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Abstract

We extend a charming Fibonacci pleasantry to Fibonacci, Lucas, Jacobsthal, and

Jacobsthal-Lucas polynomials; and then confirm the resulting polynomial delights using

graph-theoretic tools.

1 Introduction

Generalized Fibonacci polynomials zn(x) are defined by the recurrence zn(x) = a(x)zn−1(x)+
b(x)zn−2(x), where x is an arbitrary complex variable; a(x), b(x), z0(x), and z1(x) are arbi-
trary complex polynomials; and n ≥ 2.

Let a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the nth
Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas

polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [2, 3, 12, 13].

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x)
and qn(x) = ln(2x), respectively. The Pell numbers Pn and Pell-Lucas numbers Qn are given
by Pn = pn(1) = fn(2) and 2Qn = qn(1) = ln(2), respectively [7, 10].

Suppose a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) = Jn(x), the nth
Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the nth Jacobsthal-

Lucas polynomial [5, 6]. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth Jacobsthal
and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn; and jn(1) = Ln.
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The polynomials fn(x), ln(x), Jn(x), and jn(x) can also be defined explicitly using Binet-

like formulas:

fn(x) =
αn − βn

α− β
; ln(x) = αn + βn;

Jn(x) =
un − vn

u− v
; jn(x) = un + vn,

where α = α(x) and β = β(x) are the solutions of the equation t2 − xt − 1, and u = u(x);
and v = v(x) are those of t2− t−x = 0. Notice that α−β =

√
x2 + 4 and u− v =

√
4x+ 1.

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn means zn(x). In addition, we let gn = fn or ln;
bn = pn or qn; and cn = Jn(x) or jn(x); and correspondingly, Gn = Fn or Ln; Bn = Pn or
Qn; and Cn = Jn or jn.

2 Q-matrix and digraph

Gibonacci polynomials fn and ln can be studied using the Q-matrix

Q =

[

x 1
1 0

]

,

where Q = Q(x) = (qij)2×2 [11, 14]. It then follows by induction that

Qn =

[

fn+1 fn
fn fn−1

]

,

where n ≥ 1.
The Q-matrix has a graph-theoretic appeal. It can be interpreted as the weighted adja-

cency matrix of a weighted digraph D1 with vertices v1 and v2 [11, 14]; see Figure 1. Notice
that a weight is assigned to each edge.

A walk from vertex vi to vertex vj is a sequence vi-ei-vi+1-· · · -vj−1-ej−1-vj of vertices vk
and edges ek, where edge ek is incident with vertices vk and vk+1. The walk is closed if
vi = vj; otherwise, it is open. The length of a walk is the number of edges in the walk. The
weight of a walk is the product of the weights of the edges along the walk.

We can employ the weighted adjacency matrix to compute the weight of a walk of length
n from any vertex vi to any vertex vj, as the following theorem shows [9, 11].
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Figure 1: Weighted digraph D1

Theorem 1. Let A be the weighted adjacency matrix of a weighted and connected digraph

with vertices v1, v2, . . . , vk. Then the ijth entry of the matrix An gives the sum of the weights

of all walks of length n from vi to vj, where n ≥ 1.

This theorem implies the following result.

Corollary 2. The ijth entry of Qn gives the sum of the weights of all walks of length n
from vi to vj in the weighted digraph D1, where 1 ≤ i, j ≤ 2.

It follows by this corollary that the sum of the weights of all closed walks of length n
originating in the digraph model is fn+1, and that of walks of length n originating at v2 is
fn−1. So the sum of the weights of all closed walks of length n is fn+1 + fn−1 = ln.

3 A Gibonacci delight

In 1963, H. W. Gould established a charming identity for Fibonacci squares [8, 13]:

F 2
n+3 = 2F 2

n+2 + 2F 2
n+1 − F 2

n . (1)

It has a simple, but delightful geometric interpretation [13].
The next theorem extends identity (1) to gibonacci polynomials gn.

Theorem 3.

g2n+3 = f3g
2
n+2 + f3g

2
n+1 − g2n. (2)

Proof. Using the gibonacci recurrence, we have

g2n+3 + g2n = (xgn+2 + gn+1)
2 + (gn+2 − xgn+1)

2

= (x2 + 1)g2n+2 + (x2 + 1)g2n+1.

This yields the desired identity. (It also follows by Binet’s formulas.)
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4 Graph-theoretic models

With these tools at our finger tips, we can give graph-theoretic interpretations of the gi-
bonacci results in Theorem 3. The essence of our technique hinges on Corollary 2, and the
“weighted”version of Fubini’s principle [1, 13]: Counting the number of elements in a set in

two different ways yields the same result.

We begin our discourse with gn = fn.

4.1 Interpretation with gn = fn

It follows by Corollary 2 that the sum of the weights of closed walks of length n+2 originating
at v1 is fn+3. The sum S of the weights of ordered pairs (v, w) of such closed walks is the
product of the sum of the weights of such walks v and w. Consequently, S = f 2

n+3.
We will now compute the sum S in a different way.

Proof. Case 1. Suppose v and w begin with a loop at v1. The sum of the weights of pairs
(v, w) of such closed walks of length n+ 2 is (xfn+2)(xfn+2) = x2f 2

n+2.

Case 2. Suppose v begins with a loop at v1, but w does not. The sum of the weights of pairs
of such closed walks is (xfn+2)(1 · 1 · fn) = xfn+2fn.

Case 3. On the other hand, suppose v does not begin with a loop, but w does. The sum of
the weights of pairs of such closed walks is (1 · 1 · fn)(xfn+2) = xfn+2fn.

Case 4. Finally, suppose neither v nor w begins with a loop. The contribution of pairs of
such walks toward the sum S is (1 · fn+1)(1 · fn+1) = f 2

n+1.

Combining the four cases, we also get

S = x2f 2
n+2 + f 2

n+1 + 2xfn+2fn

= (x2 + 1)f 2
n+2 + (x2 + 1)f 2

n+1 − f 2
n,

as in the proof of Theorem 3.
Equating the cumulative sums yields the desired result.

As a byproduct, this discourse then gives a graph-theoretic proof of the Pell identity

p2n+3 = p3p
2
n+2 + p3p

2
n+1 − p2n.

Next we investigate the graph-theoretic interpretation of identity (2) with gn = ln.
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4.2 Interpretation with gn = ln

Proof. Let A denote the set of closed walks of length n+ 3 originating at v1, and B that of
length n+ 3 originating at v2. Let C = A∪B, where A∩B = ∅. The sum of the weights of
all closed walks in C equals fn+4 + fn+2 = ln+3. Consequently, the sum S of the weights of
ordered pairs (v, w) ∈ C × C is given by S = l2n+3.

To compute this sum in a different way, first we make an interesting observation. By
Theorem 3, we have

x2f 2
n+3 + 4f 2

n+2 + 4xfn+3fn+2 = (xfn+3 + 2fn+2)
2

= (fn+4 + fn+2)
2

= l2n+3 (3)

= f3l
2
n+2 + f3l

2
n+1 − l2n.

Consequently, it suffices to establish graph-theoretically the equivalent identity

x2f 2
n+3 + 4f 2

n+2 + 4xfn+3fn+2 = l2n+3. (4)

We will accomplish this using four cases for an arbitrary element (v, w) ∈ C × C.

Case 1. Suppose v, w ∈ A. Suppose both v and w begin with a loop. The sum of the weights
of pairs (v, w) of such closed walks is (xfn+3)(xfn+3) = x2f 2

n+3. If v begins with a loop at v1
and w does not, then v ∈ A and w ∈ B. The sum of the weights of all such pairs (v, w) of
closed walks equals (x ·fn+3)(1 ·1 ·fn+2) = xfn+3fn+2. Suppose v does not begin with a loop,
but w does. Then v ∈ B and w ∈ A. The sum of the weights of all such pairs (v, w) of closed
walks equals (1 · 1 · fn+2)(x · fn+3) = xfn+3fn+2. Suppose neither v nor w begins with a loop.
The total contribution by the corresponding pairs (v, w) is (1 · 1 · fn+2)(1 · 1 · fn+2) = f 2

n+2.
Thus, when v, w ∈ A, the sum of the weights of such closed walks of length n+3 is given

by
S1 = x2f 2

n+3 + 2xfn+3fn+2 + f 2
n+2.

Case 2. Suppose v ∈ A and w ∈ B. If v begins with a loop, then the sum of the weights of
products of such closed walks of length n + 3 is (xfn+3)(fn+2) = xfn+3fn+2. On the other
hand, suppose v does not begin with a loop. The corresponding sum is (1 · 1 · fn+2)(fn+2) =
f 2
n+2. Consequently, the total contribution from this case is

S2 = xfn+3fn+2 + f 2
n+2.

Case 3. Suppose v 6∈ A, but w ∈ B. Then v ∈ B. If w begins with a loop, the resulting
contribution is (fn+2)(xfn+3) = xfn+3fn+2. If w does not begin with a loop, then the
corresponding contribution is (fn+2)(1 ·1 ·fn+2) = f 2

n+2. Consequently, the total contribution
from Case 3 toward the cumulative sum is

S3 = xfn+3fn+2 + f 2
n+2.
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Case 4. Suppose v, w ∈ B. Clearly, the resulting contribution from this case toward S is

S4 = (fn+2)(fn+2) = f 2
n+2.

Collecting all contributions from the four cases and using identities (2) and (3), we get

S = S1 + S2 + S3 + S4

= x2f 2
n+3 + 4f 2

n+2 + 4xfn+3fn+2

= l2n+3,

as desired.

An Alternate Proof.

Proof. Alternatively, by focusing on the closed walks at v1 alone, we can establish identity
(3). To see this, let C denote the set of closed walks of length n + 3 at v1, and D that of
length n+ 1 at v1. Let E = C ∪D, where C ∩D = ∅. The sum of the weights of the walks
in E is fn+4 + fn+2 = ln+3. Consequently, the sum S of the weights of elements in E × E is
S = l2n+3.

We will now compute S in a different way. (In the interest of brevity, we highlight the
key steps only.) To this end, let (v, w) be an arbitrary element in E × E.

Suppose v, w ∈ C. Then the sum of the weights of the pairs (v, w) of such closed walks
is given by

S1 = x2f 2
n+3 + f 2

n+2 + 2xfn+3fn+2.

On the other hand, let v ∈ C and w ∈ D. The total contribution from such pairs (v, w)
is

S2 = x2f 2
n+3fn+1 + xfn+3fn + xfn+2fn+1 + fn+2fn

= f 2
n+2 + xfn+3fn+2.

When v, w ∈ D, the total contribution from the corresponding pairs is

S3 = x2f 2
n+1 + 2xfn+1fn + f 2

n

= f 2
n+2.

Finally, let v ∈ D and w ∈ C. The corresponding contribution is

S4 = x2fn+3fn+1 + xfn+3fn + xfn+2fn+1 + fn+2fn

= f 2
n+2 + xfn+3fn+2.

Thus the cumulative sum S of the weights of all pairs (v, w) ∈ E × E is also given by

S1 + S2 + S3 + S4 = x2f 2
n+3 + 4f 2

n+2 + 4xfn+3fn+2

= l2n+3,

as expected.
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Since [4, 14]

g2n+1 + g2n =

{

f2n+1, if gn = fn;

(x2 + 4)f2n+1, if gn = ln;

these models also give a graph-theoretic interpretation of the identity [2, 4, 14]

g2n+3 + g2n = (x2 + 1)(g2n+2 + g2n+1)

=

{

(x2 + 1)f2n+3, if gn = fn;

(x2 + 1)(x2 + 4)f2n+3, if gn = ln.

We now add that using the bijection algorithm in [11], we can translate the graph-
theoretic models into tiling models with squares and dominoes, where weight(square) = x;
weight(domino) = 1; and the weight of a tiling is the product of the weights of tiles in the
tiling.

Replacing x with 2x in this discourse yields a graph-theoretic proof of the Pell-Lucas
identity

q2n+3 = 4x2p2n+3 + 4p2n+2 + 8xpn+3pn+2

= p3q
2
n+2 + p3q

2
n+1 − q2n.

Finally, it follows from identity (4) that

F 2
n+3 + 4F 2

n+2 + 4Fn+3Fn+2 = L2
n+3.

Consequently, an Ln+3 × Ln+3 floor can be tessallated with nine tiles: one Fn+3 × Fn+3 tile;
four Fn+2 × Fn+2 tiles; and four Fn+3 × Fn+2 tiles, where n ≥ 0.

5 Jacobsthal implications

Using the gibonacci-Jacobsthal relationships Jn(x) = x(n−1)/2fn(u) and jn(x) = xn/2ln(u)
[12], we can easily find the Jacobsthal counterparts of identities (2) and (3), where u = 1/

√
x:

c2n+3 = J3(x)c
2
n+2 + xJ3(x)c

2
n+1 − x3c2n; (5)

j2n+1(x) = J2
n+1(x) + 4x2J2

n(x) + 4xJn+1(x)Jn(x),

respectively. (We have omitted the basic algebra for brevity and convenience.)
Consequently,

C2
n+3 = 3C2

n+2 + 6C2
n+1 − 8C2

n;

j2n+1 = J2
n+1 + 16J2

n + 8Jn+1Jn. (6)

Identity (6) implies that a jn+1 × jn+1 floor can be tiled with 25 tiles: one Jn+1 × Jn+1

tile; sixteen Jn × Jn tiles; and eight Jn+1 × Jn tiles, where n ≥ 1.
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5.1 A Jacobsthal digraph

Next we confirm independently identity (5) using graph-theoretic tools. To this end, we first
present a weighted digraph D2; see Figure 2. Its weighted adjacency matrix is

M =

[

1 x
1 0

]

.

Then

Mn =

[

Jn+1(x) xJn(x)
Jn(x) xJn−1(x)

]

,

where n ≥ 1; we can confirm this using induction.

Figure 2: Weighted digraph D2

It then follows that the sum of the weights of closed walks of length n originating at v1 is
Jn+1(x), and that of those originating at v2 is xJn−1(x). Consequently, the sum of all closed
walks of length in the digraph D2 is Jn+1(x) + xJn−1(x) = jn(x). These facts play a central
role in the graph-theoretic proof.

With these tools at our finger tips, we now present the proof of each part.

Proof.

Part 1. To establish part 1, we let A be the set of closed walks of length n+2 starting at
v1. The sum of the weights of all such closed walks is Jn+3(x); so the sum S of the weights
of all ordered pairs (v, w) ∈ A× A is J2

n+3(x).
We will now compute S in a different way. Again, let (v, w) be an arbitrary element of

A×A. Suppose both v and w begin with a loop; the sum of the weights of such pairs (v, w) is
[1 ·Jn+2(x)][1 ·Jn+2(x)] = J2

n+2(x). If v begins with a loop and w does not, the corresponding
sum is [1 ·Jn+2(x)][x · 1 ·Jn+1(x)] = xJn+2(x)Jn+1(x). Suppose v does not begin with a loop,
but w does; then also the resulting sum is [x · 1 · Jn+1(x)][1 · Jn+2(x)] = xJn+2(x)Jn+1(x).
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Finally, if both v and w do not begin with a loop, the contribution from such pairs equals
[x · 1 · Jn+1(x)][x · 1 · Jn+1(x)] = x2J2

n+1(x).
Thus the cumulative contribution of pairs (v, w) all closed walks of length n+ 2 starting

at v1 is given by

S = J2
n+2(x) + 2xJn+2(x)Jn+1(x) + x2J2

n+1(x)

= J2
n+2(x) + xJn+2(x)[Jn+2(x)− xJn(x)] + xJn+1(x)[Jn+1(x) + xJn(x)] + x2J2

n+1(x)

= (x+ 1)J2
n+2(x) + x(x+ 1)J2

n+1(x)− x2Jn(x)[Jn+2(x)− Jn+1(x)]

= (x+ 1)J2
n+2(x) + x(x+ 1)J2

n+1(x)− x3Jn(x).

Combining the two values of S yields identity (5) when cn = Jn(x).

Part 2. To confirm identity (5) when cn = jn(x), we focus on the closed walks of lengths
n+ 3 and n in the digraph. Let C be the set of closed walks of length n+ 3 starting at v1,
and D the set of those starting at v2. Clearly, C ∩D = ∅, so the sum of the weights of the
walks in F = C ∪D is jn+3(x). Consequently, the sum S1 of the weights of the ordered pairs
(v, w) ∈ F × F is j2n+3(x).

Now let R denote the set of closed walks of length n originating at v1, and S that of
those originating at v2. It follows by the preceding argument that the sum S2 of the weights
of the ordered pairs (v, w) ∈ G×G is j2n(x), where G = R ∪ S and R ∩ S = ∅.

Thus
S1 + x3S2 = j2n+3(x) + x3j2n(x).

We will now compute the sum S1 + x3S2 in a different way. Again, let (v, w) be an
arbitrary element of F × F .

Suppose v, w ∈ C. Then the sum of the weights of pairs (v, w) of such closed walks of
length n + 3 originating at v1 is [Jn+4(x)][Jn+4(x)] = J2

n+4(x). If v ∈ C and w ∈ D, then
the resulting sum is [Jn+4(x)][xJn+2(x) = xJn+4(x)Jn+2(x). When v ∈ D and w ∈ C, the
corresponding sum is [xJn+2(x)][Jn+4(x)] = xJn+4(x)Jn+2(x). Finally, when v, w ∈ D, the
contribution from such pairs (v, w) is [xJn+2(x)][xJn+2(x)] = x2J2

n+2(x). Thus

S1 = J2
n+4(x) + 2xJn+4(x)Jn+2(x) + x2J2

n+2(x).

It then follows that

S2 = J2
n+1(x) + 2xJn+1(x)Jn−1(x) + x2J2

n−1(x).

Consequently, S1 + x3S2 = A+ B, where

A = J2
n+4(x) + x2J2

n+2(x) + x3J2
n+1(x);

B = x5J2
n−1(x) + 2xJn+4(x)Jn+2(x) + 2x4Jn+1(x)Jn−1(x).
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Proof. We will now confirm that S1 + x3S2 = (x + 1)j2n+2(x) + x(x + 1)j2n+1(x). The proof
involves a lot of carefully prepared basic algebra; so in the interest of brevity, clarity, and
convenience, we present only the major steps; also we omit the argument in the functional
notation.

We have

A = (Jn+3 + xJn+2)
2 + x2J2

n+2 + x3J2
n+1

= J2
n+3 + 2x2J2

n+2 + 2xJn+2(Jn+2 + xJn+1) + x3J2
n+1

= J2
n+3 + (x2 + x)J2

n+2 + x3J2
n+1 + (x2 + x)J2

n+2 + 2x2Jn+2Jn+1

= J2
n+3 + (x2 + x)J2

n+2 + x3J2
n+1 + (x2 + x)J2

n+2 + 2x2Jn+1(Jn+3 − xJn+1)

= J2
n+3 + (x2 + x)J2

n+2 + x3J2
n+1 + (x2 + x)J2

n+2 + 2x2Jn+3Jn+1 − 2x3J2
n+1;

B = x3(Jn+1 − Jn)
2 + 2xJn+2(Jn+3 + xJn+2) + 2x3Jn+1(Jn+1 − Jn)

= x3J2
n+1 + x3J2

n − 2x3Jn+1Jn + 2xJn+3Jn+2 + 2x2J2
n+2 + 2x3J2

n+1 − 2x3Jn+1Jn

= x3J2
n+1 + x3J2

n − 2x3Jn+1Jn + 2xJn+3(Jn+1 + xJn) + 2x2J2
n+2 + 2x3J2

n+1 − 2x3Jn+1Jn

= 2xJn+3Jn+1 + x3J2
n + 2x3Jn+1Jn + 2x2J2

n+2 + 3x3J2
n+1 − 4x3Jn+1Jn

= 2xJn+3Jn+1 + x3J2
n + 2x2Jn(Jn+2 + xJn+1) + x(Jn+3 − Jn+2)

2 ++2x2J2
n+2 + 2x3J2

n+1

− 4x3Jn+1Jn

= 2xJn+3Jn+1 + x3J2
n + 2x2Jn+2Jn + xJ2

n+3 + 2x3Jn+1Jn + (2x2 + x)J2
n+2 − 2xJn+3Jn+2

+ 2x3J2
n+1 − 4x3Jn+1Jn.

Then

S1 + x3S2 = C +D + (x2 + x)J2
n+2 − 2x3Jn+1Jn + (2x2 + x)J2

n+2 − 2xJn+3Jn+2,

where

C = (x+ 1)(J2
n+3 + 2xJn+3Jn+1) + x3J2

n+1

= (x+ 1)(Jn+3 + xJn+1)
2 − x2J2

n+1

= (x+ 1)j2n+2 − x2J2
n+1;

D = (x2 + x)J2
n+2 + x3J2

n + 2x2Jn+2Jn

= (x2 + x)(Jn+2 + xJn)
2 − 2x3Jn+2Jn − x4J2

n

= x(x+ 1)j2n+1 − 2x3Jn+2Jn − x4J2
n.

Consequently,
S1 + x3S2 = (x+ 1)j2n+2 + x(x+ 1)j2n+1 + E,

where

E = −2x3Jn+1Jn − 2x2Jn+2Jn+1 − 2x4J2
n + 2x2J2

n+2

= −2x3Jn(Jn+1 + xJn) + 2x2Jn+2(Jn+2 − Jn+1)

= −2x3Jn+2Jn + 2x3Jn+2Jn

= 0.
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Thus
S1 + x3S2 = (x+ 1)j2n+2 + x(x+ 1)j2n+1,

as expected.
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