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Abstract

In this paper, we study bivariate extensions of Bell polynomials and r-Bell poly-

nomials. Some identities related to the r-Stirling numbers and Bell polynomials are

presented as special cases.

1 Introduction and motivation

The Stirling number of the second kind is the number of ways to partition a set of n objects
into k non-empty subsets (cf. Comtet [2, §5.1]) and denoted by {nk} (see Graham et al. [4,
§6.1]). The nth Bell number is the sum of the Stirling numbers of the second kind and
denoted by

Bn =
n

∑

k=0

{

n

k

}

, n = 0, 1, . . . .

The corresponding Bell polynomials are

Bn(x) =
n

∑

k=0

{

n

k

}

xk, n = 0, 1, . . . . (1)

Recently, Spivey [6, Eq. 3] discovered the following remarkable formula

Bm+n =
m
∑

k=0

n
∑

j=0

jn−k

(

n

k

){

m

j

}

Bk (2)
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and gave a short combinatorial proof. Later, Gould and Quaintance [3] extended this Bell
number to the following Bell polynomial

Bm+n(x) =
m
∑

k=0

n
∑

j=0

jn−k

(

n

k

){

m

j

}

Bk(x)x
j. (3)

For any positive integer r, Carlitz [1] introduced the r-Stirling number {nk}r, which is the
number of ways to partition a set of n + r objects into k + r non-empty subsets such that
the first r elements are in distinct subsets. He also found that the r-Stirling numbers and
the Stirling numbers have the following relationship

{

n

m

}

r

=
n

∑

k=0

(

n

k

){

k

m

}

rn−k. (4)

Analogous to the definition of the r-Stirling number, Mező [5] extended the Bell number Bn

to the r-Bell number

Bn,r =
n

∑

k=0

{

n

k

}

r

, n = 0, 1, . . .

and derived the following identity

Bm+n,r =
m
∑

k=0

n
∑

j=0

(j + r)n−k

(

n

k

){

m

j

}

r

Bk.

The aim of this paper is to generalize further these identities to the bivariate case. In the
next section, we give the bivariate extension of Bell polynomials. The bivariate extension of
r-Bell polynomials and some examples will be shown in the third section.

2 Bivariate extension of Bell polynomials

Firstly, for any positive integer n, we define the bivariate Bell polynomials by

Bn(x, y) =
n

∑

k=0

{

n

k

}

(x)ky
k, n = 0, 1, . . . ,

where the falling factorial is defined by (x)0 = 1 and

(x)k = x(x− 1) · · · (x− k + 1) for k = 1, 2, . . . .

Letting y → y

x
and then x → ∞, we can see that the bivariate Bell polynomial Bn(x, y)

reduces to the univariate Bell polynomial in Eq. (1).
The exponential generating function of Bn(x, y) is given by the following theorem.
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Theorem 1.

∞
∑

n=0

Bn(x, y)
tn

n!
= {1 + y(et − 1)}x.

Proof. Recalling the generating function [2, §5.2] (also see [4, §6.3])

∞
∑

n=0

{

n

k

}

xn

n!
=

∞
∑

n=0

S(n, k)
xn

n!
=

(ex − 1)k

k!
, (5)

we get

∞
∑

n=0

Bn(x, y)
tn

n!
=

∞
∑

n=0

n
∑

k=0

{

n

k

}

(x)ky
k t

n

n!

=
∞
∑

k=0

(x)ky
k

∞
∑

n=k

{

n

k

}

tn

n!

=
∞
∑

k=0

(x)ky
k (e

t − 1)k

k!

=
∞
∑

k=0

(

x

k

)

{

y(et − 1)
}k

.

By means of the binomial formula [2, §1.6]

(x+ y)α =
∞
∑

k=0

(

α

k

)

xα−kyk, (6)

we have the desired result.

If the exponential generating function f(x) of the sequence {An} is

∞
∑

n=0

An

xn

n!
= f(x), (7)

then it is routine to get the generating function of the double sequence {Am+n}

∞
∑

i=0

∞
∑

j=0

Ai+j

xi

i!

yj

j!
= f(x+ y). (8)

From this, we can prove the following theorem.

Theorem 2. Let m,n ∈ N. We have

Bm+n(x, y) =
m
∑

k=0

n
∑

i=0

kn−i

(

n

i

){

m

k

}

Bi(x− k, y)(x)ky
k.
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Proof. In view of Eqs. (7) and (8), we directly obtain the following bivariate exponential
generating function of Bell polynomials {Bm+n(x, y)}

∞
∑

m=0

∞
∑

n=0

Bm+n(x, y)
um

m!

vn

n!
= {1 + y(eu+v − 1)}x. (9)

The right-hand side of Eq. (9) can be reformulated to

{1 + y(eu+v − 1)}x = {1 + y(ev − 1) + yev(eu − 1)}x

=
∞
∑

k=0

(

x

k

)

{1 + y(ev − 1)}x−k{yev(eu − 1)}k,

where we have employed the binomial theorem in Eq. (6). According to
(

x

k

)

= (x)k
k!

and
Theorem 1, the last expression can be transformed into

{1 + y(eu+v − 1)}
x
=

∞
∑

k=0

(x)k
k!

∞
∑

i=0

Bi(x− k, y)
vi

i!
ykekv(eu − 1)k

=
∞
∑

k=0

(x)ky
k (e

u − 1)k

k!

∞
∑

i=0

Bi(x− k, y)
vi

i!

∞
∑

j=0

kjvj

j!
.

By means of Eq. (5), we have

{1 + y(eu+v − 1)}
x
=

∞
∑

k=0

(x)ky
k

∞
∑

m=k

{

m

k

}

um

m!

∞
∑

i=0

Bi(x− k, y)
vi

i!

∞
∑

j=0

kjvj

j!
.

Letting i+ j = n and then changing the summation order with respect to k and m, the last
expression can be reformulated to

{1 + y(eu+v − 1)}
x
=

∞
∑

m=0

∞
∑

n=0

um

m!

vn

n!

m
∑

k=0

n
∑

i=0

kn−i(x)ky
k

(

n

i

){

m

k

}

Bi(x− k, y).

Now extracting the coefficient of um

m!
vn

n!
across Eq. (9), we get the desired result.

Replacing y by y

x
and then letting x → ∞ in Theorem 2, we recover Eq. (3) for the Bell

polynomials of single variable.

3 Bivariate extension of r-Bell polynomials

In this section, we firstly define the following bivariate r-Bell polynomials

Bn,r(x, y) =
n

∑

k=0

{

n

k

}

r

(x)ky
k, n = 0, 1, . . . .
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Theorem 3. Let r be any positive integer. We have

∞
∑

n=0

Bn,r(x, y)
tn

n!
= ert{1 + y(et − 1)}x.

Proof. The univariate generating function of Bn,r(x, y) can be written as

∞
∑

n=0

Bn,r(x, y)
tn

n!
=

∞
∑

n=0

n
∑

k=0

{

n

k

}

r

(x)ky
k t

n

n!

=
∞
∑

k=0

(x)ky
k

∞
∑

n=k

{

n

k

}

r

tn

n!
.

In view of Eq. (5), we have

∞
∑

n=0

Bn,r(x, y)
tn

n!
=

∞
∑

k=0

(x)ky
k e

rt(et − 1)k

k!

= ert
∞
∑

k=0

(

x

k

)

{y(et − 1)}k.

Applying the binomial theorem (Eq. (6)) in the right-hand side of the above equation yields
the desired result.

Remark 4. The anonymous referee observed that the last identity is equivalent to

Bn,r(x, y) =
n

∑

j=0

(

n

j

)

Bn−j(x, y),

which is meaningful for all r, not just the nonnegative integers. It would be interesting to
find combinatorial interpretations of Bn,r(x, y) (or Bn,r(x, 1)) when r is a negative integer.

Theorem 5. For {r,m, n} ∈ N, we have

Bm+n,r(x, y) =
m
∑

k=0

n
∑

i=0

kn−i

(

n

i

){

m

k

}

r

Bi,r(x− k, y)(x)ky
k.

Proof. According to Eqs. (7) and (8), we can write the following bivariate generating function
directly:

∑

m,n≥0

Bm+n,r(x, y)
um

m!

vn

n!
= er(u+v){1 + y(e(u+v) − 1)}x. (10)
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Reformulating the right-hand side of Eq. (10), we have

er(u+v){1 + y(eu+v − 1)}x = eruerv{1 + y(ev − 1) + yev(eu − 1)}x

= eruerv
∞
∑

k=0

(

x

k

)

{1 + y(ev − 1)}x−k{yev(eu − 1)}k

=
∞
∑

k=0

erv{1 + y(ev − 1)}x−kekveru
(eu − 1)k

k!
(x)ky

k.

With the help of Theorem 3 and Eq. (5), we get from the last expression

er(u+v){1 + y(e(u+v) − 1)}x =
∞
∑

j=0

∞
∑

s=0

∞
∑

i=0

∞
∑

l=0

uj

j!

us

s!

vl

l!

vi

i!

×

j
∑

k=0

klrsBi,r(x− k, y)

{

j

k

}

(x)ky
k.

Letting i+ l = n and s+ j = m, then extracting the coefficients of um

m!
vn

n!
across Eq. (10),

we arrive, after having simplified the result by means of Eq. (4), at the desired identity.

Using the same method as that for Theorem 5, we get another expression for Bm+n,r(x, y).

Theorem 6. For {r,m, n} ∈ N, we have

Bm+n,r(x, y) =
n

∑

i=0

m
∑

k=0

(k + r)n−i

(

n

i

){

m

k

}

r

Bi(x− k, y)(x)ky
k.

When r = 0, the last two theorems reduce to Theorem 2.

Proposition 7.

Bm+n,r(y) =
n

∑

i=0

m
∑

k=0

kn−i

(

n

i

){

m

k

}

r

Bi,r(y)y
k.

Proof. Let y → y

x
, x → ∞ in Theorem 5.

Proposition 8.

Bm+n,r(y) =
n

∑

i=0

m
∑

k=0

(k + r)n−i

(

n

i

){

m

k

}

r

Bi(y)y
k.

Proof. Let y → y

x
, x → ∞ in Theorem 6.
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Corollary 9.

Bm+n,r =
n

∑

i=0

m
∑

k=0

kn−i

(

n

i

){

m

k

}

r

Bi,r.

Proof. Let y → y

x
, x → ∞ and then set y = 1 in Theorem 5.

Corollary 10. [Mező [5, Theorem 2]]

Bm+n,r =
n

∑

i=0

m
∑

k=0

(k + r)n−i

(

n

i

){

m

k

}

r

Bi.

Proof. Let y → y

x
, x → ∞ and then set y = 1 in Theorem 6.

It should be pointed out that Corollary 9 and Corollary 10 can be obtained by setting
y = 1 in Propositions 7 and 8, respectively. When r = 0, the last corollary reduces to Eq. (2).
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