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Abstract

We consider a game with two piles in which two players take turns adding a or

b chips, randomly and independently, to their respective piles. Here a, b are not

necessarily positive. The player who collects at least n chips first wins the game. We

derive general formulas for pn, the probability of the second player winning the game

by collecting n chips first, and give the calculation for the cases {a, b} = {−1, 1} and

{−1, 2}. The latter case was considered by Wong and Xu. At the end, we derive a

general formula for pn1,n2
, the probability of the second player winning the game by

collecting n2 chips before the first player collects n1 chips.

1 Introduction

Games are a source of motivation to do mathematics. The will to win a game is a motivation
to determine the mathematics behind it. There is evidence that pile games have been played
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since ancient times. For example, Nim, Wythoff, and their variants are some of the classical
pile games. In such games, two players take turns removing chips from the existing pile(s).
The rule for removing chips from the pile(s) varies with the game. In Nim, a game with
multiple piles, each player may remove any number of chips from one of the available piles,
and the player who takes the last chip loses the game (misére play). In some other games,
the player who takes the last chip wins the game (normal play). In Wythoff, a game with
two piles, a player is allowed to remove any number of chips from one or both piles. When
removing chips from both piles, the number of chips removed from each pile must be equal.
The player who takes the last chip (remove any chip) wins the game. These games are
quite well known and well studied. For example, the “bible of combinatorial game theory”,
Winning Ways for Your Mathematical Plays, written by Berlekamp, Conway, and Guy [1]
is a good reference for a mathematical introduction to these games.

Recently, Wong and Xu [6] studied a game where two players take turns collecting a
specific number of chips, randomly and independently, to build their own piles. The player
who collects n chips first is the winner, where n is a non-negative integer. In this paper, we
consider a more general version of the game investigated by them. Formally speaking, both
players start to play without any chips. At every turn, each player flips a fair coin to decide
whether to add a or b chips, where a, b are not necessarily positive, to their own piles. Piles
can contain a negative number of chips. The player who collects n chips first is the winner.

Let the random variable Sk be the number of chips collected by a player on his kth move,
and let A be the first player and B be the second player. The chance that B wins the game
by collecting n chips first is

pn =
∞
∑

k=1

P (A does not win on his kth move) · P (B wins on his kth move). (1)

1.1 Important notation

• pn = the probability of the second player winning the game by collecting n chips first.

• q(n, k) = the probability that a player does not win the game on his kth move, i.e., he
never collects n chips on or before his kth move.

• r(n, k) = the probability that a player collects n chips for the first time on his kth

move.

The equation (1) can be written as follows:

pn =
∞
∑

k=1

q(n, k) · r(n, k) (2)

where q(n, k) = P (Sj < n for all j = 0, 1, . . . , k) and r(n, k) = P (Sk ≥ n and Sj <
n for all j = 0, 1, . . . , k − 1).

A nice connection between the probabilities q(n, k) and r(n, k) is as follows:
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Lemma 1. For any positive integer n,

r(n, k) = q(n, k − 1)− q(n, k), k ≥ 1.

Proof. We prove the lemma by the following computation:

r(n, k) = P (Sk ≥ n and Sj < n, for all j = 0, 1, . . . , k − 1)

= P (Sk ≥ n)− P (Sk−1 ≥ n)

= (1− q(n, k))− (1− q(n, k − 1))

= q(n, k − 1)− q(n, k).

Remark 2. By Lemma 1 and the fact that q(n, 0) = 1 for all n ≥ 1, we write q(n, k) where
k ≥ 1, by

q(n, k) = 1−
k
∑

j=1

r(n, j). (3)

The following lemma holds under the condition that the game does not continue indefi-
nitely (the probability that either one of the players wins the game is 1).

Lemma 3. Let n be a fixed positive integer. If lim
k→∞

q(n, k) = 0 (i.e., a + b ≥ 0; otherwise

there is a positive chance that the game will not end), then

∞
∑

k=1

(

q(n, k − 1) + q(n, k)
)

· r(n, k) = 1.

Proof. We prove the lemma by the following computation:

∞
∑

k=1

(

q(n, k − 1) + q(n, k)
)

· r(n, k)

=
∞
∑

k=1

(

q(n, k − 1) + q(n, k)
)

·
(

q(n, k − 1)− q(n, k)
)

from Lemma 1

=
∞
∑

k=1

(

q(n, k − 1)2 − q(n, k)2
)

= q(n, 0)2 − lim
k→∞

q(n, k)2 = 1.

Remark 4. Alternatively, Lemma 3 can also be proven combinatorially as follows:

1 = P ( first player wins) + P ( second player wins) + P ( nobody wins)

=
∞
∑

k=1

r(n, k)q(n, k − 1) +
∞
∑

k=1

q(n, k)r(n, k) + lim
k→∞

q(n, k)2.
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In Theorem 5 below, we write the probability pn in terms of the probabilities r(n, k) only.

Theorem 5. If lim
k→∞

q(n, k) = 0, then pn =
1

2
− 1

2

∞
∑

k=1

r(n, k)2.

Proof. By definition,

pn =
∞
∑

k=1

q(n, k) · r(n, k).

On the other hand, based on Lemma 3, we have

pn = 1−
∞
∑

k=1

q(n, k − 1) · r(n, k).

By combining the two equations above, we obtain

pn =
1

2
− 1

2

∞
∑

k=1

(

q(n, k − 1)− q(n, k)
)

· r(n, k).

Then the result follows by applying Lemma 1.

In order to find pn, by Theorem 5, we just need to compute the probabilities r(n, k) and
find their sum of squares. For the case {a, b} = {1, 2}, Wong and Xu [6, Theorem 3] obtained
the following expression for the probability r(n, k):

r(n, k) =
1

2k

(

(

k

n− k

)

+

(

k − 1

n− k

)

)

.

Although it can be shown that the expression
∞
∑

k=1

r(n, k)2 does not have a closed-form formula

(strictly speaking, the sum is not Gosper-summable; we refer to Chapter 8 of the book of
Petkovsek, Wilf and Zeilberger [3]), nevertheless, an approximation for it was computed by
Wong and Xu [6, p. 12]. In particular, they showed that

∞
∑

k=1

r(n, k)2 ∼
√

27

8πn

when n is large.
Furthermore, they worked on the cases a > 0, b > 0 and asked the readers to investigate

the case {a, b} = {−1, 2}. Here we will attempt to answer their question and similarly
provide an answer to the case {a, b} = {−1, 1}.

This paper comes with the Maple program Piles which can be found on the second
author’s website: www.thotsaporn.com.
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2 The case {a, b} = {−1, 1}
Each player adds or removes one chip with a probability 1/2 to or from his pile. The pile is
allowed to have a negative number of chips. The first player who collects n chips wins the
game.

If n = 0, then the first player will always win the game as both players start to play
without any chip. The probability for the second player to win the game is 0, i.e., p0 = 0.

2.1 The winning probability for the first non-trivial case: n = 1

In this subsection, we simplify our notation slightly. The probabilities q(1, k) and r(1, k)
defined in Section 1 are abbreviated to q(k) and r(k) respectively.

Let C(k) be the number of ways for a player to have no chip on his kth move without
ever collecting one chip (so the game still continues). At this point, the reader may notice
that the number C(k) is related to the well-known Catalan numbers. In fact, for m ≥ 1, we
have

C(2m− 1) = 0

and

C(2m) =

(

2m

m

)

m+ 1
.

The probability that the second player collects one chip for the first time on his kth move
is

r(k) =
C(k − 1)

2k

because the player has no chip on his (k− 1)th move; and on his next move he is required to
collect one chip to win the game. Hence, for m ≥ 1, we have

r(2m) = 0

and

r(2m− 1) =
(2m− 2)!

m!(m− 1)!
· 2

4m
.

We therefore applied Theorem 5 to find p1, the probability of the second player win-
ning the game by collecting one chip first. Firstly, we needed to verify that the condition
lim
k→∞

q(k) = 0 is true, i.e., the probability that one of the players wins the game by collecting

one chip is 1. Equivalently, by (3), we needed to show that

∞
∑

k=1

r(k) = 1. (4)

There are, however, a number of ways to evaluate this sum. The second author’s favorite
tool for evaluating geometric sums (the binomial sum is a geometric sum) is Gosper’s algo-
rithm. The algorithm’s details were beautifully explained in Chapter 5 of Petkovsek, Wilf,
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and Zeilberger’s [3]. This algorithm has been implemented in all major symbolic computation
programs such as Maple and Mathematica. For example, when one types in

sum( (2*m-2)!/m!/(m-1)!*2/4^m, m=1..M);

in Maple, it will then return the expression 1− (2M)!

M !M !4M
. By an application of the Stirling

formula: n! ≈
√
2πn

(n

e

)n

, we note that

1− (2M)!

M !M !4M
→ 1 as M → ∞.

Hence, the equation (4) is true.
We are ready to find p1 by Theorem 5. To evaluate

∞
∑

k=1

r(k)2,

in Maple, we type

sum( ( (2*m-2)!/m!/(m-1)!*2/4^m )^2, m=1..infinity);

in Maple, it will then return
4

π
− 1. By Theorem 5,

p1 =
1

2
− 1

2

(

4

π
− 1

)

≈ 0.3633802277.

Hence, we easily obtained the value of p1 by applying Theorem 5 and the summation
tools in Maple.

2.2 The winning probabilities for the cases n ≥ 2

Analogously, let C(n, k) be the number of ways for a player to have n − 1 chips on his kth

move without ever collecting n chips.

Lemma 6. For n ≥ 0, k ≥ 1 such that n− k ≡ 0 (mod 2), we have

C(n, k) = 0.

Otherwise, for s ≥ 0, we have

C(2s+ 1, 2m) =
2s+ 1

m+ s+ 1

(

2m

m− s

)

, for m ≥ 0,

C(2s, 2m− 1) =
s

m

(

2m

m− s

)

, for m ≥ 1.
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Proof. The main recurrence relation for the numbers C(n, k) is

C(n, k) = C(n− 1, k − 1) + C(n+ 1, k − 1), n ≥ 1, k ≥ 1.

If the first move is 1, then the number of ways for a player to have n − 1 chips on his kth

move is C(n − 1, k − 1). On the other hand, if the first move is −1, then this number is
C(n+ 1, k − 1). We rearranged the terms and shifted the variables to obtain

C(n, k) = C(n− 1, k + 1)− C(n− 2, k), n ≥ 2, k ≥ 0. (5)

Then, the results follow by induction on n where base cases are given by

C(0, k) = 0, C(1, 2m− 1) = 0 and C(1, 2m) =

(

2m

m

)

m+ 1
.

It is also important to note that C(n, 0) = 0 for all n ≥ 0 except C(1, 0) = 1.

We proceed in the same manner as in Section 2.1. The following relation between the
numbers r(n, k) and C(n, k − 1) is true for n ≥ 0:

r(n, k) =
C(n, k − 1)

2k
. (6)

By Lemma 6, for n ≥ 0, k ≥ 1 and n− k ≡ 1 (mod 2), we have

r(n, k) = 0. (7)

Otherwise, for s ≥ 0, we have

r(2s+ 1, 2m+ 1) =
C(2s+ 1, 2m)

22m+1
=

2s+ 1

(m+ s+ 1) · 2 · 4m
(

2m

m− s

)

, for m ≥ 0,

r(2s, 2m) =
C(2s, 2m− 1)

22m
=

s

m · 4m
(

2m

m− s

)

, for m ≥ 1.

To apply Theorem 5, it is necessary to prove the following lemma.

Lemma 7. For each n ≥ 1, the probability that one of the players wins the game (by collecting
n chips first) is 1, i.e.,

∞
∑

k=1

r(n, k) = 1.

Proof. This can be done by induction on n. By (5) and (6), we have the following recurrence
relation for the numbers r(n, k):

r(n, k) =
C(n, k − 1)

2k
=

C(n− 1, k)

2k
− C(n− 2, k − 1)

2k

= 2r(n− 1, k + 1)− r(n− 2, k). (8)
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By (4), we note that

∞
∑

k=1

r(1, k) = 1. (9)

For n = 2, by (8) and (9), we get

∞
∑

k=1

r(2, k) =
∞
∑

k=1

(

2r(1, k + 1)− r(0, k)
)

= 2
∞
∑

k=1

r(1, k + 1) + 2r(1, 1)− 2r(1, 1)

= 2
∞
∑

k=1

r(1, k)− 2r(1, 1) = 2− 1 = 1

since r(0, k) = 0 for all k ≥ 1.
For the cases n ≥ 3, by (8) and the inductive hypothesis, we have

∞
∑

k=1

r(n, k) =
∞
∑

k=1

(

2r(n− 1, k + 1)− r(n− 2, k)
)

= 2
∞
∑

k=1

r(n− 1, k)−
∞
∑

k=1

r(n− 2, k) = 2− 1 = 1

since r(n− 1, 1) = 0 for all n ≥ 3.

Finally, we are in the position to apply Theorem 5 for each value of n. For example, to

evaluate
∞
∑

k=1

r(2, k)2, we type

sum( (binomial(2*m,m-1)/m/4^m)^2 ,m=1..infinity);

and then Maple will return
16

π
− 5. By Theorem 5,

p2 =
1

2
− 1

2

(

16

π
− 5

)

≈ 0.4535209109.
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For n ≥ 3, we list some values of
∞
∑

k=1

r(n, k)2 as follows:

∞
∑

k=1

r(3, k)2 =
236

3π
− 25,

∞
∑

k=1

r(4, k)2 =
1216

3π
− 129,

∞
∑

k=1

r(5, k)2 =
32092

15π
− 681,

∞
∑

k=1

r(6, k)2 =
172144

15π
− 3653.

The corresponding values of pn are

p3 ≈ 0.4798111434,

p4 ≈ 0.4891964033,

p5 ≈ 0.4933044576,

p6 ≈ 0.4954322531.

There is an interesting pattern for the values of
∞
∑

k=1

r(n, k)2 for n ≥ 1. In fact, let Tn be

∞
∑

k=1

r(n, k)2. The terms Tn appear to satisfy a recurrence relation with polynomial coeffi-

cients:

(n+ 3)Tn+3 − (7n+ 16)Tn+2 + (7n+ 5)Tn+1 − nTn = 0. (10)

(The guessing recurrence relation was found by a holonomic ansatz, i.e., we assume that the
sequence Tn satisfies a relation of the form

(a0n+ b0)Tn + (a1n+ b1)Tn+1 + · · ·+ (aNn+ bN)Tn+N = 0

for some specific N . Then, by plugging in values of n, Tn, Tn+1, . . . , Tn+N , say, for n =
1, 2, . . . , 30, we can solve the system of linear equations for the unknowns ai and bi.) The
authors believe that it can be shown formally by Zeilberger’s algorithm [3, Chapter 6] and
Zeilberger’s Maple package Ekhad. However, since the terms Tn are separated into two cases
(n is odd or n is even), the proof may not be straightforward.

Based on the recurrence relation (10), we obtain the asymptotic approximation of Tn (see
Wimp and Zeilberger [5]) as follows:

Tn =
1

πn2

(

1 +
1

n2
+

19

4n4
+

107

2n6
+ . . .

)

+O(αn)

for some α such that |α| < 1.
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2.3 The winning probability within k moves

The case {a, b} = {−1, 1} is unique in the sense that we were able to provide response to
more questions than initially asked. In this subsection, for a fixed positive integer n, we find
the probability that the second player wins the game within k moves. Similarly, it can be
resolved by employing Gosper’s algorithm!

First, we demonstrate it for the case n = 1. The other cases can be carried out in the
same manner, but case by case. We recall from Section 2.1 that

r(2m) = 0

and

r(2m− 1) =
(2m− 2)!

m!(m− 1)!
· 2

4m
.

By Remark 2, we have

q(2m) = q(2m− 1) = 1−
m
∑

j=1

r(2j − 1) = 1−
m
∑

j=1

(2j − 2)!

j!(j − 1)!
· 2

4j
.

This finite sum is Gosper-summable. In Maple, we type

simplify( 1-sum( (2*j-2)!*2/j!/(j-1)!/4^j ,j=1..m));

and the output is

(

2m

m

)

4m
. (The expression is so nice! It is screaming for a combinatorial

explanation!)
Lastly, the probability that the second player wins the game within k moves (the partial

sum of (2)) is

k
∑

i=1

q(i)r(i) =

⌊ k+1

2 ⌋
∑

j=1

q(2j − 1)r(2j − 1)

=

⌊ k+1

2 ⌋
∑

j=1

(

2j

j

)

4j
(2j − 2)!

j!(j − 1)!
· 2

4j

=

⌊ k+1

2 ⌋
∑

j=1

(

2j

j

)2

· 1

16j
· 1

2j − 1
.

In Maple, we type

sum(binomial(2*j,j)^2/16^j/(2*j-1),j=1..L);

and then we again have a closed-form solution. The probability that the second player wins
the game within k moves is

1− 2L+ 1

16L

(

2L

L

)2

, where L =

⌊

k + 1

2

⌋

.
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2.4 Average duration of a game

The work in the previous section now raises a question on the duration of a game. Hence,
suggesting a potential research topic looking into the average duration of different games.
As a reference, we refer to the work carried out by Robinson and Vijay [4] on the duration
of the game Dreidel.

Let the random variable X be the number of moves required to end the game.

Theorem 8. For any take-away move {a, b} where a and b are not necessarily positive, the

average duration of the game is
∞
∑

k=0

q(n, k)2.

Proof. We compute E[X] as follows:

E[X] =
∞
∑

k=1

k · P ( the game ends at the kth turn)

=
∞
∑

k=1

k ·
(

q(n, k − 1)r(n, k) + q(n, k)r(n, k)
)

=
∞
∑

k=1

k ·
(

q(n, k − 1)2 − q(n, k)2
)

=
∞
∑

k=1

q(n, k − 1)2.

The result follows by shifting the index k by 1.

Corollary 9. For the case {a, b} = {−1, 1}, E[X] = ∞ for any n ≥ 1.

Proof. For n = 1, by our computation of the probability q(k) in Section 2.3, we have

E[X] =
∞
∑

k=0

q(k)2 = 1 + 2 ·
∞
∑

m=1

(

(

2m

m

)

4m

)2

= ∞.

The last equality was found by Maple. But we can also show that it is true by the following
approximation:

(

(

2m

m

)

4m

)2

≈ 1

πm
as m → ∞.

The sum indeed diverges, but the rate of divergence is as slow as the harmonic series. For
n > 1, it is clear that the average duration of the game will be longer than the average
duration of the game for the case n = 1. Therefore, E[X] = ∞ holds true for n > 1.
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3 The case {a, b} = {−1, 2}
For this case, each player is allowed to add two chips to his pile or remove one chip from his
pile; each with probability 1/2. The pile is allowed to have a negative number of chips. The
first player who collects n chips wins the game.

Let D(n, k) be the number of ways for a player to have n − 1 or n − 2 chips on his kth

move without ever collecting n chips (thus allowing the game to continue).

Lemma 10. The numbers D(n, k) satisfy the following recurrence relation:

D(n, k) = D(n− 1, k + 1)−D(n− 3, k)

with base cases D(−1, k) = D(0, k) = 0 and

D(1, 3m) =

(

3m

m

)

2m+ 1
, D(1, 3m+ 1) =

(

3m+1

m+1

)

2m+ 1
, D(1, 3m+ 2) = 0.

Proof. The recurrence relation arises from whether the first move is +2 or −1, i.e.,

D(n, k) = D(n− 2, k − 1) +D(n+ 1, k − 1).

After shifting indexes and rearranging terms, we obtained the desired recurrence relation.
For the base cases, the sequence of non-negative integers D(1, 3m) is a generalization

of Catalan numbers. More precisely, the number D(1, 3m) is the number of ways for the
permutation of 2m copies of −1 and m copies of 2 such that the partial sum is never greater
than 0. It is the sequence A001764 in OEIS and was named 3-Raney sequences [2, Section
7.5]. Similarly, the number D(1, 3m+1) is the number of ways for the permutation of 2m+1
copies of −1 and m copies of 2 such that the partial sum is never greater than 0. It is the
sequence A006013 in OEIS.

We have the following relation

r(n, k) =
D(n, k − 1)

2k

because the player has n− 1 or n− 2 chips on his (k − 1)th move; and on his next move he
is required to collect two chips to win the game. Also, it is intuitively clear that the number
q(n, k) in this case is less than or equal to q(n, k) for the case {a, b} = {−1, 1} for any fixed

n and k. Therefore, lim
k→∞

q(n, k) = 0 for each n ≥ 0. For each n ≥ 1, we evaluate
∞
∑

k=1

r(n, k)2

and apply Theorem 5 to find the winning probability of the second player. However, this
sum is not Gosper-summable, i.e., there is no nice closed-form formula for the partial sum;
and these sums do not appear to converge to any famous constant either. We list some of
their numerical values in Table 1 below.
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n

∞
∑

k=1

r(n, k)2 pn

1 0.3221721826105... 0.33891390869471156...
2 0.2886887304423... 0.35565563477884626...
3 0.1547549217692... 0.42262253911538507...
4 0.1241072133089... 0.43794639334553199...
5 0.0941564190484... 0.45292179047578731...
10 0.047917368748... 0.47604131562562199...
20 0.028469734522... 0.48576513273891113...
100 0.010952807500... 0.49452359624969611...

Table 1: The values of
∞
∑

k=1

r(n, k)2 and pn for some n

4 A remark on Theorem 5

We would like to find an analog of Theorem 5 when players have the same set of moves (add
a or b chips); but now the first player wins the game if he collects n1 chips first and the
second player wins the game if he collects n2 chips first.

For a fixed set of moves {a, b}, let pn1,n2
be the probability that the second player collects

n2 chips before the first player collects n1 chips. Then

pn1,n2
=

∞
∑

k=1

q(n1, k) · r(n2, k). (11)

Similarly, the probability that the first player collects n1 chips before the second player
collects n2 chips is

∞
∑

k=1

q(n2, k − 1) · r(n1, k).

Assuming that the game will not continue indefinitely (the probability that either one of the
players wins the game is 1), i.e., a+ b ≥ 0, we have

∞
∑

k=1

q(n2, k − 1) · r(n1, k) +
∞
∑

k=1

q(n1, k) · r(n2, k) = 1.

By Lemma 1, we have a generalization of Theorem 5 as follows:

Proposition 11. For a fixed set of moves {a, b}, let pn1,n2
be the probability that the second

player collects n2 chips before the first player collects n1 chips. If the probability that either

13



one of the players wins the game is 1, then

pn1,n2
+ pn2,n1

+
∞
∑

k=1

r(n1, k) · r(n2, k) = 1.

4.1 The probability pn1,n2
for the case {a, b} = {−1, 1}

We list some values of pn1,n2
obtained by the equation (11) in Table 2 below. Note again

that, for any fixed n, the probability q(n, k) exhibits a nice closed-form expression in k. For
example, in Section 2.3, we obtained

q(1, 2m) = q(1, 2m− 1) =

(

2m

m

)

4m
.

Based on the closed-form expression of q(n, k) and Lemma 1, we can simplify the infinite
sums in the equation (11) nicely for different values of n1 and n2. For more values of pn1,n2

,
one can use the function Win2(n1, n2) in the accompanied Maple program.

n1 \ n2 1 2 3 4 5

1
π − 2

π

4− π

π

10− 3π

π

3π − 8

3π

15π − 46

3π

2
2(π − 2)

π

3π − 8

π

2(10− 3π)

π

3(16− 5π)

π

2(15π − 46)

3π

3
3π − 2

3π

7π − 20

π

39π − 118

3π

296− 93π

3π

5(142− 45π)

3π

4
8

3π

16− 3π

3π

8(12π − 37)

3π

195π − 608

3π

8(63− 20π)

π

5
5π − 2

5π

92− 27π

3π

926− 285π

15π

7(23π − 72)

π

5115π − 16046

15π

Table 2: The winning probability of the second player, pn1,n2

5 Future Work

Based on our work above, we suggest the following open problems:

1. Formally prove that the guessed recurrence relation (10) for the terms
∞
∑

k=1

r(n, k)2

(where n ≥ 0) for the case {a, b} = {−1, 1} is correct.

14



2. Find a recurrence relation for the terms
∞
∑

k=1

r(n, k)2 (where n ≥ 0) for the case {a, b} =

{−1, 2}, and then find an asymptotic approximation for it.

3. In this paper, we allow the number of chips in the pile to be negative. As an alternative
way to play the game, one may investigate the scenario where the players are not
allowed to have a negative number of chips, i.e., the number of chips stays at 0 when
the player gets to take a negative number of chips.
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