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Abstract

We present a new proof of the following result of Somer:
Let (a, b) ∈ Z

2 and let (xn)n≥0 be the sequence defined by some initial values x0 and

x1 and the second-order linear recurrence

xn+1 = axn + bxn−1

for n ≥ 1. Suppose that b 6= 0 and (a, b) 6= (2,−1), (−2,−1). Then there exist two

relatively prime positive integers x0, x1 such that |xn| is a composite integer for all

n ∈ N.

The above theorem extends a result of Graham, who solved the problem when
(a, b) = (1, 1).

1 Introduction

We give a new proof of the following result of Somer:

Theorem 1. [12, 3] Let (a, b) ∈ Z
2 and let (xn)n≥0 be the sequence defined by some initial

values x0 and x1 and the second-order linear recurrence

xn+1 = axn + bxn−1 (1)

for n ≥ 1. Suppose that b 6= 0 and (a, b) 6= (2,−1), (−2,−1). Then there exist two relatively
prime positive integers x0, x1 such that |xn| is a composite integer for all n ∈ N.

Throughout the paper we will use the following convention: a nonnegative integer n is
said to be composite if n 6= 0, 1, and n is not a prime number.

Graham [5] considered the problem above in the particular case (a, b) = (1, 1). He found
two relatively prime positive integers x0 and x1 such that the sequence xn+1 = xn + xn−1,
consists of composite numbers only. Graham’s starting pair is

(x0, x1) = (331635635998274737472200656430763, 1510028911088401971189590305498785).

Graham’s technique was successively refined by Knuth [6], Wilf [16], and Nicol [10], who all
found smaller pairs (x0, x1). The current record is due to Vsemirnov [15]:

(x0, x1) = (106276436867, 35256392432). (2)

The above results are based on the fact that the Fibonacci sequence is a divisibility sequence,
that is, Fn | Fm whenever n | m, and on finding a finite covering system of congruences
ri (mod mi), 1 ≤ i ≤ t, such that there exist distinct primes p1, p2, . . . pt, so that pi | Fmi

for
all i = 1, 2, . . . , t.

Somer’s proof of Theorem 1 is relatively short since it relies on several results of Bilu,
Hanrot and Voutier [1], Choi [2], and Parnami and Shorey [11].
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A few years later, unaware of Somer’s article, Dubickas, Novikas and S̆iurys [3] published
a new solution that, although somewhat lengthier, is essentially self-contained.

In this paper, we present another free-standing proof of this theorem that, while compa-
rable to the one in [3], differs from it in several important ways.

We summarize our plan for proving Theorem 1 as follows.
In Section 2 we prove three easy lemmata, which will be useful later on. We believe

that Lemma 2 is of independent interest. In Section 3 we study two simple cases: (i) a = 0
and (ii) a2 + 4b = 0. In this section we also show that the condition (a, b) 6= (±2,−1) is
necessary. Section 4 deals with the case |b| ≥ 2. Following [3], we choose x1 ≡ 0 (mod |b|),
since then (1) implies that xn ≡ 0 (mod |b|) for all n ≥ 2. The main difficulty is to show
that x0 and x1 can be chosen such that xn 6= −b, 0, b for every n ≥ 0. In this case, Dubickas
et al. present a mainly existential proof which relies on a series of six lemmata. In contrast,
our proof is constructive, as we provide explicit expressions for x0 and x1 as polynomials in
a and b.

In Section 5 we consider the case |b| = 1. Dubickas, Novikas and S̆iurys prove that except
for finitely many values of |a|, one can take x0 and x1 so that each xn is divisible by one
of five distinct appropriately chosen prime numbers. We prove that, with the exception of
finitely many values of |a|, four primes suffice. The proof in the case |b| = 1 relies on the
divisibility properties of the Lucas sequence of the first kind (un)n≥0, defined as

u0 = 0, u1 = 1 and un+1 = aun + bun−1, for n ≥ 1. (3)

Finally, in Section 6 we prove that if |a| ≥ 3 and b = −1, then un is composite for all n ≥ 3.
The interesting fact is that in this case it seems likely that there is no finite set of prime
numbers p1, p2, . . . pt such that each un is divisible by some pi, i = 1, 2, . . . t.

2 Three useful lemmata

Lemma 2. Consider the sequence (xn)n≥0 given by (1). Then

x2
n+1 − axnxn+1 − bx2

n = (−b)n(x2
1 − ax0x1 − bx2

0). (4)

Proof.

[

xn+2 xn+1

xn+1 xn

]

=

[

axn+1 + bxn axn + bxn−1

xn+1 xn

]

=

[

a b
1 0

]

·

[

xn+1 xn

xn xn−1

]

=

=

[

a b
1 0

]

·

[

a b
1 0

]

·

[

xn xn−1

xn−1 xn−2

]

=

[

a b
1 0

]2

·

[

xn xn−1

xn−1 xn−2

]

= · · · =

[

a b
1 0

]n

·

[

x2 x1

x1 x0

]

.
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Taking determinants on both sides we obtain

det

[

xn+2 xn+1

xn+1 xn

]

= det

[

a b
1 0

]n

· det

[

x2 x1

x1 x0

]

=⇒ xn+2 · xn − x2
n+1 = (−b)n · (x2x0 − x2

1)

=⇒ (axn+1 + bxn)xn − x2
n+1 = (−b)n · ((ax1 + bx0)x0 − x2

1), which after expanding

becomes x2
n+1 − axnxn+1 − bx2

n = (−b)n(x2
1 − ax0x1 − bx2

0), as claimed.

Lemma 3. Consider the sequence (xn)n≥0 given by (1). Suppose that 1 ≤ |x0| < |x1| and
|a| > |b| ≥ 1. Then the sequence (|xn|)n≥0 is strictly increasing.

Proof. We use induction on n. By hypothesis, the statement is true for n = 0.
Suppose that |xn−1| < |xn| for some n ≥ 1. We intend to prove that |xn| < |xn+1|. Indeed

|xn+1| = |axn + bxn−1| ≥ |axn| − |bxn−1| = |a||xn| − |b||xn−1| >

> |a||xn| − |b||xn| = (|a| − |b|)|xn|, by the induction hypothesis.

Using |a| − |b| ≥ 1, we obtain |xn+1| > |xn|, which completes the induction.

Lemma 4. Let n1, n2 and n3 be three positive integers such that no prime number p divides
all of them. Then there exists an integer k ≥ 2 such that n1 and n2 + kn3 are relatively
prime.

Proof. Let d := gcd(n2, n3). Note that gcd(n1, d) = 1, otherwise d divides n1, n2 and n3.
By Dirichlet’s theorem on arithmetic progressions there exists a k such that n2/d+kn3/d

is a prime number greater than n1. Then d (n2/d+ k · n3/d) = n2 + k n3 is both greater and
relatively prime to n1.

3 Two simple special cases: (i) a = 0 and (ii) a2 + 4b = 0

Case (i): Since a = 0, it can be easily proved that x2n = bnx0 and x2n+1 = bnx1. It suffices
to take x0 = 4 and x1 = 9 to obtain that xn is composite for all n ≥ 0.

Case (ii): If a2 + 4b = 0, then a must be even; a = 2c and therefore b = −a2/4 = −c2. We
divide the proof into two cases: |b| ≥ 2 and b = −1.

If |b| ≥ 2, we have |c| ≥ 2. Let us now take x0 = 4c2 − 1 and x1 = 2c3. Then x0 and
x1 are relative prime positive composite integers. One immediately obtains x2 = c2; thus x2

is also composite. Also, it can be easily proved that xn = cn ((n− 1)− (2n− 4)c2) for all
n ≥ 3.

Note that for any n ≥ 3 one cannot have xn = 0; otherwise, 4 ≤ c2 = (n−1)/(2n−4) ≤ 1,
which is impossible. It follows that |xn| is composite for all n ≥ 3.
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If b = −1, then |a| = 2. If a = 2, then a simple induction shows that

xn+1 = (n+ 1)x1 − nx0 = x1 + n(x1 − x0) for all n ≥ 0,

that is, (xn)n≥0 is an arithmetic sequence whose first term and common difference are rel-
atively prime. By Dirichlet’s theorem on primes in arithmetic progressions, it follows that
|xn| is a prime number for infinitely many values of n. If a = −2, then one can show that
xn+1 = (−1)n(x1+n(x0+x1)). In this case, (xn)n≥0 is the union of two arithmetic sequences,
both of which have the first term and the common difference relatively prime. Again, for
any choice of x0 and x1 relatively prime, |xn| is a prime for infinitely many n. This proves
the necessity of the condition (a, b) 6= (±2,−1).

4 The case |b| ≥ 2

Based on the results from the previous section, from now on we can assume that

|a| ≥ 1 and a2 + 4b 6= 0. (5)

We divide the proof into three separate cases:

Case I: |a| > |b|,
Case II: 1 ≤ |a| ≤ |b| and |b| is composite, and
Case III: 1 ≤ |a| ≤ |b| and |b| is a prime.

Case I: |a| > |b|. To complete the proof of Theorem 1, in this case we take x0 = b4−1, x1 = b4.
Clearly, x0 and x1 are both positive, relatively prime and composite. Moreover, x0 < x1.
Then xn ≡ 0 (mod b) for all n ≥ 1, and by using Lemma 3 it follows that (|xn|)n≥0 is strictly
increasing. Hence, we have |xn| ≥ x0 > |b| for all n ≥ 0, and therefore |xn| is composite for
all n ≥ 0.

Case II: 1 ≤ |a| ≤ |b| and |b| is composite. Choose x0 = 4b4 − 1, x1 = 2b2. Clearly,
gcd(x0, x1) = 1, and x0, x1 are positive composite integers. It also follows that xn ≡ 0 (mod b)
for all n ≥ 1, and since |b| is composite, it follows that |xn| is composite, unless xn = 0 for
some n. We will prove that this cannot happen.

To get a contradiction, suppose that xn+1 = 0 for some n ≥ 2. Then, by Lemma 2, we
have x2

n = (−b)n−1(x2
1 − ax0x1 − bx2

0).
Since x0 = 4b4 − 1 and x1 = 2b2, we have

x2
1 − ax0x1 − bx2

0 = (−b)(16b8 + 8ab5 − 8b4 − 4b3 − 2ab+ 1), which implies that

x2
n = (−b)n(16b8 + 8ab5 − 8b4 − 4b3 − 2ab+ 1). (6)

If n is even, this implies that 16b8 + 8ab5 − 8b4 − 4b3 − 2ab + 1 is a perfect square. If n is
odd, this implies that (−b)(16b8 + 8ab5 − 8b4 − 4b3 − 2ab + 1) is a perfect square. We will
prove that none of these are possible if a2 + 4b 6= 0.
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Note first that since |a| ≤ |b|, we have

(4b4 + ab− 2)2 < 16b8 + 8ab5 − 8b4 − 4b3 − 2ab+ 1 < (4b4 + ab)2. (7)

Indeed, these inequalities are equivalent to the following ones:

8b4 − 2− (4b3 + (ab− 1)2) > 0, and 8b4 + 4b3 − 2 + (ab+ 1)2 > 0. (8)

We have

|a| ≤ |b| =⇒ |ab| ≤ b2 =⇒ |ab− 1| ≤ |ab|+ 1 ≤ b2 + 1 =⇒ (ab− 1)2 ≤ b4 + 2b2 + 1. (9)

From this we obtain

|4b3 + (ab− 1)2| ≤ 4|b|3 + (ab− 1)2 ≤ b4 + 4|b|3 + 2b2 + 1. (10)

To prove the first inequality in (8), note that

8b4 − 2− (4b3 + (ab− 1)2) ≥ 8b4 − 2− |4b3 + (ab− 1)2| ≥

≥ 8b4 − 2− (b4 + 4|b|3 + 2b2 + 1) = 7b4 − 4|b|3 − 2b2 − 3 =

= 7|b|4 − 4|b|3 − 2|b|2 − 3 = 4|b|3(|b| − 1) + 2|b|2(|b|2 − 1) + (|b|4 − 3) ≥

≥ 4|b|3 + 2|b|2 + |b|4 − 3 ≥ 4 · 23 + 2 · 22 + 24 − 3 > 0.

The second inequality in (8) is much easier to prove:

8b4 + 4b3 − 2 + (ab+ 1)2 ≥ 8b4 + 4b3 − 2 ≥ 8|b|4 − 4|b|3 − 2 ≥ 8 · 24 − 4 · 23 − 2 > 0.

Hence, the inequalities (7) hold.
If the middle term in (7) were to be a perfect square, the only option remaining is

16b8 + 8ab5 − 8b4 − 4b3 − 2ab+ 1 = (4b4 + ab− 1)2, which implies b2(a2 + 4b) = 0.

However, this is impossible if a2+4b 6= 0. Hence, if one assumes that |a| ≤ |b| and a2+4b 6= 0,
then 16b8 + 8ab5 − 8b4 − 4b3 − 2ab+ 1 cannot be a perfect square.

Suppose next that (−b)(16b8 + 8ab5 − 8b4 − 4b3 − 2ab+ 1) is a perfect square. Since the
two factors are mutually prime, it follows that both have to be perfect squares. In particular,
the second one has to be a perfect square, and we have already proved that it cannot be. It
follows that the sequence (xn) does not contain any terms equal to 0. This completes the
proof of Theorem 1 in case II.

Case III: 1 ≤ |a| ≤ |b| and |b| is a prime.
We divide the proof of this case into three subcases: |a| = 1, |a| = |b| and 2 ≤ |a| < |b|.

Subcase IIIa: |a| = 1, |b| is a prime.
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If a = 1 and b > 0, then take x0 = (2b2−1)2, x1 = b(b2−1). Clearly, x0 and x1 are positive,
relatively prime, composite integers. It follows immediately that x2 = b3(4b2 − 3) is also
composite. Finally, an easy induction shows that xn ≡ 0 (mod b2) and that xn

b2
≡ −1 (mod b)

for all n ≥ 3. Hence, |xn| is necessarily composite for all n ≥ 3.
The other situations can be dealt with similarly.
If a = −1 and b < 0, take x0 = (2b2 − 1)2, x1 = −b(b2 − 1). Then x2 = b3(4b2 − 3), and

for n ≥ 3 one can show that xn ≡ 0 (mod b2) and xn

b2
≡ (−1)n+1 (mod b). Again, all |xn| are

composite.
If a = 1 and b < 0, we take x0 = (2b2 − 1)2, x1 = −b(b2 + 1). Then x2 = b3(4b2 − 5), and

for all n ≥ 3 one can prove that xn ≡ 0 (mod b2) and xn

b2
≡ −1 (mod b). Hence, all |xn| are

composite.
Finally, if a = −1 and b > 0, select x0 = (2b2−1)2, x1 = b(b2+1). Then x2 = b3(4b2−5),

and for all n ≥ 3 we have that xn ≡ 0 (mod b2) and xn

b2
≡ (−1)n+1 (mod b). All |xn| are

composite.
This completes the proof of Theorem 1 in subcase IIIa.

Subcase IIIb: |a| = |b|, |b| is a prime.
If a = b, take x0 = 4b4 − 1, x1 = 2b2. Then x2 = b(4b4 + 2b2 − 1) is composite, and

xn ≡ 0 (mod b2) for all n ≥ 3. It remains to show that xn 6= 0 for all n.
As in Case II, xn+1 = 0 implies that either 16b8+8b6− 8b4− 4b3− 2b2+1 or (−b)(16b8+

8b6 − 8b4 − 4b3 − 2b2 + 1) is a perfect square. One can use the same technique as in Case II
to prove that this cannot happen if a2 + 4b = b2 + 4b 6= 0.

If a = −b, take x0 = 4b4 − 1, x1 = 2b2 (same choice). Then x2 = b(4b4 − 2b2 − 1) is
composite, and xn ≡ 0 (mod b2) for all n ≥ 3. It remains to show that xn 6= 0 for all n.

As in Case II, xn+1 = 0 implies that either 16b8− 8b6− 8b4− 4b3+2b2+1 or (−b)(16b8−
8b6 − 8b4 − 4b3 + 2b2 + 1) is a perfect square. The same approach as in Case II shows that
this is impossible if a2 + 4b = b2 + 4b 6= 0.

Subcase IIIc: 2 ≤ |a| < |b|, |b| is a prime.
It follows that gcd(a, b) = 1.
If a > 0, b > 0, take x0 = a3, x1 = b(b2 − a2). Then x2 = ab3. For n ≥ 3, xn ≡ 0 (mod b2)

and xn

b2
≡ −an−1 (mod b). Since gcd(a, b) = 1, xn 6= 0.

If a < 0, b < 0, take x0 = −a3, x1 = −b(b2 − a2). Then x2 = −ab3. For n ≥ 3,
xn ≡ 0 (mod b2) and xn

b2
≡ an−1 (mod b). Hence, xn 6= 0 for all n.

If a < 0, b > 0, take x0 = −a3, x1 = b(b2 + a2). Then x2 = ab3, and for n ≥ 3,
xn ≡ 0 (mod b2) and xn

b2
≡ an−1 (mod b). So, xn 6= 0 for all n.

Lastly, if a > 0, b < 0, take x0 = a3, x1 = −b(b2 + a2). Then x2 = −ab3. For n ≥ 3,
xn ≡ 0 (mod b2) and xn

b2
≡ −an−1 (mod b). Since gcd(a, b) = 1, we have xn 6= 0 for all n.

Hence, in each case one can choose x0 and x1 to be positive, composite and relatively
prime so that x2 is composite, and for all n ≥ 3 we have that xn ≡ 0 (mod b2) and xn 6= 0.
It follows that |xn| is composite for all n ≥ 0, and this completes the proof of Theorem 1 in
the case |b| ≥ 2.
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5 The case |b| = 1

The main idea behind the proof of Theorem 1 in this particular case can be summarized as
follows: we want to find a finite set of primes p1, p2, . . . , pt such that for every n ≥ 0 the
number |xn| is divisible by at least one of these primes.

We start the analysis with the simple case in which |a| has at least two distinct prime
factors.

Lemma 5. Let |b| = 1, and suppose that |a| has at least two distinct prime factors: p1 and
p2, with p1 < p2. Then the sequence given by (1) and the initial terms x0 = p21, x1 = p22
satisfies the conditions in Theorem 1.

Proof. Clearly, x0 and x1 are positive relatively prime composite integers. An easy induction
shows that xn ≡ 0 (mod p1) if n is even and xn ≡ 0 (mod p2) if n is odd. Since |x0| < |x1| and
1 = |b| < |a|, the hypotheses of Lemma 3 are satisfied; hence (|xn|)n≥0 is strictly increasing.
It follows that xn is composite for all n ≥ 0, and therefore Theorem 1 is verified in this
case.

Remark 6. In all what follows we will assume that |a| = ps1 for some prime p1 and some
nonnegative integer s ≥ 0. Note that this allows the possibility of |a| = 1.

Next, we introduce a special sequence (un)n≥0 given by

u0 = 0, u1 = 1, un+1 = aun + bun−1 for all n ≥ 1. (11)

This sequence is called the Lucas sequence of the first kind.
One can prove that (un)n≥0 is a divisibility sequence; that is, um divides un whenever m

divides n. Indeed, suppose that a2 + 4b 6= 0, which implies that the roots α and β of the
characteristic equation are distinct, α 6= β. Assume that n = mk. Then

un =
αn − βn

α− β
=

αmk − βmk

α− β
=

αm − βm

α− β
·
(

αm(k−1) + αm(k−2)βm + · · ·+ βm(k−1)
)

= um

(

αm(k−1) + αm(k−2)βm + · · ·+ βm(k−1)
)

.

The second factor of the last term in the equality above is a symmetric function in α and
β, and therefore it can be written as a polynomial function of α + β = a and αβ = −b. It
follows that un/um is an integer, as claimed.

Of particular interest in the sequel are the values of u4 and u6:

u4 = a(a2 + 2b) and u6 = a(a2 + b)(a2 + 3b). (12)

The next two results give information regarding the prime factors of u4 and u6 when |b| = 1.

Lemma 7. Suppose that b = −1, |a| ≥ 4 and |a| = ps1 for some prime p1 and some s ≥ 1.
Then u6 = a(a2 − 1)(a2 − 3) has at least three additional distinct prime factors, p2, p3 and
p4, all three different from p1.
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Proof. Note that a2 − 3 is not divisible by 4 or 9. Since a2 − 3 ≥ 13, it follows that a2 − 3
has an odd prime factor p4 different from 3, and since gcd(a, a2 − 3) ∈ {1, 3} we have that
p4 6= p1. Clearly, neither p1 nor p4 are factors of a2 − 1. Note that a2 − 1 has at least two
distinct prime factors. Indeed, if one assumes the opposite, then both |a− 1| and |a+1| are
powers of some prime. But this cannot happen, since |a| ≥ 4. It follows that a2 − 1 has at
least two distinct prime factors, p2 and p3, both different from p1 and p4.

To illustrate Lemma 7, let us take (a, b) = (−9,−1). Then a2 − 3 = 78 = 2 · 3 · 13 while
a2 − 1 = 80 = 24 · 5. Hence, one has p1 = 3, p4 = 13, p2 = 2, and p3 = 5.

Lemma 8. Suppose that b = 1, |a| ≥ 6 and |a| = ps1 for some prime p1 and some s ≥ 1.
If p1 6= 3, then u4 = a(a2 + 2) has at least two additional distinct prime factors, p2 and

p3, both different from p1.
If |a| = 3s for some s ≥ 2, then u6 = a(a2 + 1)(a2 + 3) has at least three additional

distinct prime factors, p2, p3 and p4, all three different from p1.

Proof. Suppose first that p1 = 2; that is, |a| = 2s for some s ≥ 3. Note that a2 + 2 ≡
0 (mod 3), hence one can choose p2 = 3. Note that a2 = 2(22s−1 + 1) must have a prime
factor different from 2 and 3. Indeed, if one assumes the opposite, then 22s−1+1 = 3t for some
t ≥ 2. However, under the assumption that 2s − 1 ≥ 2 and t ≥ 2, the Catalan-Mihăilescu
theorem implies that the only solution of this equation is s = 2, t = 2. But this implies that
|a| = 22 = 4, a contradiction.

Consider next the case |a| = ps1 with p1 > 3. In particular, a2 + 2 is odd and therefore
gcd(a, a2 +2) = 1. Moreover, since a2 +2 ≡ 0 (mod 3) one can safely take p2 = 3. We claim
that a2 + 2 has at least one other prime factor, p3, different from p1 and p2. Indeed, if one
assumes otherwise, then a2 + 2 = p2s1 + 2 = 3t for some t ≥ 2. However, it was shown by
Ljunggren [7] that the more general equation x2 + 2 = yn, n ≥ 2 has the unique solution
x = 5, y = 3, n = 3. This would give |a| = 5, which is excluded from our analysis.

Finally, suppose that p1 = 3 and therefore |a| = 3s for some s ≥ 2. Then both a2+1 and
a2+3 are even, so one can take p2 = 2. Note that a2+1 = 9s+1; hence a2+1 ≡ 10 (mod 72)
and a2+3 ≡ 12 (mod 72). Hence, there exists a positive integer c such that a2+1 = 2(36c+5)
and a2 + 3 = 12(6c+ 1). Let p3 be a prime factor of 36c+ 5 and let p4 be a prime factor of
6c+ 1. It follows immediately that p1 = 3, p2 = 2, p3, and p4 are all distinct.

We present a couple of particular instances covered by the above lemma.
Suppose first that a = 8 and b = 1. Then u2 = a = 23 while u4 = 24 · 3 · 11. Thus, in this

case one can take p1 = 2, p2 = 3, p3 = 11.
Suppose next that a = −49 and b = 1. Then u2 = a = −72, while u4 = −72 · 33 · 89. It

follows that we can choose p1 = 7, p2 = 3, p3 = 89.
Finally, let us assume that a = 9 and b = 1. Then u2 = a = 32, while a2 + 1 = 2 · 41,

a2 + 3 = 22 · 3 · 7. Hence, in this case we have p1 = 3, p2 = 2, p3 = 41, p4 = 7.
The next lemma uses the concept of covering system introduced by Erdős in [4].
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Definition 9. A collection of residue classes ri (mod mi), 0 ≤ ri < mi, where 1 ≤ i ≤ t is
said to be a covering system if every integer n satisfies at least one equality n ≡ ri (mod mi).

In the proof of the theorem when |b| = 1, except for finitely many values of a we will use
one of the following two covering systems

{0 (mod 2), 1 (mod 6), 3 (mod 6), 5 (mod 6)} or

{0 (mod 2), 1 (mod 4), 3 (mod 4)}.

Lemma 10. Let a, b be two integers such that |a| ≥ 2 and |b| = 1. Let (un)n≥0 be the Lucas
sequence defined in (11), and suppose that there exists a finite collection of triples (pi,mi, ri),
1 ≤ i ≤ t with the following properties:

(i) All primes pi are distinct.

(ii) The residue classes ri (mod mi) form a covering system.

(iii) pi | umi
for all 1 ≤ i ≤ t.

Then there exist two relatively prime positive integers x0 and x1 such that each term of the
sequence (xn)n≥0 defined in (1) is composite.

Proof. Let P = p1p2 . . . pt.
By the Chinese remainder theorem, there exist y, z ∈ {0, 1, . . . P − 1} satisfying

y ≡ umi−ri (mod pi),

z ≡ umi−ri+1 (mod pi), (13)

for i = 1, 2, . . . , t. Note that there is no prime which divides y, z, and P simultaneously.
Indeed, if such a prime pj were to exist, then there would be two consecutive terms un and
un+1 both divisible by pj. Since un+1 = aun+bun−1 and |b| = 1, then pj | un−1. By induction,
it follows that pj | u1 which is impossible since u1 = 1.

Let x0 ≡ y (mod P ) and x1 ≡ z (mod P ).
Then we have x0 ≡ umi−ri (mod pi) and x1 ≡ umi−ri+1 (mod pi) for all i = 1, 2, . . . , t. By

induction on n, we obtain xn+1 ≡ umi−ri+n (mod pi) for every n ≥ 0 and every 1 ≤ i ≤ t.
Since the residue classes ri (mod mi) form a covering system, each nonnegative integer n

belongs to one of these classes, say n = ri + kmi for some k ≥ 0 and some i ∈ {1, 2, . . . , t}.
This implies that

xn+1 ≡ umi−ri+n (mod pi) ≡ umi(k+1) (mod pi) ≡ 0 (mod pi), (14)

since pi | umi
and umi

| umi(k+1). Hence, every term of the sequence (xn)n is divisible by some
prime pi. It remains to choose x0 and x1, relatively prime positive integers x0 ≡ y (mod P )
and x1 ≡ z (mod P ) such that |xn| ≥ P for every n ∈ N.
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In order to achieve this, take x0 = y+P and x1 = z+kP where k ≥ 2 and gcd(x0, x1) = 1.
Using Lemma 4 with n1 = y + P , n2 = z and n3 = P shows that such a choice is always
possible. Recall that we proved earlier that gcd(y, z, P ) = 1. Such a choice implies that
0 < P ≤ x0 < x1, and since |a| > |b| = 1, Lemma 3 implies that (|xn|)n is a strictly
increasing sequence. It follows that |xn| ≥ P for all n ≥ 0, and therefore each such xn is
composite.

We can now prove the theorem if |b| = 1.
Suppose first that b = −1 and |a| = ps1 ≥ 4. Then, by Lemma 7, there are four

distinct primes p1, p2, p3, p4 dividing u2, u6, u6, u6, respectively. The theorem follows after
using Lemma 10 for the triples (p1, 2, 0), (p2, 6, 1), (p3, 6, 3), (p4, 6, 5).

As a numerical illustration, suppose that a = −9, b = −1. Then, as described in the
paragraph following the proof of Lemma 7, we have p1 = 3, p2 = 2, p3 = 5 and p4 = 13.

The system (13) becomes

y ≡ u2 (mod 3) z ≡ u3 (mod 3)

y ≡ u5 (mod 2) z ≡ u6 (mod 2)

y ≡ u3 (mod 5) z ≡ u4 (mod 5)

y ≡ u1 (mod 13) z ≡ u2 (mod 13)

and its solution is P = p1p2p3p4 = 390, y = 105, z = 134. Since y < z and gcd(y, z) = 1,
one can safely take x0 = y = 105 and x1 = z = 134. Then the sequence (|xn|)n≥0 is strictly
increasing, and for every n ≥ 0 we have that x2n ≡ 0 (mod 3), x6n+1 ≡ 0 (mod 2), x6n+3 ≡
0 (mod 5) and x6n+5 ≡ 0 (mod 13). It follows that all terms of the sequence are composite.

Next suppose that b = 1 and |a| = ps1 ≥ 6 for some prime p1. If p1 6= 3, then by Lemma
8 there exist three distinct primes p1, p2, p3, dividing u2, u4, u4, respectively.

The theorem follows after using Lemma 10 for the triples (p1, 2, 0), (p2, 4, 1), (p3, 4, 3). As
in the case b = −1, we present the details in a couple of particular cases.

Suppose first that a = 8, b = 1. Then, as described in the paragraph following the proof
of Lemma 8, we have p1 = 2, p2 = 3, p3 = 11. The system (13) becomes

y ≡ u0 (mod 2) z ≡ u1 (mod 2)

y ≡ u3 (mod 3) z ≡ u4 (mod 3)

y ≡ u1 (mod 11) z ≡ u2 (mod 11)

and its solution is P = p1p2p3 = 66, y = 56, z = 63. Note that in this case gcd(y, z) = 7 > 1.
Still, one can safely take x0 = y = 56 and x1 = z + P = 129, and now gcd(x0, x1) = 1 as
desired. Then, since 0 < x0 < x1, the sequence (|xn|)n≥0 is strictly increasing and for every
n ≥ 0 we have that x2n ≡ 0 (mod 2), x4n+1 ≡ 0 (mod 3), and x4n+3 ≡ 0 (mod 11). It follows
that all terms of the sequence are composite.
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Next assume that a = −49, b = 1. Then p1 = 7, p2 = 3, p3 = 89, and the system (13)
becomes

y ≡ u0 (mod 7) z ≡ u1 (mod 7)

y ≡ u3 (mod 3) z ≡ u4 (mod 3)

y ≡ u1 (mod 89) z ≡ u2 (mod 89).

The solution is P = p1p2p3 = 1869, y = 980, z = 1464. Notice that in this case gcd(y, z) =
4 > 1. Still, one can safely take x0 = y = 980 and x1 = z+P = 3333 and now gcd(x0, x1) = 1
as desired. Moreover, since 0 < x0 < x1, the sequence (|xn|)n≥0 is strictly increasing, and
for every n ≥ 0 we have that x2n ≡ 0 (mod 7), x4n+1 ≡ 0 (mod 3), and x4n+3 ≡ 0 (mod 89).
It follows that all terms of the sequence are composite.

For the case b = 1 and |a| = 3s with s ≥ 2, we use the second part of Lemma 8 to conclude
that there are four distinct primes p1, p2, p3, p4, dividing u2, u6, u6, u6, respectively. The
theorem follows after using Lemma 10 for the triples (p1, 2, 0), (p2, 6, 1), (p3, 6, 3), (p4, 6, 5).

We show the full details if a = 9, b = 1. Then, as mentioned in the paragraph following
the proof of Lemma 8, we have p1 = 3, p2 = 2, p3 = 41, p4 = 7. The system (13) becomes

y ≡ u2 (mod 3) z ≡ u3 (mod 3)

y ≡ u5 (mod 2) z ≡ u6 (mod 2)

y ≡ u3 (mod 41) z ≡ u4 (mod 41)

y ≡ u1 (mod 7) z ≡ u2 (mod 7).

Solving, we obtain P = p1p2p3p4 = 1722, y = 1107, z = 1444. In this case we can simply
choose x0 = y = 1107 and x1 = z = 1144.

Then gcd(x0, x1) = 1, and since 0 < x0 < x1, the sequence (|xn|)n≥0 is strictly increasing.
Moreover, for every n ≥ 0 we have that x2n ≡ 0 (mod 3), x6n+1 ≡ 0 (mod 2), x6n+3 ≡
0 (mod 41), and x6n+5 ≡ 0 (mod 7). It follows that all terms of the sequence are composite
as desired.

At this point we have proved the main theorem when |b| = 1 for all but finitely many
values of a. We still have to study what happens when b = −1 and |a| ≤ 3 as well as the
cases when b = 1 and |a| ≤ 5. Recall that the cases a = 0 and (a, b) = (±2,−1) were already
handled in section 2.

For most of these cases, we will still use Lemma 10; the only difference is that the set of
triples {pi,mi, ri}

i=t
i=1 is occasionally going to be slightly more numerous.

We summarize our findings in the table below. We invite the reader to verify that the
collections {pi,mi, ri}

i=t
i=1 do indeed satisfy the three conditions in Lemma 10. Note that in

each case we have 0 < x0 < x1, and since |a| > |b| = 1, Lemma 3 implies that (|xn|)n≥0 is
strictly increasing.

It remains to see what happens when |a| = |b| = 1, as in these cases Lemma 10 does not
apply.
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a b {(pi,mi, ri)} x0 x1

5 1 (5, 2, 0), (2, 6, 1), (7, 6, 3), (13, 6, 5) 495 1136
−5 1 (5, 2, 0), (2, 6, 1), (7, 6, 3), (13, 6, 5) 495 866
4 1 (2, 2, 0), (3, 4, 1), (7, 8, 3), (23, 8, 7) 116 165

−4 1 (2, 2, 0), (3, 4, 1), (7, 8, 3), (23, 8, 7) 116 801
3 1 (3, 2, 0), (11, 4, 1), (7, 8, 3), (17, 8, 7) 1803 3454

−3 1 (3, 2, 0), (11, 4, 1), (7, 8, 3), (17, 8, 7) 1803 3091
2 1 (2, 2, 0), (5, 3, 0), (3, 4, 1), (7, 6, 5), (11, 12, 7) 260 807

−2 1 (2, 2, 0), (5, 3, 0), (3, 4, 1), (7, 6, 5), (11, 12, 7) 260 1503
3 −1 (3, 2, 0), (2, 3, 0), (7, 4, 3), (47, 8, 5), (23, 12, 5), (1103, 24, 1) 7373556 2006357

−3 −1 (3, 2, 0), (2, 3, 0), (7, 4, 3), (47, 8, 5), (23, 12, 5), (1103, 24, 1) 7373556 14686445

Table 1: Covering triples for the cases b = 1, a = ±2,±3,±4,±5 and b = −1, a = ±3

If a = −1, b = −1, then it can be easily verified that the sequence given by the recurrence
xn+1 = −xn − xn−1 has period 3. Hence, if one chooses x0 = 8 and x1 = 27, then x2 = −35,
and due to the periodic behavior all terms of the sequence are composite.

Similarly, if a = 1, b = −1, then the sequence given by the recurrence xn+1 = xn − xn−1

has period 6. Again, if one chooses x0 = 8 and x1 = 35, then the first few terms of the
sequence are 8, 35, 27,−8,−35,−37, 8, 35, 27, . . .; that is, xn is always composite.

If a = b = 1, then Vsemirnov’s pair v0 = 106276436867, v1 = 35256392432 shows that all
the numbers

vn = vn−1 + vn−2 = v1Fn + v0Fn−1 (15)

are composite. Here, Fn is the nth Fibonacci number, where F−1 = 1, F0 = 0, F1 = 1.
For the case a = −1, b = 1, we follow the solution in [3].
It can be easily checked that the general term of the sequence xn+1 = −xn+xn−1 can be

written as
xn = (−1)n+1x1Fn + (−1)nx0Fn−1, n ≥ 0. (16)

We choose x0 = v0−v1 = 71020044435 and x1 = v0 = 106276436867. It is easy to check that
x0 and x1 are relatively prime composite integers. Moreover, from (15) and (16) we obtain
that

xn = (−1)n+1v0Fn + (−1)n(v0 − v1)Fn−1+ = (−1)n+1v1Fn−1 + (−1)n+1v0(Fn − Fn−1) =

= (−1)n+1v1Fn−1 + (−1)n+1v0Fn−2 = (−1)n+1 (v1Fn−1 + v0Fn−2) = (−1)n−1vn−1.

Hence, |xn| = vn−1 is composite for all n ≥ 0. The proof of the theorem is now complete.

6 A surprising result

In this section we prove the following:
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Theorem 11. Consider the integers a, b such that |a| ≥ 3 and b = −1. Let u0 = 0, u1 = 1
and un+1 = aun + bun−1 = aun − un−1 be the Lucas sequence of the first kind associated with
a and −1. Then |un| is composite for all n ≥ 3.

Proof. One has u3 = a2 − 1, and u4 = a3 − 2a, which are obviously composite. Since
|a| > |b| = 1, Lemma 3 implies that the sequence (|un|)n≥0 is strictly increasing. Suppose for
the sake of contradiction that there exists an n ≥ 2 such that |un+1| = p, where p is some
prime number. Since |un+1| ≥ |u3| = a2 − 1 it follows that necessarily p > |a|.

Now using Lemma 2 for the sequence (un)n≥0, equality (4) becomes

u2
n+1 − aunun+1 + u2

n = u2
1 − au1u0 + u2

0,

and since u0 = 0, u1 = 1, and |un+1| = p, we obtain that

u2
n ± apun + p2 − 1 = 0. (17)

Regard the above equation as a quadratic in un. Since un ∈ Z, it is necessary that the
discriminant is a perfect square, that is, there exist a nonnegative integer c such that

a2p2 − 4(p2 − 1) = c2 from which (a2 − 4)p2 = c2 − 4 = (c− 2)(c+ 2). (18)

Since |a| ≥ 3, one can assume that c ≥ 3. Since p is a prime and p2 divides (c− 2)(c+2), we
have two possibilities. If p divides both c− 2 and c+ 2 then p divides 4, which means that
p = 2. However, this is impossible since p > |a| ≥ 3. Otherwise, p2 divides either c − 2 or
c+ 2. In either case we obtain that c+ 2 ≥ p2. Using this inequality in (18), it follows that

(a2 − 4)p2 = (c− 2)(c+ 2) ≥ p2(p2 − 4) =⇒ |a| ≥ p, a contradiction.

This completes the proof.

In particular, the above theorem holds if a = 4 and b = −1, thus answering a question
of Vos Post (see A001353 in [14]).

What is remarkable about this situation is that while un is composite for every n ≥ 3, it
seems likely that there is no finite set of primes p1, p2, . . . pt such that every un is divisible
by some pi, 1 ≤ i ≤ t. In fact, we suspect the following is true.

Conjecture 12. Let (un)n≥0 be the Lucas sequence of the first kind associated with some
|a| ≥ 3 and b = −1. Then for any two different primes p and q, up and uq are relatively
prime.

If true, this conjecture would immediately imply that there is no finite set of primes
p1, p2, . . . pt such that every un is divisible by some pi, 1 ≤ i ≤ t.
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