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Abstract

Fourier coefficients of powers of the Dedekind eta function can be studied by poly-
nomials introduced by M. Newman. We generalize the defining recurrence relations in
this paper. From this we derive new families of polynomials, which approximate these
polynomials from below and above. Although these families are recursively defined,
we are able to determine explicit closed formulas for both approximating polynomials.
(For the original polynomials closed formulas are not yet known.) Furthermore, we
obtain that both approximating families and the coefficients involved are log-concave
and unimodal.

1 Introduction

Let η(τ) be the Dedekind eta function [7]. Put q := e2π i τ , where τ is in the upper half-space
H. Let further z ∈ C. We consider the Fourier expansion

(

q−
1

24η(τ)
)−z

=
∞
∏

n=1

(1− qn)−z =
∞
∑

n=0

Pn(z) q
n. (1)
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We recover several famous sequences [2, Introduction]. For example, the partition numbers
p(n) and the Ramanujan numbers τ(n) are directly linked to z = 1 and z = −24,

(Pn(1))
∞
n=0 = (p(n))∞n=0 : 1, 1, 2, 3, 5, . . . (A000041);

(Pn−1(−24))∞n=1 = (τ(n))∞n=1 : 1,−24, 252, . . . (A000594).

The integer-valued polynomials Pn(X) have degree n and positive integral coefficients An
k

for 0 ≤ k ≤ n− 1:

Pn(X) =
X

n!

n−1
∑

k=0

An
k Xk. (2)

Newman [5] calculated the coefficients recursively for 0 ≤ k ≤ n − 1. For example An
0 =

(n − 1)!σ(n), An
n−1 = 1, and An

n−2 = 3n(n − 1)/2. Here σ(n) is the sum of the divisors of
n. Further Newman determined the first ten polynomials and their integral zeros and found
a recursion formula for the involved polynomials. Apparently there is yet no closed explicit
formula for these polynomials defined by

Pn(X) =
X

n

n
∑

k=1

σ(k)Pn−k(X) (3)

and the involved coefficients.
Numerical calculations indicate that the sequence of the coefficients An

k seems to be close
to unimodal and stable (Hurwitz polynomial). Here we normalize Pn(X) by n!/X. A direct
approach seems to be out of reach at the moment, since there is still a lack of understanding
the properties of the arithmetic function σ(n) completely. Nevertheless the value distribution
of the polynomials Pn(X), especially the zeros, have significant applications. For r even and
positive, the sequences (Pn(−r))n are lacunary if and only if r = 2, 4, 6, 8, 10, 14, 26. This
result is due to Serre [8] and is in relation to modular forms with complex multiplication
(CM-forms). The non-existence of −24 as a zero is equivalent to the Lehmer conjecture [4].

In this paper we generalize the recurrence relation (3), studying closed formulas for the
polynomials associated with the functions g(n) = n and g(n) = n2. They are integer valued
and approximate σ(n) from below and above.

Definition 1. Let g(n) be an arithmetic function. We define a family of polynomials P g
n(X)

associated with g. Let P g
0 (X) := 1 and

P g
n(X) :=

X

n

n
∑

k=1

g(k) P g
n−k(X), (4)

=
X

n!

n−1
∑

k=0

An
k(g)X

k. (5)

Let ϕ1(n) = n and ϕ2(n) = n2. In what follows, we study the properties of the associated
polynomials Pϕ1

n (X) and Pϕ2

n (X). Their properties are related to Pn(X) = P σ
n (X), since
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ϕ1(n) < σ(n) < ϕ2(n) for n > 1. We obtain An
n−1(ϕ1) = An

n−1 = An
n−1 (ϕ2) = 1. Further, let

0 ≤ k ≤ n− 2. Then
An

k(ϕ1) < An
k < An

k(ϕ2). (6)

Theorem 2. Let ϕ1(n) = n. Then the coefficients of Pϕ1

n (X) are given by

An
k(ϕ1) =

n!

(k + 1)!

(

n− 1

k

)

. (7)

Although the binomial coefficients are twisted by 1/(k + 1)!, they remain log-concave.

Corollary 3. The sequence of the coefficients of Pϕ1

n (X)

(An
k(ϕ1))

n−1
k=0

is strongly log-concave and hence unimodal.

Further we can determine the index, and therefore the size of the largest coefficient.

Corollary 4. The index K1 of the maximal coefficient An
k(ϕ1) is given by

√
n+ 1− 2 ≤ K1 <

√
n+ 1− 1. (8)

In general, K1 is not always unique.

Numerical calculations indicate that the zeros of Pϕ1

n (X) are simple and that the poly-
nomials are stable in the sense of Hurwitz (neglecting X = 0).

It is also possible to get similar results for Pϕ2

n (X), although the involved coefficients
An

k(ϕ2) are more complicated. We also studied the polynomials Pϕ
n (X) associated with

ϕ(n) := n ln(n) and ϕ(n) := n
√
n. But a closed formula for the coefficients is very difficult

to obtain.

Theorem 5. Let ϕ2(n) = n2. Then the coefficients of Pϕ2

n (X) are given by

An
k(ϕ2) =

n!

(k + 1)!

(

n+ k

2k + 1

)

. (9)

Corollary 6. The sequence of the coefficients of Pϕ2

n (X)

(An
k(ϕ2))

n−1
k=0

is strongly log-concave and hence unimodal.

Corollary 7. The coefficients An
k(ϕ2) assume their maximum at the index K2, such that

K2 ≤ k < K2 + 1 is the real solution of the cubic equation 4k3 + 19k2 + 28k + 13 = n2. Let

D :=
1

8
n2 −

91

1728
+

1

144

√
324n4 − 273n2 − 51,

then 3
√
D + 25

144 3
√
D
≤ K2 <

3
√
D + 25

144 3
√
D
+ 1. For large n we obtain K2 ≈ (n/2)2/3.
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Numerical calculations indicate that the zeros of Pϕ1

n (X) are simple and that the poly-
nomials are stable.

Let x0 be a positive real number. Let g1, g2 be two arithmetic functions, satisfying
1 ≤ g1(n) ≤ g2(n). Then P g1

n (x0) ≤ P g2
n (x0). We let p(n) denote the partition numbers [1].

As an application we obtain an approximation of the partition numbers from below. Let
N = 200. Then

p(n)

Pϕ1
n (1)

< 647.71 for n ≤ N. (10)

Finally we obtain for x = −1 the following result.
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Figure 1: ‘+’ marks the value of Pϕ1

n (−1), ‘×’ marks the value of P σ
n (−1) depending on n.

Euler showed that Pn(−1) takes only the values −1, 0, 1 and has high vanishing rate,
called superlacunary [6] in the language of modular forms. This is reflected by the asymptotic
behavior of the values of the sequence Pϕ1

n (−1), although x0 < 0.

2 Log-Concavity and maximal coefficients

A sequence a0, a1, a2, . . . , an of real numbers is called unimodal if the sequence increases
steadily at first and then decreases steadily [9]. The sequence of binomial coefficients and
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Stirling numbers are unimodal. In the case where

a0 ≤ a1 ≤ a2 ≤ · · · ≤ aK ≥ aK+1 ≥ aK+2 ≥ · · · ≥ am, (11)

the K is called the index of the sequence. The index does not have to be unique. In general,
it is not clear how to determine the index.

Another important property of some sequences is (strong) log-concavity. A sequence is
called log-concave if for all k = 1, 2, . . . ,m− 1:

a2k ≥ ak+1 ak−1. (12)

Note that log-concavity implies unimodality.
Due to Newton’s inequality, the sequence of coefficients of a polynomial with (real coeffi-

cients and) only real zeros is strongly log-concave. It is very likely that Pϕ1

n (X) and Pϕ2

n (X)
have only real zeros. But Pn(X) definitely does not have only real zeros. Heim et al. [3]
showed that, for example, in the case n = 10 non-real zeros appear. Nevertheless, directly
applying the log-concave criterion works for ϕ1, ϕ2, due to the explicit formulas proved in
this paper.

2.1 Proof of Corollary 3

Let n ≥ 3 be given. We consider the sequence

ak := An
k(ϕ1) =

n!

(k + 1)!

(

n− 1

k

)

for k = 0, . . . , n− 1. We show that for each pair (n, k) with 1 ≤ k ≤ n− 2 an α > 1 exists,
such that

An
k(ϕ1)

2

An
k+1(ϕ1)An

k−1(ϕ1)
≥ α. (13)

This quotient results in

(

1
(k+1)!

(

n−1
k

)

)2

1
k!

(

n−1
k−1

)

1
(k+2)!

(

n−1
(k+1)

) =

1
k+1

(

(n−1)!
k!(n−k−1)!

)2

(n−1)!
(k−1)!(n−k)!

1
k+2

(n−1)!
(k+1)!(n−k−2)!

=

1
k+1

1
k(n−k−1)

1
n−k

1
k+2

1
k+1

=
(n− k) (k + 2)

k (n− k − 1)
≥ α > 1.

Hence the sequence An
k(ϕ1) is strongly log-concave. This implies unimodality.

We obtain α = αn ≥ 1+
(

3n+ 1 + 2
√

2n (n+ 1)
)

(n− 1)−2. Depending on n α decreases

to 1.
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To show that α decreases to 1, consider the denominator of the derivative of (n−k)(k+2)
k(n−1−k)

with respect to k. The denominator yields 2n (n+ 1) − (k − 2n)2. Hence the minimum of
the denominator for 1 ≤ k ≤ n − 2 is obtained at k = 2n −

√

2n (n+ 1). This yields the
claimed value.

2.2 Proof of Corollary 6

Let n ≥ 2 be given. We consider the sequence

ak := An
k(ϕ2) =

n!

(k + 1)!

(

n+ k

2k + 1

)

for k = 0, . . . , n− 1. Hence a0, a1, . . . , am with m = n− 1. We show that for each pair (n, k)
with 0 ≤ k ≤ n− 2 a β > 1 exists such that

An
k(ϕ2)

2

An
k+1(ϕ2)An

k−1(ϕ2)
> β. (14)

This quotient results in

(

1
(k+1)!

(

n+k
2k+1

)

)2

1
k!

(

n+k−1
2k−1

)

1
(k+2)!

(

n+k+1
2k+3

) =

1
k+1

(

(n+k)!
(2k+1)!(n−k−1)!

)2

(n+k−1)!
(2k−1)!(n−k)!

1
k+2

(n+k+1)!
(2k+3)!(n−k−2)!

=

1
k+1

n+k
(2k+1)2k(n−k−1)

1
n−k

1
k+2

n+k+1
(2k+3)(2k+2)

=
(n+ k) (n− k) (k + 2) (2k + 3) (2k + 2)

(k + 1) (n+ k + 1) (2k + 1) 2k (n− k − 1)

>
n2 − k2

n2 − (k + 1)2
≥ β > 1.

Hence the sequence An
k(ϕ2) is strongly log-concave. This implies unimodality.

We have n2−k2

n2−(k+1)2
= 1+ 2k+1

n2(k+1)2
. This is increasing as a function of k for 1 ≤ k ≤ n− 2.

So the minimum is attained at k = 1 and results in 1 + 3
n2−4

. For n → ∞ 1 + 3
n2−4

again
decreases to 1. Even if we could determine the minimum of the expression before the ‘strictly
less’ sign, we would obtain the same limiting behavior.

2.3 Proof of Corollary 4

The idea is simple. Let n ≥ 2. Let ak = An
k(ϕ1), 0 ≤ k ≤ n − 1. We analyze the possible

sign changes of

∆k(ϕ1) := ak+1 − ak = An
k+1(ϕ1)− An

k(ϕ1), 0 ≤ k ≤ n− 2. (15)

6



We obtain

∆k(ϕ1) = γ(k, n)

(

1

(k + 2) (k + 1)
−

1

n− k − 1

)

, (16)

where γ(k, n) is a positive rational number. Hence ∆k(ϕ1) has the same sign as

n+ 1− (k + 2)2.

Hence the coefficients increase for k <
√
n+ 1− 2, and decrease for k >

√
n+ 1− 2. In the

case of equality we have two maxima.

2.4 Proof of Corollary 7

Let n ≥ 2. Let ak = An
k(ϕ2), 0 ≤ k ≤ n− 1. We analyze the possible sign changes of

∆k(ϕ2) := ak+1 − ak = An
k+1(ϕ2)− An

k(ϕ2), 0 ≤ k ≤ n− 2. (17)

We obtain

∆k(ϕ2) = γ′(k, n)

(

n+ k + 1

(k + 2) (2k + 3) (2k + 2)
−

1

n− k − 1

)

. (18)

where γ′(k, n) is a positive rational number. Hence ∆k(ϕ2) has the same sign as

−4k3 − 19k2 − 28k − 13 + n2.

As a function of k ≥ 0, the expression ∆k(ϕ2) is decreasing. Hence there exists exactly one
0 ≤ K ≤ n− 1 such that

An
K−1(ϕ2) < An

K(ϕ2) ≥ An
K+1(ϕ2).

We used the computer algebra system Maple to calculate the algebraic expression defining
K. Nevertheless, it is obvious that K ≈ 2−2/3 n

2

3 for large n.

3 Explicit formulas for P ϕ1
n (X)

Let us start with a list of the polynomials for n = 1, 2, . . . , 7. Note that they are no longer
integer-valued polynomials, although the modified coefficients are integral.

Pϕ1

1 (X) = X

Pϕ1

2 (X) =
1

2
X (X + 2)

Pϕ1

3 (X) =
1

6
X
(

X2 + 6X + 6
)

Pϕ1

4 (X) =
1

24
X
(

X3 + 12X2 + 36X + 24
)

Pϕ1

5 (X) =
1

120
X
(

X4 + 20X3 + 120X2 + 240X + 120
)
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Pϕ1

6 (X) =
1

720
X
(

X5 + 30X4 + 300X3 + 1200X2 + 1800X + 720
)

Pϕ1

7 (X) =
1

5040
X
(

X6 + 42X5 + 630X4 + 4200X3 + 12600X2 + 15120X + 5040
)

.

Remark 8. The first polynomials n!
X
Pϕ1

n (X) are irreducible.

Proof of Theorem 2. We start with the identity

∞
∑

n=0

Pϕ1

n (X) qn = exp

(

X

∞
∑

n=1

qn

)

. (19)

It is useful to substitute (
∑∞

n=1 q
n)

k
by the multi-index sum

∞
∑

m1,...,mk=1

qm1+···+mk .

Comparing the coefficients of qn in (19) leads to

Pn (X) =
n
∑

k=1

1

k!

(

∑

m1+···+mk=n

1

)

Xk

=
X

n!

n−1
∑

k=0

n!

(k + 1)!





∑

m1+···+mk+1=n

1



Xk.

Note that
∑

m1+···+mk=n

1 =

(

n− 1

k − 1

)

. (20)

We prove (20) by induction. For k = 1 we have 1 =
(

n−1
0

)

=
(

n−1
k−1

)

. Suppose the formula
holds for k then

∑

m1+···+mk+1=n

1 =
n−k
∑

mk+1=1

∑

m1+···+mk=n−mk+1

1 =
n−k
∑

mk+1=1

(

n−mk+1 − 1

k − 1

)

=
n−1
∑

mk+1=k

(

mk+1 − 1

k − 1

)

=

(

n− 1

k

)

.

The proof (again by induction) of the identity
∑n−1

m=k

(

m−1
k−1

)

=
(

n−1
k

)

we leave to the reader.
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4 Explicit formulas for P ϕ2
n (X)

Let us start with a list of the polynomials for n = 1, 2, . . . 7. Note that they are no longer
integer-valued polynomials, although the modified coefficients are integral.

Pϕ2

1 (X) = X

Pϕ2

2 (X) = 1/2X (4 +X)

Pϕ2

3 (X) = 1/6X
(

X2 + 12X + 18
)

Pϕ2

4 (X) = 1/24X
(

X3 + 24X2 + 120X + 96
)

Pϕ2

5 (X) =
1

120
X
(

X4 + 40X3 + 420X2 + 1200X + 600
)

Pϕ2

6 (X) =
1

720
X
(

X5 + 60X4 + 1080X3 + 6720X2 + 12600X + 4320
)

Pϕ2

7 (X) =
1

5040
X
(

X6 + 84X5 + 2310X4 + 25200X3 + 105840X2 + 141120X + 35280
)

Before we prove Theorem 5 we show the following useful property.

Lemma 9. For n ≥ 1 and 1 ≤ k ≤ n we obtain
∑

m1+···+mk=n

m1m2 · · ·mk =

(

n+ k − 1

2k − 1

)

. (21)

Proof. The proof is by induction on n and k. For k = 1 we have n =
(

n
1

)

=
(

n+k−1
2k−1

)

. Let
now N ≥ K ≥ 2 be fixed. We assume that formula (21) holds for k < K. For k = K we also
assume that the formula (21) holds for n < N . Then we will prove formula (21) for n = N
and k = K. We obtain for

∑

m1+···+mK=N

m1m2 · · ·mK

the expressions

N+1−K
∑

mK=1

mK

∑

m1+···+mK−1=N−mK

m1m2 · · ·mK−1

=
N+1−K
∑

mK=1

∑

m1+···+mK−1

=N−mK

m1 · · ·mK−1 +
N−K
∑

mK=1

mK

∑

m1+···+mK−1

=N−1−mK

m1m2 · · ·mK−1

=
N+1−K
∑

mK=1

(

N −mK +K − 2

2K − 3

)

+
∑

m1+···+mK=N−1

m1m2 · · ·mK

=
N+K−2
∑

mK=2K−2

(

mK − 1

2K − 3

)

+

(

N +K − 2

2K − 1

)

=

(

N +K − 2

2K − 2

)

+

(

N +K − 2

2K − 1

)

=

(

N +K − 1

2K − 1

)

.
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Note that here we again used the identity
n−1
∑

m=k

(

m− 1

k − 1

)

=

(

n− 1

k

)

.

Proof of Theorem 5. We obtain

exp

(

X
∞
∑

n=1

n2

n
qn

)

= 1 +
∞
∑

k=1

1

k!
Xk

(

∞
∑

n=1

nqn

)k

= 1 +
∞
∑

k=1

1

k!
Xk

(

∞
∑

m1=1

· · ·
∞
∑

mk=1

m1 · · ·mkq
m1+···+mk

)

= 1 +
∞
∑

n=1

n
∑

k=1

1

k!
Xk

(

∑

m1+···+mk=n

m1m2 · · ·mk

)

qn.

In the next step we apply Lemma 9 and obtain

1 +
∞
∑

n=1

n
∑

k=1

1

k!

(

n+ k − 1

2k − 1

)

Xkqn

= 1 +
∞
∑

n=1

X

n!

n−1
∑

k=0

n!

(k + 1)!

(

n+ k

2k + 1

)

Xkqn,

which yields the desired result.

5 Data
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Figure 2: Quotient P σ
n (1) /Pϕ1

n (1) depending on n.
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n P 1
n (1) P σ

n (1) P 2
n (1)

0 1 1 1
1 1 1 1
2 1.5 2 2.5
3 2.16667 3 5.16667
4 3.04167 5 10.0417
5 4.175 7 18.8417
6 5.62639 11 34.4181
7 7.46687 15 61.4752
8 9.78058 22 107.694
9 12.6669 30 185.485
10 16.2426 42 314.694
11 20.6448 56 526.768
12 26.0337 77 871.113
13 32.5961 101 1424.73
14 40.5493 135 2306.78
15 50.1454 176 3700.32
16 61.676 231 5884.91
17 75.4781 297 9284.78
18 91.9399 385 14540.1
19 111.508 490 22612
20 134.694 627 34935.4
21 162.087 792 53643.4
22 194.356 1002 81891.7
23 232.27 1255 124329
24 276.702 1575 187773
25 328.648 1958 282189

Table 1: Values of Pϕ1

n (1), the partition numbers P σ
n (1), and Pϕ2

n (1).
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