.

Corollary 17. The sequence PPLt(n) is 4-regular.

Proof. Consider the auxiliary sequences (d(n)), which is (dt(n)) interpreted as a sequence
over the alphabet {−1, 0, 1}; (e(n)) defined by

e(n) =

{

0, if d(n) = −1;

1, otherwise,
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and (h(n)) defined by

h(n) =

{

1, if d(n) = 1;

0, otherwise.

Consider the vector

V (n) =













PPLt(n)
d(n)
e(n)
h(n)
1













.

Then Theorem 4 and Corollary 13 immediately imply that

V (4n+ b) = µ(b)V (n)

for every b = 0, . . . , 3, where

µ(0) =













1 0 0 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1













, µ(1) =













1 0 0 0 1
0 0 1 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 1













,

µ(2) =













1 0 1 0 1
0 0 0 1 −1
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1













, µ(3) =













1 1 0 0 1
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1













.

As it is discussed above, these equalities are sufficient to claim that the first sequence in the
vector, PPLt(n), is 4-regular.

Remark 18. In fact, every sequence with k-automatic first differences is k-regular, which can
be proven with a similar construction, perhaps with more auxiliary sequences like (e(n)) and
(h(n)).

5 Conclusion

To my knowledge, the results of this paper are thus far, the only precise formulas for the
prefix palindromic length of a non-trivial infinite word not constructed especially for that
purpose.

Even for famous and simple examples like Toeplitz words or the Fibonacci word A003849,
lower bounds for the prefix palindromic length are difficult [12, 10]. The only more or less
universal lower bounds for all p-power-free words are those from the first paper on the
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subject [13], with SP(k) growing faster than any constant to the power k. Later [12], some
calculations allowed a reasonable exponential conjecture on the SP(k) of the Fibonacci word,
but it is not clear how to prove it. So, the following more particular open questions can be
added to general Conjectures 1 and 2.

Problem 19. Find a precise formula for the prefix palindromic length of the period-doubling
word A096268, or a lower bound for its lim sup.

Problem 20. Find a precise formula for the prefix palindromic length of the Fibonacci word
A003849, or a lower bound for its lim sup.

Problem 21. Is it true that the function PPLu(n) is k-regular for any k-automatic word u?
Fibonacci-regular for the Fibonacci word? For the definition and discussions of Fibonacci-
regular sequences, see [8] and references therein.
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and morphisms in class P . Theoret. Comp. Sci. 780 (2019), 74–83.

[5] K. Borozdin, D. Kosolobov, M. Rubinchik, and A. M. Shur, Palindromic length in
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[9] G. Fici, T. Gagie, J. Kärkkäinen, and D. Kempa, A subquadratic algorithm for minimum
palindromic factorization. J. Discr. Alg. 28 (2014), 41–48.

11

https://oeis.org/A096268
https://oeis.org/A003849


[10] A. E. Frid, First lower bounds on palindromic length, in Developments in Language

Theory: Proc. DLT 2019, Lect. Notes in Comp. Sci., Vol. 11647, Springer, 2019, pp. 234–
243.

[11] A. E. Frid, Sturmian numeration systems and decompositions to palindromes. European
J. Combin. 71 (2018), 202–212.

[12] A. Frid, Representations of palindromes in the Fibonacci word, in Proc.

Numeration 2018,https://numeration2018.sciencesconf.org/data/pages/num18_
abstracts.pdf, pp. 9–12.

[13] A. Frid, S. Puzynina, and L. Zamboni. On palindromic factorization of words. Advances
in Appl. Math. 50 (2013), 737–748.

[14] M. Rubinchik and A. M. Shur, EERTREE: An efficient data structure for processing
palindromes in strings. European J. Combin. 68 (2018), 249–265.

[15] A. Saarela, Palindromic length in free monoids and free groups, in: Proc. WORDS 2017,
Lect. Notes in Comp. Sci., Vol. 10432, Springer 2017, pp. 203–213.

[16] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, https://oeis.
org.

2010 Mathematics Subject Classification: Primary 68R15.
Keywords: Thue-Morse word, palindrome, palindromic length, k-automatic word, k-regular
sequence.

(Concerned with sequences A003849, A010060, A096268, A307319, and A320429.)

Received August 28 2019; revised version received November 28 2019. Published in Journal

of Integer Sequences, November 30 2019.

Return to Journal of Integer Sequences home page.

12

https://numeration2018.sciencesconf.org/data/pages/num18_abstracts.pdf
https://numeration2018.sciencesconf.org/data/pages/num18_abstracts.pdf
https://oeis.org
https://oeis.org
https://oeis.org/A003849
https://oeis.org/A010060
https://oeis.org/A096268
https://oeis.org/A307319
https://oeis.org/A320429
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Recurrence relations
	Corollaries
	Regularity
	Conclusion

