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Abstract
We extend a charming Fibonacci pleasantry to Fibonacci, Lucas, Jacobsthal, and
Jacobsthal-Lucas polynomials; and then confirm the resulting polynomial delights using
graph-theoretic tools.

1 Introduction

Generalized Fibonacci polynomials z,(x) are defined by the recurrence z,(z) = a(z)z,_1(z)+
b(x)z,_o(x), where x is an arbitrary complex variable; a(zx),b(x), zo(x), and z;(x) are arbi-
trary complex polynomials; and n > 2.

Let a(x) = x and b(z) = 1. When zy(z) = 0 and z,(z) = 1, z,(z) = fu(z), the nth
Fibonacci polynomial; and when zo(x) = 2 and z(x) = z, z,(x) = l,(z), the nth Lucas
polynomial. Clearly, f,(1) = F,, the nth Fibonacci number; and [,(1) = L, the nth Lucas
number [2, 3, 12, 13].

Pell polynomials p,(x) and Pell-Lucas polynomials q,(x) are defined by p,(x) = f,(2x)
and g, (z) = [,,(2z), respectively. The Pell numbers P, and Pell-Lucas numbers @), are given
by P, = pn(1) = fn(2) and 2Q,, = ¢, (1) = [,,(2), respectively [7, 10].

Suppose a(z) = 1 and b(z) = x. When zy(z) = 0 and z(x) = 1, 2,(z) = J,(x), the nth
Jacobsthal polynomial; and when zo(x) = 2 and z;(z) = 1, z,(x) = jn(x), the nth Jacobsthal-
Lucas polynomial [5, 6]. Correspondingly, J,, = J,(2) and j, = j,(2) are the nth Jacobsthal
and Jacobsthal-Lucas numbers, respectively. Clearly, J,(1) = F,;; and j,(1) = L,.
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The polynomials f,,(z),l,(z), J,(z), and j,(x) can also be defined explicitly using Binet-
like formulas:

@) =220 @) =at g
R =" @ =,

where a = a(z) and 3 = f(x) are the solutions of the equation t* — xt — 1, and u = u(x);
and v = v(z) are those of t? —¢ —x = 0. Notice that « — 8 = V22 + 4 and u — v = 4z + 1.

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, means z,(x). In addition, we let g, = f,, or l,;
b, = pn Or q; and ¢, = J,(z) or j,(z); and correspondingly, G,, = F,, or L,; B,, = P, or
Q,; and C,, = J, or j,.

2 (-matrix and digraph

Gibonacci polynomials f,, and [,, can be studied using the (Q-matrix
xz 1
where @ = Q(z) = (¢;j)2x2 [11, 14]. It then follows by induction that

n o__ fn—i-l fn
Q B |: fn fn—1:| ,

where n > 1.

The @-matrix has a graph-theoretic appeal. It can be interpreted as the weighted adja-
cency matriz of a weighted digraph D; with vertices vy and vy [11, 14]; see Figure 1. Notice
that a weight is assigned to each edge.

A walk from vertex v; to vertex v; is a sequence v-€;-v;41-- - - -vj_1-€;_1-v; of vertices vy,
and edges eg, where edge e is incident with vertices v, and wv;. The walk is closed if
v; = v;; otherwise, it is open. The length of a walk is the number of edges in the walk. The
weight of a walk is the product of the weights of the edges along the walk.

We can employ the weighted adjacency matrix to compute the weight of a walk of length
n from any vertex v; to any vertex v;, as the following theorem shows [9, 11].



Figure 1: Weighted digraph D,

Theorem 1. Let A be the weighted adjacency matriz of a weighted and connected digraph
with vertices vy, vy, ..., vx. Then the ijth entry of the matriz A™ gives the sum of the weights
of all walks of length n from v; to vj, where n > 1.

This theorem implies the following result.

Corollary 2. The ijth entry of Q" gives the sum of the weights of all walks of length n
from v; to v in the weighted digraph Dy, where 1 <i,5 < 2.

It follows by this corollary that the sum of the weights of all closed walks of length n
originating in the digraph model is f,.1, and that of walks of length n originating at v, is
fn—1. So the sum of the weights of all closed walks of length n is f,1 + fn_1 = .

3 A Gibonacci delight

In 1963, H. W. Gould established a charming identity for Fibonacci squares [8, 13]:

F2 =2F ,+2F  —F (1)

n n

It has a simple, but delightful geometric interpretation [13].
The next theorem extends identity (1) to gibonacci polynomials g,,.

Theorem 3.
9721+3 = f39i+2 + f39721+1 —gr. (2)

Proof.  Using the gibonacci recurrence, we have

931+3 + 931 = (TGny2 + 9n+1)2 + (gnto — Ignﬂ)z
= (@P+ D+ @+ 1)g .

This yields the desired identity. (It also follows by Binet’s formulas.) O
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4 Graph-theoretic models

With these tools at our finger tips, we can give graph-theoretic interpretations of the gi-
bonacci results in Theorem 3. The essence of our technique hinges on Corollary 2, and the
“weighted” version of Fubini’s principle [1, 13]: Counting the number of elements in a set in
two different ways yields the same result.

We begin our discourse with g, = f,.

4.1 Interpretation with g, = f,

It follows by Corollary 2 that the sum of the weights of closed walks of length n+2 originating
at vy is fni3. The sum S of the weights of ordered pairs (v, w) of such closed walks is the
product of the sum of the weights of such walks v and w. Consequently, S = f2, .

We will now compute the sum S in a different way:.

Proof. Case 1. Suppose v and w begin with a loop at v;. The sum of the weights of pairs
(v,w) of such closed walks of length n + 2 is (2 fy12) (@ faye) = 2% 1 ,.

Case 2. Suppose v begins with a loop at vy, but w does not. The sum of the weights of pairs
of such closed walks is (2 f42)(1 -1+ f) = @ friafn-

Case 3. On the other hand, suppose v does not begin with a loop, but w does. The sum of
the weights of pairs of such closed walks is (1-1- f,,)(xfni2) = T fuiafn-

Case 4. Finally, suppose neither v nor w begins with a loop. The contribution of pairs of
such walks toward the sum S'is (1- f,1)(1 - frup1) = f24.

n

Combining the four cases, we also get

S = a2 n2+2+f7%+1+2xfn+2fn
= (2*+1) 3+2—|—(x2+1) 5+1_ 2,

as in the proof of Theorem 3.
Equating the cumulative sums yields the desired result. O]

As a byproduct, this discourse then gives a graph-theoretic proof of the Pell identity
Pis = P3Pz + D3Pyin — Pr-

Next we investigate the graph-theoretic interpretation of identity (2) with g, = [,.



4.2 Interpretation with g, =1,

Proof. Let A denote the set of closed walks of length n + 3 originating at v, and B that of
length n + 3 originating at vy. Let C' = AU B, where AN B = (). The sum of the weights of
all closed walks in C' equals f, 14 + fni2 = lh13. Consequently, the sum S of the weights of
ordered pairs (v,w) € C' x C'is given by S =12 _,.

To compute this sum in a different way, first we make an interesting observation. By
Theorem 3, we have

Pl A Ax s fore = (Tfars + 2fni2)”
= (fasa + far2)?
= oy (3)
= fllo+ fsli, — L.

Consequently, it suffices to establish graph-theoretically the equivalent identity

1‘2 73-{-3 + 4f7%+2 + 4mfn+3fn+2 = l721+3- (4)
We will accomplish this using four cases for an arbitrary element (v, w) € C' x C.

Case 1. Suppose v,w € A. Suppose both v and w begin with a loop. The sum of the weights
of pairs (v, w) of such closed walks is (2 fni3)(2 fri3) = 22 f7 5. If v begins with a loop at v;
and w does not, then v € A and w € B. The sum of the weights of all such pairs (v, w) of
closed walks equals (- f,43)(1-1+ fr42) = @ fnisfare. Suppose v does not begin with a loop,
but w does. Then v € B and w € A. The sum of the weights of all such pairs (v, w) of closed
walks equals (1-1- f,12)(z- fuis) = T fni3fnio. Suppose neither v nor w begins with a loop.
The total contribution by the corresponding pairs (v,w) is (1-1- frp2)(1- 1 foy2) = f2i,.

Thus, when v, w € A, the sum of the weights of such closed walks of length n + 3 is given
by

Sy =2 fi s+ 2% farsfure + 1o

Case 2. Suppose v € A and w € B. If v begins with a loop, then the sum of the weights of
products of such closed walks of length n + 3 is (2 fu43)(fni2) = T fnisfnre. On the other
hand, suppose v does not begin with a loop. The corresponding sum is (1-1- f,,49)(fni2) =

f2,,. Consequently, the total contribution from this case is

So = fry3fna + fn2+2-

Case 3. Suppose v € A, but w € B. Then v € B. If w begins with a loop, the resulting
contribution is (fri2)(zfnes) = Tfnisfare. If w does not begin with a loop, then the
corresponding contribution is (f,,12)(1-1- f12) = f2.,. Consequently, the total contribution
from Case 3 toward the cumulative sum is

Sy = X fnisfuie + frio
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Case 4. Suppose v,w € B. Clearly, the resulting contribution from this case toward S is

Sy = (fn+2>(fn+2) = f3+2'

Collecting all contributions from the four cases and using identities (2) and (3), we get

S = S1+ S5+ 53+ Sy

= a2’ 3+3 + 4f2+2 + 4 fri3fnte

_ 2
- ln+37

as desired. O]
An Alternate Proof.

Proof. Alternatively, by focusing on the closed walks at v; alone, we can establish identity
(3). To see this, let C' denote the set of closed walks of length n + 3 at vy, and D that of
length n +1 at v;. Let £ = C U D, where C N D = (). The sum of the weights of the walks
in Fis foia+ fnio = lhys. Consequently, the sum S of the weights of elements in F x F is
S—2.,

We+will now compute S in a different way. (In the interest of brevity, we highlight the
key steps only.) To this end, let (v, w) be an arbitrary element in E x E.

Suppose v,w € C. Then the sum of the weights of the pairs (v, w) of such closed walks
is given by

Sy =2 73+3 + fn2+2 + 22 fry3 oo

On the other hand, let v € C' and w € D. The total contribution from such pairs (v, w)

is

Sy = xQ r%+3fn+1 + mfn-i-?)fn + xfn-k?fn-&-l + fn+2fn

= 3+2 + 2 fri3fni2-

When v, w € D, the total contribution from the corresponding pairs is

S3 - x2 n2+1+2xfn+1fn+fn2
2

Finally, let v € D and w € C. The corresponding contribution is

Sy = $2fn+3fn+1 + T foisfn + T forofoir + forafn

= 3+2 + 2 fri3fni2-

Thus the cumulative sum S of the weights of all pairs (v,w) € E' x E is also given by
Si+ S8+ S+ 8 = 3+3 + 4f§+2 + 42 fry3 fuge
= l721+37

as expected. O



Since [4, 14]

92 +92 _ f2n+17 if gn:fm
o ! (:E2 +4) fons1, i gn = Iy

these models also give a graph-theoretic interpretation of the identity [2, 4, 14]

97214-3 + 9721 = (xZ + 1)(9721-5-2 + 9721+1)

($2 + 1)f2n+37 if gn = fn;
(xQ + 1)(;62 + 4)f2n+37 if gn = ln
We now add that using the bijection algorithm in [11], we can translate the graph-
theoretic models into tiling models with squares and dominoes, where weight(square) = x;
weight(domino) = 1; and the weight of a tiling is the product of the weights of tiles in the
tiling.
Replacing x with 2x in this discourse yields a graph-theoretic proof of the Pell-Lucas
identity

CI?L+3 = 41'2pi+3 + 4p3z+2 + 8TPn43Pnt2
= P3Goys + D3ty — o
Finally, it follows from identity (4) that
F3+3 + 4F3+2 + 4Fn+3Fn+2 = L?L-ﬁ-?)'

Consequently, an L,,.3 X L,.3 floor can be tessallated with nine tiles: one F), 3 x F},.3 tile;
four F, .o x F,19 tiles; and four Fj, 3 X F, . tiles, where n > 0.

5 Jacobsthal implications

Using the gibonacci-Jacobsthal relationships J,(z) = 2™ V/2f, (u) and j,(z) = ™21, (u)

[12], we can easily find the Jacobsthal counterparts of identities (2) and (3), where u = 1/+/x:
By = B o) — B ®

Jnn (@) = Jua(@) + 40 T3 (@) + 4w T (2) Ju(2),

respectively. (We have omitted the basic algebra for brevity and convenience.)
Consequently,

C§+3 = 302+2 + 60721+1 - 80735
Jag1 = o+ 1607 +8Tu1 . (6)

Identity (6) implies that a j,+1 X j,i1 floor can be tiled with 25 tiles: one J, 411 X Ju11
tile; sixteen J, x J, tiles; and eight J,.1 x J,, tiles, where n > 1.
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5.1 A Jacobsthal digraph

Next we confirm independently identity (5) using graph-theoretic tools. To this end, we first
present a weighted digraph Ds; see Figure 2. Its weighted adjacency matrix is

M:H g}.

e [Jn+1(:1:) v, (x) } |

Then

Jo(x)  xdyq(x)

where n > 1; we can confirm this using induction.

Vv
Vi 2

= A

Figure 2: Weighted digraph D,

It then follows that the sum of the weights of closed walks of length n originating at vy is
Jnt1(x), and that of those originating at vy is x.J,_1(z). Consequently, the sum of all closed
walks of length in the digraph Dy is J,,11(z) + 2J,—1(x) = jn(x). These facts play a central
role in the graph-theoretic proof.

With these tools at our finger tips, we now present the proof of each part.

Proof.

Part 1. To establish part 1, we let A be the set of closed walks of length n + 2 starting at
v1. The sum of the weights of all such closed walks is J,,;3(x); so the sum S of the weights
of all ordered pairs (v,w) € A x Ais J2, 4(x).

We will now compute S in a different way. Again, let (v, w) be an arbitrary element of
Ax A. Suppose both v and w begin with a loop; the sum of the weights of such pairs (v, w) is
1+ Jns2()][1+ Jnso(x)] = J2,5(x). If v begins with a loop and w does not, the corresponding
sum is [1- Jppo(@)][x -1+ Jpi1(x)] = 2 dhr2(x) Jns1(x). Suppose v does not begin with a loop,
but w does; then also the resulting sum is [z - 1+ J,q1(2)][1 - Jpio(2)] = @ dpio(z) Jnir(2).



Finally, if both v and w do not begin with a loop, the contribution from such pairs equals
-1 Sy (@)][e 1+ T ()] = 2202, (2).

Thus the cumulative contribution of pairs (v, w) all closed walks of length n + 2 starting
at vy is given by

S = J2(x) + 22 0(z) g () + 27 T2, (2)
= Jrso(@) + 2 dnpa (1) [ Taga(w) — 2dn(@)] + 2 dnia () [Tnga () + 2 du(@)] + 22 T3, (2)
= (z+D)J3 @) + 2@+ 1) 5, (2) = 22 To (@) [ Tnsa(@) — Jpa (2))]
= (z+1)J2 (@) +z(z+1)J2, (x) — 2T, (2).

Combining the two values of S yields identity (5) when ¢, = J,(z).

Part 2. To confirm identity (5) when ¢, = j,(z), we focus on the closed walks of lengths
n + 3 and n in the digraph. Let C' be the set of closed walks of length n 4 3 starting at vy,
and D the set of those starting at vy. Clearly, C' N D = (), so the sum of the weights of the
walks in F' = C'UD is j,13(z). Consequently, the sum S; of the weights of the ordered pairs
(v,w) € F x Fis j2 4(x).

Now let R denote the set of closed walks of length n originating at vy, and S that of
those originating at vy. It follows by the preceding argument that the sum S, of the weights
of the ordered pairs (v, w) € G x G is j2(x), where G = RU S and RN S = ).

Thus

Si+ 278 = Juys(@) + 275 (@).

We will now compute the sum S; + 23S, in a different way. Again, let (v, w) be an
arbitrary element of F' x F'.

Suppose v,w € C. Then the sum of the weights of pairs (v, w) of such closed walks of
length n + 3 originating at vy is [Jy14(2)][Jpga(z)] = J2,4(z). If v € C' and w € D, then
the resulting sum is [Jp14(2)][xpi2(2) = @ Jpia(x) Jnga(x). When v € D and w € C, the
corresponding sum is [zJ,42(2)][Jnia(x)] = T Jpia(2) Jpio(x). Finally, when v,w € D, the
contribution from such pairs (v, w) is [#.J,12(z)|[xJps2(x)] = 222, o(x). Thus

St = J2 () + 22 Jpia(2) Jnso () + 22 J7 5 ().
It then follows that

Sy = J2 1 (2) + 22 p i () Juor (z) + 22 J7_ ().
Consequently, S; + 23S, = A + B, where

A = J2+4<x) + x2J2+2(x) + x3JTQL+1(I);
B = 222 [(2) + 20Jnps(2) Jppo(z) + 220 Ty (2) Ty (20).



Proof. We will now confirm that Sy + xS, = ( + 1)j2,,(x) + z(x + 1)j2,,(2). The proof
involves a lot of carefully prepared basic algebra; so in the interest of brevity, clarity, and
convenience, we present only the major steps; also we omit the argument in the functional
notation.

We have

A:

(Jnga + @Jnsa)® + 22 T2 0 + 2 T2

Jr s+ 207 0+ 22 Ty o (e + T i) + 20 T2

S+ (@), 2T+ (2 ), + 2x Jnrodni1

Jra+ (@) 4+ 2P T+ (2P 4 2) T+ 207 Tt (Jngs — Tdnt)
Jrs+ (@) 4+ T+ (2% 4 2) S+ 207 s — 220 T
3 (Tt — Jn)? 4+ 22 dn 40 (Jnas + 2 dpis) + 22° Jo1 (Jpgr — i)

I+ 2P TR =200 T Sy 4 203 Jnse + 200 T + 200 T — 220 T
I+ 2T =200 Ty Ty 4 20 s (Jgn + ady) 4 22002, + 220 T2 — 220 T
20 Itz Ingr + 2P T2 4 20° Jyir Jy + 22707 + 3% T — 42t T,
2xJn i3 dni1 + 20 T2 4 202 Ty (Jnge + @ dpi1) + 2(Jngs — Juge)® + +22° T2 5 + 220 T2
— 423, 0,
2v 3 dni1 + 2P T 4 200 Ty + 2 d2 g 4 200 Jya Iy + (227 4+ 2) I 0 — 20043 e

+ 21‘3J2+1 — 4x3Jn+1Jn.

Then

where

Si42°S =C+ D+ (2> +2)J2 0 — 20° Ty o + (22° + 2) J2 5 — 20 dpi3 00,

C = Y(JZ s+ 2x s i) + 2 T2
2+ 1) (Joss +2Jpn)? — 2 JZ+1
r+1)j

-2 2712 .
+1 n+2 - Jn—l—l’

<
N

+x)Jps + P JE + 207 Jnio s
)(Jnsa + ) — 22 Ty 0 d, — 2t 2
)]n—i—l - 2$3Jn+2Jn — I'4J12L

Consequently,

where

Sy 4+ a8y = (x4 1)ja s +a(x+1)ji, + E,

E = =20°J,1Jy — 20 Jnqodnir — 220 T2 + 222 T2,
= —20% 0, (Jpr +20y) +22% Joio(Jngo — Jng1)
= —2x3Jn+2Jn -+ 2x3Jn+2Jn
= 0.
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Thus
Sl + I’SSQ = (x + 1)]24_2 + .I(l‘ + 1)j721+17

as expected. O

6 Acknowledgments

The author would like to thank the reviewer for his/her constructive suggestions for improv-
ing the quality of exposition of the original version.

References

[1] C. Alsina and R. B. Nelsen, Charming Proofs: A Journey Into Elegant Mathematics,
MAA, 2010.

[2] T. Amdeberhan, X. Chen, V. H. Moll, and B. E. Sagan, Generalized Fibonacci polyno-
mials and Fibonomial coefficients, Ann. Comb. 18 (2014), 541-562.

[3] M. Bicknell, A primer for the Fibonacci numbers: Part VII, Fibonacci Quart. 8 (1970),
407-420.

[4] R. Flérez, N. McAnally, and A. Mukherjee, Identities for the generalized Fibonacci
polynomial, Integers, 18 B (2018), Article A2.

[5] A. F. Horadam, Jacobsthal representation numbers, Fibonacci Quart. 34 (1996), 40-54.

[6] A. F. Horadam, Jacobsthal representation polynomials, Fibonacci Quart. 35 (1997),
137-148.

[7] A. F. Horadam and Bro. J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci
Quart. 23 (1985), 7-20.

[8] H. W. Gould, Problem B-7, Fibonacci Quart. 1 (1963), 80.
9] T. Koshy, Discrete Mathematics with Applications, Elsevier, 2004.
[10] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, 2014.

[11] T. Koshy, Graph-theoretic models for the univariate Fibonacci family, Fibonacci Quart.
53 (2015), 135-146.

[12] T. Koshy, Polynomial extensions of the Lucas and Ginsburg identities revisited, Fi-
bonacci Quart. 55 (2017), 147-151.

11



[13] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume I, Second Edition,
Wiley, 2018.

[14] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, 2019.

2010 Mathematics Subject Classification: Primary 05A19; Secondary 11B37, 11B39, 11Cxx.
Keywords: Fibonacci number, Lucas number, Pell number, Pell-Lucas number, Jacobsthal
number, Jacobsthal-Lucas number, Q-matrix, weight, weighted digraph, weighted adjacency
matrix, walk.

(Concerned with sequences A000032, A000045, A000129, A001045, A002203, and A014551.)

Received June 1 2018; revised versions received August 24 2018; February 24 2019; February
25 2019. Published in Journal of Integer Sequences, May 22 2019.

Return to Journal of Integer Sequences home page.

12


https://oeis.org/A000032
https://oeis.org/A000045
https://oeis.org/A000129
https://oeis.org/A001045
https://oeis.org/A002203
https://oeis.org/A014551
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Q-matrix and digraph
	A Gibonacci delight
	Graph-theoretic models
	Interpretation with gn = fn
	Interpretation with gn = ln

	Jacobsthal implications
	A Jacobsthal digraph

	Acknowledgments

