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Abstract

A simple graph G = (V, E) is word-representable if there exists a word w over the
alphabet V' such that letters x and y alternate in w iff xy € E. Word-representable
graphs generalize several important classes of graphs. A graph is word-representable iff
it admits a semi-transitive orientation. We use semi-transitive orientations to enumer-
ate connected non-word-representable graphs up to the size of 11 vertices, which led
to a correction of a published result. Obtaining the enumeration results took 3 CPU
years of computation.

Also, a graph is word-representable iff it is k-representable for some k, that is, if it
can be represented using k copies of each letter. The minimum such k for a given graph
is called graph’s representation number. Our computational results in this paper not
only include distribution of k-representable graphs on at most 9 vertices, but also have
relevance to a known conjecture on these graphs. In particular, we find a new graph
on 9 vertices with high representation number. Also, we prove that a certain graph
has highest representation number among all comparability graphs on odd number of
vertices.

Finally, we introduce the notion of a k-semi-transitive orientation refining the notion
of a semi-transitive orientation, and show computationally that the refinement is not
equivalent to the original definition, unlike the equivalence of k-representability and
word-representability.

1 Introduction

Letters x and y alternate in a word w if after deleting in w all letters but the copies of x and
y we either obtain a word zyzy - - - (of even or odd length) or a word yzyz - - - (of even or odd
length). For example, the letters 2 and 5 alternate in the word 11245431252, while the letters
2 and 4 do not alternate in this word. A simple graph G = (V, E) is word-representable if
there exists a word w over the alphabet V' such that letters x and y alternate in w iff zy € E.
By definition, w must contain each letter in V. We say that w represents G, and that w is
a word-representant.

The definition of a word-representable graph works both for vertex-labeled and unlabeled
graphs because any labeling of a graph G is equivalent to any other labeling of G with
respect to word-representability (indeed, the letters of a word w representing G can always
be renamed). For example, the graph to the left in Figure 1 is word-representable because its
labeled version to the right in Figure 1 can be represented by 1213423. For another example,
each complete graph K, can be represented by any permutation m of {1,2,...,n}, or by =
concatenated any number of times. Also, the empty graph E,, (also known as edgeless graph,
or null graph) on vertices {1,2,...,n} can be represented by 12---(n — 1)nn(n — 1) ---21,
or by any other permutation concatenated with the same permutation written in the reverse
order.

We note that the class of word-representable graphs is hereditary. That is, removing a
vertex v in a word-representable graph G results in a word-representable graph G'. Indeed,



Figure 1: An example of a word-representable graph

if w represents G then w with v removed represents G’.

There is a long line of research on word-representable graphs (see, e.g. [1, 3, 4, 5, 7, 10,
12, 13, 14, 15, 18, 21, 25]) that is summarized in [19, 20]. The roots of the theory of word-
representable graphs are in the study of the celebrated Perkins semigroup in [23], which has
played a central role in semigroup theory since 1960, particularly as a source of examples and
counterexamples. However, the significance of word-representable graphs is in the fact that
they generalize several important classes of graphs such as 3-colorable graphs, comparability
graphs and circle graphs.

One of the key tools to study word-representable graphs is the notion of a semi-transitive
orientation to be defined next.

1.1 Semi-transitive orientations

The notion of a semi-transitive orientation was introduced in [14, 15], but we follow [20,
Section 4.1] to introduce it here. A graph G = (V,E) is semi-transitive if it admits an
acyclic orientation such that for any directed path v; — vy — -+ — v, with v; € V for all
1, 1 <1 < k, either

e there is no edge vy — vy, or

e the edge v; — vy is present and there are edges v; — v; forall 1 < ¢ < j < k. In
other words, in this case, the (acyclic) subgraph induced by the vertices vy, ..., vy is
transitive (with the unique source v; and the unique sink vy).

We call such an orientation semi-transitive. In fact, the notion of a semi-transitive orientation
is defined in [14, 15] in terms of shortcuts as follows. A semi-cycle is the directed acyclic graph
obtained by reversing the direction of one edge of a directed cycle in which the directions
form a directed path. An acyclic digraph is a shortcut if it is induced by the vertices of
a semi-cycle and contains a pair of non-adjacent vertices. Thus, a digraph on the vertex
set {vy,..., v} is a shortcut if it contains a directed path v; — vy — +-+ — vy, the edge
v; — Uk, and it is missing an edge v; — v; for some 1 < i < j < k; in particular, we must
have k > 4, so that any shortcut is on at least four vertices. Clearly, this definition is just
another way to introduce the notion of a semi-transitive orientation presented above.

It is not difficult to see that all transitive (that is, comparability) graphs are semi-
transitive, and thus semi-transitive orientations are a generalization of transitive orientations.
A key theorem in the theory of word-representable graphs is presented next.



Theorem 1 ([14, 15]). A graph G is word-representable if and only if it admits a semi-
transitive orientation (that is, if and only if G is semi-transitive).

A corollary to Theorem 1 is the useful fact that any 3-colorable graph is word-representable.

1.2 Comparability graphs and permutational representation

An orientation of a graph is transitive if the presence of edges u — v and v — z implies
the presence of the edge ©u — z. An unoriented graph is a comparability graph if it admits
a transitive orientation. A graph G = (V, E) is permutationally representable if it can be
represented by a word of the form p; - - - pr where p; is a permutation.

The following theorem is an easy corollary of the fact that any partially ordered set can
be represented as intersection of linear orders, and that a linear order can be represented by
a permutation.

Theorem 2 ([23]). A graph is permutationally representable if and only if it is a compara-
bility graph.

Permutational representation of a graph is a special case of uniform representation, to
be discussed next.

1.3 Uniform representations

A word w is k-uniform if each letter in w occurs k times. For example, the word 342321441231
is 3-uniform, while 43152 is a l-uniform word (a permutation). A graph G is k-word-
representable, or k-representable for brevity, if there exists a k-uniform word w representing
it. We say that w k-represents G. A somewhat surprising fact establishes equivalence of
word-representability and uniform word-representability:

Theorem 3 ([21]). A graph is word-representable iff it is k-representable for some k.

Thus, in the study of word-representable graphs, word-representants can be assumed to be
uniform. Graph’s representation number is the least k such that the graph is k-representable.
For non-word-representable graphs, we let k = oco. It is known [15] that the upper bound on
the length of a shortest uniform word-representant for a graph GG on n vertices is essentially
2n?, that is, one needs at most 2n copies of each letter to represent G. We let R(G) denote
G’s representation number and Ry = {G : R(G) = k}.

The class of complete graphs is clearly the class of graphs with representation number 1.
Further, the class of graphs with representation number 2 is precisely the class of circle graphs
without complete graphs, that is, the intersection graphs of sets of chords of a circle [14].
The later fact implies that, in particular, the number of connected graphs on n vertices with
representation number 2 (see Table 1) is precisely the number of connected circle graphs given
by the sequence A156808 in [28]. Unlike the cases of graphs with representation numbers
1 or 2, no characterization of graphs with representation number 3, or higher, is known.
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Figure 2: Crown graphs

However, there is a number of interesting results on graphs with representation numbers
higher than 2, some of which we mention next (see [19] for references to the original sources
in relation to the results, and for more results in this direction).

The representation number of the Petersen graph and any prism is 3. Also, for every
graph G there are infinitely many 3-representable graphs H that contain G as a minor. Such
a graph H can be obtained from G by subdividing each edge into any number of, but at least
three edges.

1.4 Graphs with high representation number

As for graphs with high representation number, only crown graphs and graphs G,, based on
them (see the definitions below) were known until this paper; Figure 5 gives an example of
another such graph. A crown graph (also known as a cocktail party graph) H, , is obtained
from the complete bipartite graph K, , by removing a perfect matching. That is, H, , is
obtained from K, , by removing n edges such that each vertex was incident to ezactly one
removed edge. See Figure 2 for examples of crown graphs.

By Theorem 2, H, , can be represented by a concatenation of permutations, because
H, , is a comparability graph (to see this, just orient all edges from one part to the other).
In fact, H, , is known to require n permutations to be represented (the maximum possible
amount for a comparability graph on 2n vertices by the well known theorem on the poset
dimensions by Hiraguchi [16]). However, we can provide a shorter representation for H, ,,
to be discussed next, which is still long (linear in n).

Note that Hy; € Ro. Further, Hy 5 # K,, the complete graph on four vertices, and thus
Hy 5 € Ro because it cannot be represented by a permutation but can be 2-represented by
2'12'121'21". Also, Hs 3 = Cg, a cycle graph, which belongs to R, as is shown, e.g. in [19, 20].
Finally, Hy4 € R3 because Hy,4 is a prism (it is the 3-dimensional cube). The following
theorem gives the representation number R(H,,,) in the remaining cases.

Theorem 4 ([10]). If n > 5, then the representation number of H, , is [n/2].

Conjecture 5. H, , has the highest representation number among all bipartite graphs on
2n vertices.

The graph G, is obtained from a crown graph H, , by adding an apex (all-adjacent
vertex). See Figure 3 for the graph Gy4. It turns out that G, is the worst known word-



Figure 3: The graph G4 with representation number 4

representable graph in the sense that it requires the maximum number of copies of each
letter to be represented, as recorded in the following theorem.

Theorem 6 ([21]). The representation number of G, is [(2n+1)/2].

It is unknown whether there exist graphs on n vertices with representation number be-
tween |n/2| and essentially 2n (the known upper bound), but one has the following conjec-
ture.

Conjecture 7. (G, has the highest representation number among all graphs on 2n + 1
vertices.

It is easy to see that G, is a comparability graph (just make the apex to be a source, or
a sink, and orient the remaining crown graph from one part to the other). Surprisingly, the
following result on G,, does not seem to be recorded in the literature.

Theorem 8. G,, has the highest representation number among all comparability graphs on
2n + 1 vertices.

Proof. Let G be a comparability graph on 2n + 1 vertices. By Theorem 2, G' can be repre-
sented by a concatenation of permutations, which is equivalent to representing the partially
ordered set corresponding to G by intersection of linear orders. It is known [16] that for any
finite poset P, the dimension of P is at most half of the number of elements in P. Thus, the
number of permutations required to represent G cannot exceed n, which in turn implies that
R(G) < n (dropping the requirement to represent G permutationally, we can only shorten
a word-representant). Thus, by Theorem 6, R(G) < R(G,). O

1.5 Organization of the paper

Our concern in this paper is word-representation of connected graphs, because a graph is
word-representable if and only if each of its connected components is word-representable
[20]. In Section 2 we explain our computational approach using satisfiability module theories
(SMT) to study k-word-representable graphs and present the results obtained. In particular,



we raise some concerns about Conjecture 7, while confirming it for graphs on at most 9
vertices. In Section 3 we present a complementary computational approach using constraint
programming, enabling us count connected non-word-representable graphs. In particular, in
Section 3 we report that using 3 years of CPU time, we found out that 64.65% of all connected
graphs on 11 vertices are non-word-representable. Another important corollary of our results
in Section 3 is the correction of the published result [19, 20] on the number of connected non-
word-representable graphs on 9 vertices (see Table 2). In Section 4 we introduce the notion of
a k-semi-transitive orientation refining the notion of a semi-transitive orientation, and show
that 3-semi-transitively orientable graphs are not necessarily semi-transitively orientable.
Finally, in Section 5 we suggest a few directions for further research and experimentation.

2 Finding word-representants by SMT

How to find a k-uniform word-representation of a given graph G = (V, E))? In this section we
discuss how this can be done by means of SMT: satisfiability modulo theories. In particular,
we focus on the theory of linear inequalities, and want to exploit the fact that current SM'T
solvers are strong in establishing whether a Boolean formula composed from A, V, = and
linear inequalities admits a solution, and if so, finds one. Here by a solution we mean a
choice for the values of the variables such that the formula yields true; if such a solution
exists the formula is called ‘satisfiable’, and the solution is called a ‘satisfying assignment’.
So, our goal is to find such a Boolean formula for which any solution corresponds to a k-
uniform word-representation of a given graph. For doing so, we need a way to express the
unknown k-uniform word of length kn, where n = #V is the number of vertices in the
graph in question, by a number of variables. This is done as follows. Number the vertices
from 1 to n, and represent a word w that we are looking for by kn integer variables A, ;, for
t=1,...,n,j5 =1,..., k. The intended meaning of A; ; is the position of the j-th occurrence
of symbol i in w, fori=1,...,n, 7 =1,..., k. For example, for the following graph

@ @ ®

the word w = 132312 is a 2-uniform word-representing the graph, and is expressed by the
values Al,l = 1, ALQ = 5, Ag’l = 3, A272 = 6, Ag’l = 2, A372 =4.

Now, our formula is the conjunction of a number of requirements on these integer variables
A, ; that all together describe a word w representing a given graph G = (V,E). These
requirements are:

° Ai,j>O;foralli:l;"'anaj::[?""k;
L Ai,j§/{:n,foralli:1,...,n,j:1,...,k;

o all A;; are distinct (distinctness is a feature included in SMT format);
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e for all 71i5 € F,
(Aijg <A1 <A< A< <A <AL,
V(Aipn <Aj1 <A <Ao< <A, <A
o for all i1iy & F,
(A1 < Aipn < Ao <Ao< <A <A,

AN =(Aign < Ajn < Aigp < Ajyp <0 < Agyj < Aiyj)

So, for our graph above, the formula reads
A171 >O/\A172 >O/\A271 >O/\A2,2 >O/\A371 >0/\A372 >0A

A1 <6ANA 2 <6NAy KO6ANA0 KO6ANA3; <O6ANA30 <6 A
distinct(Ay 1, A1 2, Ao, Aso, Agq, Asa) A
(A1 < Agg < A1 < Aga)V(Agr < A1 < Ags < A1) A
((Ag1 < Asq <Aoo < Asz2)V (As1 <Ay < Azp < Az2)) A
ﬂ(A1,1 < A3,1 < A1,2 < A3,2) A _'(A3,1 < A1,1 < A3,2 < Am))-

For the values A1; = 1, Ao =5, Agq = 3, Ago = 6, A3y = 2, A3y = 4 this formula
yields true, as is found by the SMT solver Z3, yielding the 2-uniform word-representation
w = 132312 of the graph.

Up to syntactic details (boolean operators are written as ‘not’, ‘and’; ‘or’, all operators
are written in prefix notation), it is exactly this formula on which an SMT solver like Z3
[30] or YICES [29] can be applied, yielding ‘satisfiable’, and the corresponding satisfying
assignment gives our values of A; ;.

We wrote a tool doing this in a way where the internal use of an SMT solver is hidden
from the user. It is available at

http://www.win.tue.nl/~hzantema/reprnr.html .

The tool reads a graph and then tries to find a k-representation for £ = 2, 3,4, ... by building
the formula as presented above and then calling an SMT solver. As soon as a satisfying
assignment is found, the computation stops and the resulting values are transformed to the
corresponding k-uniform word-representation, which is returned to the user. The tool is
available both for Windows (calling the SMT solver Z3) and for Linux (calling the SMT
solver YICES), together with several examples. Typically, for graphs like the cube, the
prism on the triangle, Petersen graph, and G4 (see below), the k-uniform word representing
the graph is found in a second or less.

Y
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# of | # of conn. representation number
vertices graphs | 1 \ 2 \ 3 \ 4 \ >4
3 211 1 010 0
4 6|1 5 010 0
5 21 | 1 20 010 0
6 112 | 1 109 110 1
7 853 | 1 788 3910 25
8 11,117 | 1 8335 1852 | 0 929
9 261,080 | 1 | 117,282 | 88,838 | 2 | 54,957

Table 1: Distribution of connected graphs with representation number k£, 1 < k < 4, on
at most 9 vertices. The cases k = 2,3 are the sequences A319489 and A319490 in [28],
respectively.

As this tool works quite quickly, it is feasible to run it on a great number of graphs. In

particular, we ran it on all connected graphs on < 9 vertices as they are available from
http://users.cecs.anu.edu.au/~bdm/data/graphs.html .

The results are listed in Table 1, where ‘representation number > 4’ means that no 4-

representation exists, so either the representation number is > 4, or the graph is not word-

representable (for which the representation number is co). However, as these numbers co-

incide with the respective numbers in Table 2, we conclude that only the latter occurs, and

no word-representable graph exists on < 9 vertices with representation number > 4.

The single graph on 6 vertices with representation number 3 is the prism on the triangle;
the single non-word-representable graph on 6 vertices is the wheel on 5 vertices. The 39
graphs on 7 vertices with representation number 3 are given in Figure 4.

The most surprising result in Table 1 is the two graphs on 9 vertices with representation
number 4. One of them was known before, namely, G4 presented in Figure 3, and it was
believed to be the only graph on 9 vertices with representation number 4. However, our
computations have shown the existence of another such graph, namely the graph J; shown
in Figure 5. We note that J; is a non-comparability graph, which is easy to check, while
(G4 is. This may suggest that Conjecture 7 might not be true, since there are many more
non-comparability graphs than comparability graphs, and one may expect finding those of
them that have higher representation number than G,. Having said that, we were not able
to extend the construction of J; (in a natural way) to more than 9 vertices.


https://oeis.org/A319489
https://oeis.org/A319490
http://users.cecs.anu.edu.au/~bdm/data/graphs.html

Bl
4K
<{MHERX
A IN<
@ MK
AFQ N
B SN
B OB

7 vertices with representation number 3

Figure 4: The 39 connected graphs on

10

Figure 5: The graph J; with representation number 4. It is shown in two ways to demonstrate

different symmetries.



3 Counting non-word-representable graphs using con-
straint programming

Similarly to our studies of k-word-representable graphs, we performed large computations
using constraint programming [27] to count the numbers of non-word-representable connected
graphs with up to 11 vertices. To do this, we used the constraint modelling tool Savile Row
[26] and the constraint solver Minion [8]. These tools have been used successfully in the past
to obtain novel enumerations of a variety of combinatorial structures including semigroups
6], equidistant frequency permutation arrays [17], and S-crucial and bicrucial permutations
with respect to squares [9].

Our starting point was to model the concept of word-representability in a way similar to
that when using SMT in Section 2. However, here we use Theorem 1 showing the equivalence
between word-representability and semi-transitivity, so that semi-transitive orientations are
now used to determine whether or not a graph is word-representable. As with SMT in
Section 4, we use a boolean u;; to indicate an undirected edge between ¢ and j, and a boolean
e;; to indicate a directed edge from ¢ to j. Moreover, we use a boolean ¢;; to indicate the
transitive closure of e, which is true when there is a path of directed edges from i to j.
Most of the model expresses the appropriate linkages between these sets of variables. For
example, constraints in the model express that ¢ is the transitive closure of e. The acyclicity
of e is elegantly expressed by each t;; being false, i.e. no vertex being reachable from itself in
the transitive closure. The final constraint expresses the property of semi-transitivity. This
states that if two vertices are connected by a directed path, and there is an undirected edge
between them, then all pairs of intermediate vertices must have a directed edge between
them in the appropriate direction.

The model we used is shown in full in Figure 6. There are three points of detail about the
model which deserve mention. First, this model neither check graphs for being connected, nor
for being non-isomorphic to each other. This is not easy to do very efficiently in constraints,
so instead we constructed a list of all connected undirected graphs with no two graphs being
isomorphic, using the program geng [24]. Second, we originally modelled an undirected
graph as an input to the constraint model, which was then checked for word-representability.
However, this proved to be very inefficient as the vast majority of the constraint modelling
processes was the same for each graph. Instead, we provide the constraint model with a
list of graphs produced by geng and insist that the solution is one of those graphs. This is
achieved in constraints using the ‘table’ constraint, which can be propagated very efficiently
[2]. As well as saving work at the modelling stage, it also provides the capability to save work
at the solving stage. For example, if all graphs remaining for consideration contain a certain
undirected edge ij, the variable u;; can be set true immediately. A major advantage of this
approach is that it makes it particularly easy to parallelise the enumeration process, simply
by splitting the list of distinct connected graphs into appropriately sized chunks. Finally, the
line ‘branching on [u]’ tells the constraint tools that we only wish to solve the problem
once for each different assignment of u, i.e. for each undirected graph. Without this, any
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# of # of conn. All non-word-representable graphs

vert. graphs Total | % of cand. | Time [ Min. | Non-Min.
6 112 1 0.89% 3.0s 1 0
7 853 25 2.93% 4.0s 10 15
8 11,117 929 8.36% 26s 47 882
9 261,080 54,957 21.05% 29m | 179 54,778
10| 11,716,571 | 4880003 | 41.65% | 74h| - -
11 | 1,006,690,565 | 650,856,040 64.65% | 1,100d - -

Table 2: The numbers of all non-word-representable connected graphs (the sequence A290814
in [28]), as well as the numbers of such graphs, called non-minimal, that include smaller non-
word-representable subgraphs, and those, called minimal, that do not. The percentage of
non-word-representable connected graphs to all connected graphs is given to 2 decimal places.
Times indicate the CPU time used to compute all non-word-representable connected graphs,
to 2 significant figures in an appropriate unit (seconds, minutes, hours, days). The time to
count minimal /non-minimal connected graphs is not shown.

graph admitting more than one semi-transitive orientation would be repeated in the output,
wasting both search time and necessitating extra work in removing duplicates.

Results of our computations are shown in Table 2. Note that in one case numbers are
different to those previously reported. The true number of connected non-word-representable
graphs on 9 vertices is 54,957, not 68,545 as was reported in [19, 20] (which was a copy/paste
mistake).

It is also interesting to identify minimal non-word-representable graphs of each size, i.e.
graphs containing no non-word-representable strict induced subgraphs. To do this, we stored
all non-word-representable graphs of each size. After computing with geng all possible graphs
with one more vertex, we eliminate graphs containing one of the stored graphs as an induced
subgraph. We did this with a simple constraint model which tries to find a mapping from
the vertices of the induced subgraph to the vertices of the larger graph, and if successful
discards the larger graph from consideration. This enabled us to count all minimal non-
word-representable graphs of each size up to 9, which is shown in Table 2. The filtering
process we used was too inefficient to complete the cases n > 10.

4 Refining semi-transitivity

The notion of k-word-representability refines that of word-representability. However, The-
orem 3 shows that these notions are equivalent. Still, k-word-representability plays a very
important role in the theory of word-representable graphs.

Thinking along similar lines, we introduce the potentially useful notion of a k-semi-
transitive orientation refining semi-transitive orientations linked to word-representability via

12
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language ESSENCE’ 1.0

given n : int

given triangle_table : matrix indexed by [int(l..numgraphs),int(l..(n-1)*(n)/2)]
of int(0,1)

letting LETTER be domain int(1..n)

find upper_triangle : matrix indexed by [int(1..((n-1)*n/2))] of int(0,1)

find u : matrix indexed by [LETTER, LETTER] of int(0,1) $ graph undirected edges
find e : matrix indexed by [LETTER, LETTER] of int(0,1) $ graph directed edges
find t : matrix indexed by [LETTER, LETTER] of int(0,1) $ transitive closure
branching on [u]

such that
$ the diagonal is empty
forAll i : LETTER . uli,i] = O,
$ the graph is undirected
forAll i,j : LETTER . uli,j] = ulj,il,

$ linking u and the upper triangle

forAll i,j : LETTER . i < j -> (uli,j] = upper_triangle[n*(i-1)+j-((i+1)*i/2)]1),
$ the graph is one of the preprocessed graphs

table (upper_triangle,triangle_table),

$ linking e and u
forAll i,j : LETTER . uli,j] = 0 -> el[i,j]=0,
forAll i,j : LETTER . uli,j] = 1 -> ((el[i,jl=1) \/ elj,il=1),

$ directed graph is irreflexive and antisymmetric
forAll i : LETTER . e[i,i] = O,
forAll i,j : LETTER . i < j -> ( (el[i,j]1 = 0) \/ (elj,i] = 0)),

$ t is transitive closure of e and is acyclic

forAll i,j : LETTER . (el[i,j] = 1) -> (t[i,j] = 1),

forAll i,j,k : LETTER . ( (t[i,j] = 1) /\ (t[j,k] = 1)) -> (¢[i,k] = 1),
forAll i : LETTER . t[i,i] = O,

$ semi transitive ordering
forAll i,k: LETTER .
((elikl = 1) /\ (uli,k]l = 1)) >
((ordering[i,k] = 1) /\
forAll j : LETTER .
(eli,jl=1 /\ tlj,kl=1) -> (eli,j] =1 /\ elj,kl=1)))

Figure 6: Essence Prime model of word-representable graphs
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Theorem 1. Recall the definition of a shortcut in Section 1.1. An undirected graph is k-
semi-transitively oriented, or k-semi-transitive for brevity, if it admits an acyclic orientation
avoiding shortcuts of length & (longer shortcuts are allowed). In particular, an undirected
graph is 3-semi-transitive if it admits an acyclic orientation such that for any directed path
vg — V1 — vy — v3 of length 3 for which vy — wv3 is an edge, also vy — v9 and vy — v3 are
edges.

The notion of 3-semi-transitivity is easily expressed in SMT. Writing u;; for the boolean
expressing whether there is an undirected edge from ¢ to 7, and e;; for the boolean expressing
whether there is a directed edge from 7 to j, the connection between directed and undirected
graph is expressed by

U5 <= (6@' V eji)
for all vertices 7, j. Being acyclic is expressed by the existence of a weight function w such
that
eij = w(i) > w(y)

for all vertices 7, 7. Finally, the path condition is expressed by
((3]{7, m: ((sz VAN ij) V (6]%‘ N ekj)) N €im N €mj) = €4

for all vertices 7, j, where 3 runs over the vertices. For a given undirected graph, we take the
conjunction of the above requirements and for all 7, j we add Aw,; if there is an edge from ¢ to
J, and add A—wu;; otherwise. Then, by construction, the resulting formula is satisfiable if and
only if the undirected graph is 3-semi-transitive. We built these formulas for all connected
graphs on < 9 vertices, and applied Z3 on them. As a result, we determined that for < 8
vertices a graph is 3-semi-transitive if and only if it is word-representable. In contrast, for
9 vertices we determined that there are exactly 4 graphs that are 3-semi-transitive but not
word-representable, and hence not semi-transitive. They are depicted in Figure 7. An SMT
encoding of checking semi-transitivity is also included in the tool linked to in Section 2.

Using a similar encoding of the problem, these computational results were extended to
finding the number of all 3-semi-transitively orientable connected graphs on up to 10 vertices
using the constraint programming methods described in Section 3. We refer to Table 3 where
these results are recorded along with the number of minimal (not containing smaller such
graphs as induced subgraphs) non-3-semi-transitively orientable connected graphs. Com-
paring Tables 2 and 3, we see that there are 585 3-semi-transitively orientable, but not
semi-transitively orientable connected graphs on 10 vertices.

Thus, the notions of k-semi-transitively orientable graphs and semi-transitively orientable
graphs are not equivalent.

5 Concluding remarks

We conclude by suggesting a few directions of further research relevant to our paper. In
each of these directions one can use the computational approaches/tools developed by us to
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Figure 7: 3-semi-transitively, but not semi-transitively orientable graphs

# of | # of conn. All non-3-semi-transitively orientable graphs

vert. graphs Total | % of cand. | Time | Minimal | Non-Minimal
6 112 1 0.89% | 4.0s 1 0
7 853 25 2.93% | 6.0s 10 15
8 11,117 929 8.36% 80s 47 882
9 261,080 54,953 21.05% | 2.8h 175 54,778
10 | 11,716,571 | 4,879,508 41.65% | 22d - -

Table 3: Numbers of (minimal) non-3-semi-transitively orientable connected graphs (the se-
quence A319492 in [28]) and the CPU time to obtain them. The time to count minimal/non-
minimal graphs is not shown.

support finding new results. In particular, one could try to use our tools to take all bipartite
graphs and to test Conjecture 5 for larger graphs.

It would be interesting to extend the construction of J; in Figure 5 (in a natural way)
to more than 9 vertices so that new graphs with high representation numbers would be
obtained. This may help to prove or disprove Conjecture 7.

Also, an intriguing question is whether or not there exists k such that semi-transitive
orientability is equivalent to k-semi-transitively orientability. If such a k exists, it must be
> 3 (e.g. because of the graphs in Figure 7). In either case, to study the properties of
k-semi-transitively orientable graphs (at least 3-semi-transitively orientable graphs) is an
interesting and challenging direction of research. Many questions that can be asked about
word-representable graphs [19, 20] can be asked about k-semi-transitively orientable graphs,
e.g. how many such graphs there are, or how we can describe these graphs in terms of
forbidden subgraphs, etc, etc.

Finally, even though it seems that our current methods would not be able to extend the
results of Table 2 to 12 vertices, it is interesting if it would be ever possible to achieve.
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